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Abstract: In this paper, a general exponential form of the underlyiistridution and a general conjugate prior are used to désthes
maximum likelihood and Bayesian estimation based on anashifybrid censored sample. A general procedure for deriviegoint

and interval Bayesian prediction of the future order stiagsrom the same sample as well as that from an unobserverefsample
is also developed. The exponential and Pareto distribsitioa then used as illustrative examples. Finally, two nicakexamples are
presented for illustrating all the inferential procedudeseloped here.
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1 Introduction

In life-testing experiments, the experimenter may stopetkgeriment before all the units on the test have failed due to
some considerations such as time and cost. In such casest#ieed data is called censored data. The most two common
forms of censoring are Type-I and Type-Il censoring schegse-1 hybrid censoring scheme is introduced by Epstein
in [1] as a mixture of Type-l and Type-Il censoring schemes. Tybgbrid censoring scheme (Type-Il HCS) is proposed
by Childs et al. in 2] to fix the disadvantages inherent in Type-I hybrid cengpsgnheme. Chandrasekar et al. 8 [
introduced generalized Type-I hybrid and generalized Iyp¢CS as mixtures of Type-| hybrid and Type-Il HCS. For
more details about HCS, one may refer4h [

Recently, Balakrishnan et al. iB][proposed the unified HCS to fix the disadvantages inherdghtigeneralized Type-
I hybrid and generalized Type-Il HCS, suggested by Chamtteaset al. in ). This censoring scheme can be described as
follows. Consider a life-testing experiment in whicldentical units are placed on a life-test. Fix intederse {0,...,n}
andTy, T, € (0,0) such thak < r andT; < Ty. If the KM failure occurs before tim&, the experiment is terminated at
min{max(Xin, T1), T2}. If the KM failure occurs betweel andT,, the experiment is terminated at niX:n, T2) and if
the k" failure occurs after timd,, the experiment is terminated ¥t,,. Under this censoring scheme, we can guarantee
that the experiment would be completed at most in tipavith at leastk failure and if not, we can guarantee exadtly
failures. The described unified HCS and inferential methmatsed on such a scheme have been discussed earlier in the
literature; see, for exampled], [6], [7], [8], and 9].

AL-Hussaini [LQ] suggested a general exponential form of the underlyintgildigion to develop a general procedure
for the Bayesian inference. This general form can descrisefbllows; Motivated by the fact that the survival function
(SH F(x|0) =1—F(x|0) corresponding to any cumulative distribution functi@DF) F (x|8) can be written in the form

F(x|6) = exp—w(x )], (1)

wherey(x; 8) = —InF(x|0) is monotone increasing, continuous and differentiabletion, with y(x; 6) — 0 asx — —c
andy(x; 8) — o asx — co.
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The probability density functiorRDF) corresponding tol) is given by
f(x/0) = ¢'(x 0) expl—(x 0)], )

wherey/'(x; 8) is the first derivative of(x; 8) with respect tox.

Several distributions that are used in reliability studigsch as exponential, Pareto, Weibull and Burr Type-XII
distributions, can be obtained as special cases from thergleexponential forml) by using an appropriate choice of
Y(x;0). Many authors considered this general exponential formeeelbp a general procedure of the statistical
inference based on different forms of censored data, seextomple; 11], [17], [13], [14], [15], [1€], [17], and [L§].
Recently, Mohie EI-Din et al. in19] have considered the inverse general exponential form a&weldped a general
procedures for Bayesian estimation and two-sample piedicsing the unified hybrid censoring schemes. We discuss
in this paper the same problem based on the unified hybridodegsscheme which involves some additional
complications.

The rest of this paper is organized as follows. In Sectionggraeral procedure of deriving the maximum likelihood
(ML) and Bayesian estimators is presented. A general proeeof predicting the future order statistics from the same
sample is discussed in Section 3. In Section 4, a generakgure of predicting the future order statistics from an
unobserved future sample is then developed. The expohantidareto distributions are presented in Section 5 asapec
cases from the general exponential forth. (inally, in Section 6, some computational results for éixponential and
Pareto distributions are presented for illustrating alitiferential methods developed here.

2 The ML and Bayesian estimation

Let Xin < Xon < ... < Xpn be the failure times oh independent and identical units are placed on a life-test am
absolutely continuous CDF (x) = F(x|0) and PDFf(x) = f(x|0) where the parametét € © may be a real vector.
Let D denote the number of;.n's that are at mostj, j = 1,2. Then,Dj is a discrete random variable has the binomial
distribution B(n,F (Tj)), j = 1,2, with support{0,1,...,n}. Therefore, we observe one of the following six cases of
observations under the unified hybrid censoring scheme:

1.If 0 < Xgn < Xr:n < T1 < Tp, then the experiment is terminatedTatand we will observeX;, < ... < Xgn < ... <
Xr;n <. < XDl;n.

2.1f 0 < Xien < T1 < X:n < Ty, then the experiment is terminatedXat, and we will observeXip < ... < Xin < ... <
XDljn <. < Xr;n.

3.f 0 < Xen < Th < To < X, then the experiment is terminatedTatand we will observeXin < ... < Xgp < ... <
XDljn <. < XDz:n.

4.1f 0 < T1 < Xen < Xrin < To, then the experiment is terminated@t, and we will observedy, < ... < Xp;in < ... <
Xien < ... < Xeon

5.0f 0 < Ty < Xien < T2 < Xrn, then the experiment is terminatedTatand we will observeXy, < ... < Xp;:n < ... <
Xin < ... < Xpyin-

6.1f 0 < Ty < T2 < Xien < Xr:n, then the experiment is terminated&t, and we will observelin < ... < Xp;in < ... <
XDZ:n <. < Xk:n.

Thus, the joint density function of the unified hybrid cerebsampleX = (X, X2, ..., Xoin) IS as follows:

D
() = g [ 1060 (2 FTY™, ©
where
(D1,T1), inCase 1
r, in Cases 2 and,4
(O.T) = E 2,T2)) in Cases 3 and,5 )
(K, Xn), inCase 6

andx = (X1, Xz, ..., Xp) is a vector of realizations.
Upon substituting) and @) in (3), the likelihood function oB, given the observed unified hybrid censored sample,

is obtained as
D
L(6;x) (Flw (Xi:n; )exp[— <-Ziw(xi;6) — (n—D)w(T;G)ﬂ , (5)
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The log-likelihood function oB, given the observed unified hybrid censored sample, is thvem dpy

logL(0;x) =logn! —log(n—D)! + % logy/(x;0) — iW(Xi; 0)—(n—D)Y(T;0). (6)
=1 =

By differentiating 6) with respect tc® and equating the result to zero, we can obtain the ML estinwité by solving
the following equation
dlogL(8|x)
de
This equation is appropriate for a single vaRiebut for a vectoi® of course, the partial derivatives produce a system of
equations that are solved simultaneously.
For the Bayesian method, we consider here a general corjpgat, suggested by AL-Hussairi(], that is given as

1(6; 5) o A(6; 5) expl—B(0; 5)), 7)

wheref € O is the vector of parameters of the distribution1) éndd is the vector of prior parameters. The prior family
in (7) includes several priors used in the literature as speas <.

Upon combining 8) and (7), we obtain the posterior density function@fgiven the observed unified hybrid censored
sample, as

' (6;X) = L(8;X)71(6;5)/ / L(6;x)7(6; 5)de
6¢eb
=171n(6;x) exp—¢(6;%)], (8)

with 5
n(6;x) =A(6;9) ud/(xi; 0),

D
{(8;x) = _Z‘ﬂ(xﬂ 6)+(n—-D)yY(T:6) +B(6:9),

and
1= [ n(e:x)exi-¢(8:x))de.
6O

By using the squared error loss function, the Bayesian astinof 6 is obtained as the mean of the posterior density
function, which is given by

61" [ on(6:)exp-< (6:w)]d6. ©)
CISC]

3 One-Sample Bayesian Prediction

In one-sample prediction, we use the observed unified hyt#igsored sampl¥ = (X, Xom, ..., Xp:n) to develop a
general procedure for deriving the point and interval prgaoln for the future order statist¥s,, D < s< n, from the same
sample.

The conditional density function oXsn, D < s < n, given the observed unified hybrid censored sample
X = (Xin, X2, -+, Xoin), IS given by:

1 em-
Xs|X), | , 1) =1, Arn),
FO6l) =\ fy(xeho). if (D.T) = (D2, Ta), 10)
fa(xsx), if (D,T) = (k Xcn),
where
s—1

f1(xs|X) = P < ng P—y dlz:r f(Xs|x,D1 =d1)P(D1 =d1)

(- dite(T) [FO0)-FT AR o) | a

& (s—di—1)I(n—9)! [1-F(Ty"
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With X = (X1,%, ., X0, ) and, (Tr) = prp—s,

fo(xs|X) = f(Xs[r)

_ (n—r)! [F(xs) = F(x)]* " L=F(xg)]" *f ()
" (s—r—1)!(n—9)! [1—F(x)"" » Yo
with X = (X1,X2, ..., % ),
1 r*—1
f3(xs|X) = Pk<D,<r —1) dzz:kf(xsm7 Dy =dy)P(Dz =dp)
TSt (=)l (T2) [F(xs) —F ()" 21— F ()" (%)
= dzz:k G—G-Di(n—s) - F(Tz)]n—dz , X > T,

With X = (X1,X2, ..., XD, ), Ya,(T2) = % andr* = min(r,s),

fa(Xs|X) = f(Xs[%)

_ (n—k)! [F (%) = F(4))° ™ [1 = F(x5)]" (%)
- (S—k—l)!(n—S)! [1—F(Xk)]n7k y X > X,

with X = (X1, X2, ..., X).
Upon substitutingd) and @) in (11) - (13), f1(Xs|X), f2(xs|X), fa(Xs|X) and f4(xs|x) will become:

s—1s-d;—1
fixlx) = 5 z Con@y, (T2; 0)U' (Xs: 0) exp{—(n—s+w-+1) [(Xs; 8) — ¢'(T1;0)] } ,xs > Tu,
di=r w=0
wherex = (X1,X2, .., Xp, ), Ciw = (71(1((,5:%!1()”(3?1)! and
() o0l (0 ) w(Tsso)] (1 expi- (i)}
1
%1(1—119): S 1 n q )
5 (&) expi- (0 w(Tss6)] {1 expl- (T o))
di=r 1
s—r—1

fo(Xs|X) = z Contl'(Xs; 0) exp{—(n—s+w+1) (X 0) — ' (%;0)] }, Xs>Xr,

- DYy Hn-
wherex = (X1,Xo,...,X ) andCapy = W'

—1s—dy—1
f3(Xs|X) = z > Cowdt, (T2i 0)Y/ (%5 0) exp{ —(N—s+w+1) [Y(x;8) — ¢'(T2;0)] }, s> Ta,
ds=k V=0
w(s—dp—1 n—d)!
wherex = (x1,X2, .., X0,), Caw = % and
() o0l (0 o) (o)) (1 expi- (T )
Vop (T2 0) = ———

21 <;> exp[— (n—d2) Y(T; 0)] {1 — exp[— Y(T2; 6)]}%
dp=k \ 02

s—k—-1
f4(xs|X) = z Cant)' (X5, 0) exp{—(n—s+w+1) [J(Xs;0) — ' (X 0)] }, Xs> X,

(D" (-
wherex = (X1, Xz, ..., X) andCay = W'

(12)

(13)

(14)

(15)

(16)

17)

(18)
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Upon combining 8) and (0), the Bayesian predictive density function X§,, given the unified hybrid censored
sample, is obtained as

i emo
* 3 Xs|X), i ; = (I Arn),
P06 =19 (), i (D.T) = (D, To). 19)
fz{(XS|X)7 If (DvT) = (kvxkn)v
where
XS|X f]_ Xs|X 6|X)
S— lS—dl
=1t Z Ciw / Y'(xs; 0 )@, (T1;0)n(6;x)
di=r w= 0 9o
xexp{—{(0;x) — (N—s+W+1)[P(Xs;0) — Y(T1;0)]}dO, x> Ty, (20)
XS|X f2 Xs|X 6|X)
s—r—1
=17y Ca [ wosonx)
6O
xexp{—{(0;x) — (N—s+W+1)[Y(Xs;0) — Y(%;0)]}dO, Xs> Xr, (21)
fa(xs|X) = [ fa(xs|x)m(6]|x)dO
r¥—1s—dp—1
=17y S G [ ¥ 8)ys, (T2 8)n(8:x)
d=k w=0  gcg
xexp{—{(0;x) — (N—s+wW+1)[Y(Xs;0) — Y(T2;0)]}dO, xs> Ty, (22)
and
fi(xs|x) = [ fa(xs[x)7T"(6]x)dO
s—k—1
=1 > C4W/L[J’(xs 0)n(6;x)
w=0  gcg
xexp{—{(0;x) — (Nn—s+w+1)[P(Xs; 0) — Y(X; )]} dO, Xg> Xk. (23)
The predictive survival functiof * (t|x), given the unified hybrid censored sample, can be obtaimed (t9) as
e
— Fy(t|x), if (D,T)=(r,Xn),
Pt =1 Ex(ty), if (D.T)= (Do Ty), (24)
Fy(t)x), if (D,T)=(k Xcn),
wheret > 0 and
FEt) = [ 1 Osldx
t
s—1s-d;—1
_ 11
= dlzr Wzo n— s+w+1/%3L (T;6 %)
xexp{—((e.x)—(n—S+W+1)[LIJ(t.9)— Y(T1;0)]}dO, (25)
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FA () = [ 15 0l
t

s—r—1 C

=11 WZO mg 9 n(6;x)exp{—{(6;x) — (n—s+w+1)[Y(t;0) — Y(x,;0)]}db, (26)
Fi(tx) = [ 3 (xs|x)d
i - [
7lr*7ls—d2
- dzzk wzo n— 5+W+1/yd2 (72:6)n(6:%)
XEXD{—((Q-X)—(n—S+W+1)[lI’(t19)— (T2;0)]}d0, (27)
and
Fa(th) = [ 1 Ol
|tls_k_1 Caw 0; 0; 1) [t 19)]1do 2
- WZO mge/e'ﬂ ;x)exp{—{(6;x) — (n—s+w+1)[Y(t;0) — Y(x; 6)]} d6. (28)

As in the case of estimation, prediction can be either a mian interval prediction. The Bayesian point predictor of
Xsn can be obtained as the mean of the predictive density fumeti¢l9) and given by

00

Ken = / Xs ¥ (Xe]X) %, (29)
0

Therefore, the Bayesian predictive bounds of (100 y)% two-sided equi-tailed (ET) interval fofsn can be obtained by
solving the following two equations:

F_*(LET|5):%/ and F_*(UET|5):1—%/, (30)

whereLgt andUgT denote the lower and upper bounds of the ET interval, remedet
For the highest posterior density (HPD) interval methodneed to solve the following two equations:

F*(Lupplx) — F*(Unpplx) = 1 -y

and
f*(LupplX) — f*(UnpplX) =0,
wherelLypp andUypp denote the lower and upper bounds of the HPD interval, reispéc

4 Two-Sample Bayesian Prediction

In two-sample Bayesian prediction, we use the observededhifybrid censored sample to develop a general procedure
for deriving the point and interval prediction for the ordgatistics from an unobserved future sample from the same
distribution.

LetYim < Yom < ... <Ynm be the order statistics from a future random sample of sifl®m the same population.
Then, the marginal density function of the order statigig, 1 < g < m, see R0, is given by

m!
(s—1)!(m—-s)!

Upon substitutingX) and @) in (31), the marginal density function &, becomes

frem(Ys/6) = [F(ys)]® 1~ F(ys)]™ > (ys), ys>O. (31)

Frem(Ys|6) = ZCsww ¥s: 8) exp—(m—s+w+1)P(ys )], ys> 0. (32)
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1 S=1\
whereCsy, = %

From @) and B2), the Bayesian predictive density function 4f;, given the unified hybrid censored sample, is
obtained as

Vo950 = [ T (3518)7 (61x)0
6co

s—1
=171y Cow / W' (¥s:0)n(8;x) exp—{(8;x) — (m—s+w+1)Y(ys 0)]d6, ys> 0. (33)
w=0 " gcq

From 33), the predictive survival functioﬁ;‘sm(ﬂx), fort > 0, is obtained as

Rin(t) = [ R y5h0ls
t

s—1 CS

=1 z mostwil / n(6;x)exp—{(6;X) — (Mm—s+w+ 1)y(t; 6)]d6. (34)

66

The Bayesian point predictor 0k, 1 < s< m, can be obtained as the mean of the predictive density fumati (33)
and given by

Ysm = /st;(;m (Ys|X)dYs. (35)
0

Therefore, the Bayesian predictive bounds of 100y)% ET interval forYsm, 1 < s< m, can be obtained by solving the
following two equations:

Rin(leTh) =3 and R (Uerh)=1-7,
whereLgt andUgT denote the lower and upper bounds of the ET interval, reisedet
For the HPD interval method, also we need solve the follovéiggations:

Rzm(LPoX) = Fy,, (Unpp|X) = 1—y

(36)

and
fY*5m(LHPD|X) - fY*Sm(UHPDM) =

whereLypp andUypp denote the lower and upper bounds of the HPD interval, reispéc

5 Examples

In this section, we apply the procedure derived in the prieceskections for the the exponential and Pareto distribstio
as special cases from the general exponential form givel).in (

5.1 The Exponential Distribution

The survival function of the exponential distribution is
F(x]A) =exg—Ax], x>0, (37)

whereA > 0, and then we have
YxA)=Ax and ¢/'(xA)=A.

Thus, the likelihood function ok using the unified hybrid censored sample, is given by

(nf.D). exp[ (Zixmtn D) )

L(A;x) =

(38)
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whereD andT are given as in4). So, the ML estimator o is
D

}\\ML: D .
S X+ ((Mn—-D)T
i=1

For the Bayesian inference, we use the conjugate gammafpridrwith density function
A% lexg—bA], A >0, (39)

ba
A 0)=——
m(A;0) @
whered = (a,b), a andb are positive constants aifid ) denotes the complete gamma function, and so we have

A(X;86) =231 and B(A;8) = Ah.

Then, the posterior density function is given as8hwhere
D
lei +(n—=D)T+b

nA;x) =APT L (%) = A

D —(D+a)

and
ZXH—(N—D)T—I—b

|=r(D+a)

Therefor, the Bayesian estimatordfunder the squared error loss function is
~ D+a

A= 5 .
Y Xi+(n—D)T+b
i=1

(40)

5.1.1 One-sample Bayesian prediction
The Bayesian predictive density functionXy,, given the unified hybrid censored sample, in this case sgas in 19),

where

s—1s-d;—1 *©
Hoa) =115 Y Cuy (A% (TuA)

di=r w=0 0

d
xexp{—)\ ZlXi+(n—dl)Tl—I—(n—S+W+1)(Xs—T1)+b }d)\, (41)
i=
with
( ”) exp—(n— d)AT)(1— exg —ATa])%
dy
@ (Td) = 570 =
) ( )exp[—(n—dl))\Tl](l—exp{—/\Tl])dl
di=r dl
s—r—1 r —(r+atl)
f3(xsx) =17 (r+a+1) 5 Cow ZXi+(n—r)xr+(n—s+w+ 1) (Xs— %) +b : (42)
w=0 i=
rf—1s—dp—1 0
B0k =175 > Caw [ A% Ry (Ta.)
dr=k w=0 0
da
xexp{—)\ ZiXi+(n—dz)T2+(n—S+W+1)(Xs—T2)+b }d)\, (43)
i=
(@© 2017 NSP
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with
(d”) expl— (n— d2)AT2)(1 - expi~A o))
oo (T2.A) = 7y !
> (d ) exp—(n— d2)A o) (1 - exg—ATo])%
dy=k 2
and
1 ) —(k+a+1)
fi(ex) =17 (kta+D) 5 Caw| 3 %+ (1=t (N—S+W+1)(x—x) +b -4
w=0 i=

The Bayesian predictive survival function ¥§,, given the unified hybrid censored sample , is then given 424y
where

00

=5 1 et Caw di+a
Fitx)=1" 7/)\1 @ (T1,A
l(|) dlz:r o (n—S+W+1)O (1 )
dy
xexp{—/\ in+(n—dl)T1+(n—s+w+1)(t—T1)+b }d)\, (45)
i=
— . s—r—1 Cow r —(r+a)
Fa(tlx)=1""T(r+a) 2o (nstwr) i;Xi‘f'(”—")Xr+(”—S—i—W—f—l)(t—Xr)+b ; (46)
_ 1(*713—(]2—1 CaN ° dia
F3(tx) =1" 7/)\2 ya(T2, A
3(|) dzz:k WZ() (n—S+W—|—1)0 (2 )
dz
xexp{—/\ lei+(n—dz)T2+(n—s+w+1)(t—T2)+b }d)\, (47)
i=
and
_ ) skl o, . (k)
Fix)=1""T(k+a T —— Xi+(MN=r)x+ (n—s+w+1)(t—xc)+b 48
=17 (ko a) 5w s | 5 %o ()X (M-S W D (%0 + (48)
5.1.2 Two-sample Bayesian prediction
The Bayesian predictive density function\@n, given the unified hybrid censored sample, is given by
s—1 D —(D+a+1)
Fem(YslX) = 17' 7 (D+a+1) ¥ Cow ZXi+(n—D)T+(m—s+w+ 1)ys+b : (49)
w=0 i=

and the Bayesian predictive survival functionYgf,, given the unified hybrid censored sample, is then given by

s 1 D —(D+a)
— % _ -1 CSW . _ .
R, (tx) =17 (D+ a)WZO—(m_ Stwid) i;x. +(-D)T+(m—-s+w+1)t+b (50)
5.2 The Pareto distribution
The survival function for Pareto distribution is given by
_ B a
Fiia.p) = (§) x>, 1)
(@© 2017 NSP
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wherea > 0 andf > 0, and so we have

w(xa,B)=alog (%) andy’(xa,B) =

Thus, the likelihood function off andf using the unified hybrid censored sample, is

L(a,B;x) = o E!D)! a® (ﬁi) exp{—a lZIogm +(n—D)logT —nIogB] } (52)

whereD andT are given as in4).
Itis clear that the likelihood function is monotone incriegsunction in3, so its maximum valu@y will be attained
at the minimum value; of 3. So, the ML estimator ofr is obtained as

. D
amL = D (53)

Z logx; + (n—D)logT — nlogxl
&

For the Bayesian estimation and prediction, we conside¥ tiex joint prior density function off and 3 which was
suggested by Lwin ing1] and generalized by Arnold and Press 22], and given by

m(a,B;0) O a®B texg—a(logc—blogB)], a >0,0< B <d, (54)
wherea, b, c, d are positive constants amll < c. Then, we have
A(a,B;5) = a®B tand B(a,3;5) = a(logc—blogpB),
whered = (a,b,c,d). The posterior density function of andf3 is then given by §), where
n(a.p;x)=a’?p,

{(a,B;x)=qa l_ilogx; + (n—D)logT — (n+b)logpB +logc| ,

and
D —(D+a)

_I(b+a 5 logx + (n-D)logT — (n-+ b)logia + loge
i=

n+b

)

with Xg = min(xy, d).
Hence, under the squared error loss function, the Bayestanator ofa is obtained as

~ D+a
aB: D ) (55)

Y logxi+ (n—D)logT — (n+b)logxo +logc
i=1
}da

and the Bayesian estimator Bfis obtained as

N y D+a D
Bs = |—1XO{(X(:+7b)+1 exp{—a LZIogxa +(n—D)logT — (n+b)logxo+ logc

= Xo D —(D+a)
logx + (n—D)logT — (n+ b)logxp + logc
= wib) |2 )logT — (n-+ b)
- D+an—t
/ t- e dt
0 [Z logx; + (n—D)logT — (n+b)|ogxo+logc] /(n+b)
i=1
%o [ Y logx + (n—D)logT — (n+b)logxy + Iogc}
__ % i=1
N I'(m+a)q) D+a, (n+D) ) (56)
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where
Ttret
t+
5 y

@ (xy) = dt.

A partial tabulation ofi(x,y) = (y/I' (X))@ (x— 1,y) has been provided by Arnold and Pressag][

5.2.1 One-sample Bayesian prediction

The Bayesian predictive density functionXfy, given the unified hybrid censored sample, is given ag &, (vhere

s—1s—d;— 1C1W d a1
s ! T
X|X dlzrwzo // & %(1GB)
d1
xexp{—a _Zlogx;+(n—d1)long—(n+b)IogB
+(n—s+w-+1)(logxs—logT1) +logc]} dadf, (57)
with
(¢) /T @y
@, (M0, B) = S5 ;
5 (§) /e wpmy
di=r 1
-1 s—r—1
fﬂ&M):L—L%fgiE 5 9_[ZFMN+ (n—1)logx — (n+b) logxo
+(n—s+w-+ 1) (logxs — logx; ) + logg] 31| (58)
r*flS—dz 1C Xp co
fx o|x dr+a+l T
s = 55 0/O/a By, (T2;,B)
dy
xexp{—a [ logx + (n—dy)logT, — (n+b)logB
+(n—s+w+ 1;(Iogxs—IogT2)+Iogc]}dadB, (59)
with
(o) B/mI o1 B/
Ve, (T2: 0, B) = 7
5. (&) B/mI-ee (1 g
dy=k \ 02
and

171 (k+a+1) Sk 1c4w

faboh) = =75

Zlogx. + (n—k)logxc — (n+ b)logxo
w=0

+(nN—s+w-+ 1)(Iogxs—logxk)+Iogc]’(k+a+1). (60)
Therefore, the Bayesian predictive survival functiorXgf, given the unified hybrid censored sample, is given ag4in, (
where

s—1 s,d]_,]_

Fr (t]x) = > ZO m// a® B gy (Th;a, B)

di=r w=

di
leogxi +(n—dy)logT; — (n+b)logp

xexp{—a
i=

+(n—s+w+1)(logt —logTy) +logc]} dadp, (61)
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I"r(r+a)5Ct Cow S
Fi(t)x) = b z et wil i;Iogxﬁr(n—r)logxr—(ner)Iogxo

w=0

+(n—s+w+ 1) (logt — logx; ) +logc] =& | (62)

r* —1S*d271

Xg o

— % C —

Rl =y Y — [ [a® %y (Tia.p)
00

do=k W=0

da
leogxi +(n—dy)logT, — (n+b)logpB

xexp{—a
i=

+(n—s+w-+1)(logt —logT,) + logc]} dadp, (63)

I (k+a) S Cu
n+b z n—s+w+1

w=0

Fi (t)x) =

Zlogx.Jrn K)logxx — (n+b) logxo

+(n—s+w+1)(logt — Iogxk)+logc]’<k+a+1). (64)

5.2.2 Two-sample Bayesian prediction

The Bayesian predictive density function\gf,, given the unified hybrid censored sample, is then given by

fivem (Ys1X), 0 <Ys < Xo,
fo = Wsm 65
Ys:m(ys|x) { fékysm(ys|x), yS > XO, ( )

where
Ys
Fiven 0519 = [ [ frenlys) 7 (0, 01x)dardp
00
s—1 —1
=1"r(d+a+y y Coun¥s
Lon+b+m—s+w+1
D —(D+a+1)
X lZIogx@ +(n—D)logT — (n+b)logys+ logc
i=
and

fést:m(y5|x) = st:m(yS|x) m (a, B |X)dadB

0\8

1 s—1 C5wy§1
=1""T(D+a+1
(D+a+ )Z n+b+m—s+w+1|,

D
Zlogx; +(n—D)logT

—(nN+b+m—s+w+1)logxo+ (m—s+w+ 1) logys + logc] ~P3+D |

Therefore, we can obtain the predictive survival functibiYgy, given the unified hybrid censored sample, as

— Fi. (t)x), 0<t<xg
L (t]x) = q Lem =0 ’ 66
Fam(t1X) {Fz*vsm(tll)a £ o, (66)

where
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X0 0
Fiten(t) = [ Fiven y5h0dys + [ T (y5l0cys
t X0

e Cow

- '7lr(D+a>WZO (nTbrm_stwil)(ntb(m_siwil

D —(D+a)

leogxi + (n—=D)logT — (n+b)logxo + logc
i=

—(D+a)
} ; (67)

X {(n+b+m—s+w+1)

D

—(Mm—s+w+1) leogxi +(n—D)logT — (n+ b)logt + logc
i=

and

Fovn(th) = [ T (v5)0e
t

s—1 D
1 Cow 4
=1 F(D+a)wzzo(n+b+m—s+w+1)(m—s+w+1) i; 109 + (n—D)logT

—(N+b+m=—s+w+1)logxo+ (M—s+w-+ 1)logt + logc) P+ . (68)

6 Numerical Results

In this section, we present two numerical examples to iaistthe inferential procedures developed in the preceding
sections.

6.1 Numerical example for the exponential distribution

In order to illustrate all the inferential results estaldid for the exponential distribution, we consider here tilewing
real data: 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.8B,4.50, 7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91 136nd
72.89, which consisting of the times to breakdown on inguggfluids tested at 34 kilovolts produced by Viveros and
Balakrishnan in 23] (1994) from Table 6.1 of ¢4], p.228). We assume the exponential distribution for theses to
breakdown and consider the following four unified hybridsming schemes:

1.Scheme 1: Suppoge=4,r =6, T; = 4 andT, = 8, thenxs.19 < Xg:19 < T1 and the experiment would have terminated
atT; = 4. Therefore, we would have the following data: 0.19, 0.78601.31, 2.78 and 3.16;

2.Scheme 2: Suppose=6,r =9, Ty =4 andT, = 8, thenxg.19 < T1 < Xg:19 < T> and the experiment would have
terminated akg.oo = 4.85. Therefore, we would have the following data: 0.19, 00/86, 1.31, 2.78, 3.16, 4.15, 4.67
and 4.85;

3.Scheme 3: Suppose=6,r =12, T; =4 andT, = 8, thenxg.19 < T1 < T2 < X12:19 @and the experiment would have
terminated af, = 8. Therefore, we would have the following data: 0.19, 0.78601.31, 2.78, 3.16, 4.15, 4.67, 4.85,
6.5 and 7.35;

4.Scheme 4: Suppoge=14,r = 15,T; = 4 andT, = 8, thenT; < T» < X14:19 < X15:19 @nd the experiment would have
terminated aki4.19= 12.06. Therefore, we would have the following data: 0.19, 0086, 1.31, 2.78, 3.16, 4.15,
4.67, 4.85, 6.50, 7.35, 8.01, 8.27 and 12.06.

Based on the above four unified hybrid censoring schemesse the results presented in Subsection 5.1 to calculate
the ML and Bayesian estimates of the unknown parametédso, we calculated the point predictor and 95% two-sided
ET and HPD prediction intervals for the future order statssKs19, where 15< s < 19, from the same sample and that
for the order statistic¥s10, wherel< s < 10, from a future unobserved sample with sme- 10. All obtained results

for the Bayesian estimation and prediction, presented ineBal-3, are computed based on two different choices of the
hyperparameters a and b, namely,
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Table 1: The ML and Bayesian estimates of
AML AB
GP
0.0857
0.1119
0.1003
0.1042

JP
0.0817
0.1121
0.0993
0.1037

0.0981
0.1261
0.1092
0.1117

Schemel
Scheme?2
Scheme3
Scheme4

Table 2: Bayesian point predictor and 95% ET and HPD prediction watlsrfor Xs19 for s= 15, ...,19.

GP JP
Scheme s Xs19 ET interval HPD interval Xs19 ET interval HPD interval
Schemel 15 19.308 (8.529,43.908) (6.851,37.456) 20.776 .571%0.829) (6.705,42.346)
16 22.797  (2.128,52.681) (7.657,44.848) 24599  (9.7565) (7.471,50.848)
17 27.449  (11.203,64.626) (8.670,54.863) 29.698  (117%6¥99) (8.434,62.345)
18 34.428  (1.546,83.231) (10.023,70.323) 37.345 (13988350) (9.723,80.031)
19 48.385 (16.853,123.775) (12.055,103.324) 52.640 @8D61943.852) (11.672,117.498)
Scheme2 15 13.343  (7.242,25.941) (6.318,22.972) 13.469 .20126.873) (6.248,23.591)
16 15.854 (8.163,31.623) (6.989,27.939) 16.018 (8.1023R (6.888,28.746)
17 19.201  (9.356,39.387) (7.848,34.679) 19.415  (9.27966) (7.707,35.735)
18 24.223  (11.028,51.585)  (9.003,45.138) 24512  (10530706)  (8.810,46.561)
19 34.266  (13.841,78.677) (10.720,67.758) 34.705  (13346838) (10.456,69.879)
Scheme3 15 14.955 (9.576,26.072) (8.796,23.453) 15.100 .57926.759) (8.778,23.947)
16 17.695 (10.550,32.106)  (7.087,28.285) 17.897  (103%HQ54)  (9.457,29.490)
17 21.348  (11.850,40.327) (10.425,36.033) 21.626  (11434823) (10.374,36.974)
18 26.828  (13.697,53.257)  (11.715,47.244) 27.221  (13560076)  (11.638,48.571)
19 37.789  (16.823,82.156)  (13.647,71.579) 38.410 (16851023)  (13.538,73.670)
Scheme4 15 14126  (12.109,20.154) (12.060,18.468) 14.1492.109,20.285) (12.060,18.557)
16 16.709  (12.567,26.300) (12.122,23.839) 16.760  (122%6865) (12.121,24.025)
17 20.153  (13.514,34.158)  (12.610,30.805) 20.242  (13381602)  (12.600,31.122)
18 25.318  (15.071,46.263)  (13.594,41.415) 25.464  (15467978)  (13.571,41.929)
19 35.650 (17.876,73.194) (10.136,63.163) 35.909  (177374052) (10.166,64.086)

1.:a=0.1 andb = 10 Gamma informative priofGP) by letting the mean of the prior distribution &fis 0.01 and its
variance is 0.001).
2.:a= 0 andb = 0 Jeffreys non-informative priqd P).

From the results in Tables 5 and 6, we notice that, The poettiptor of mean is between the upper and lower bounds
of the prediction intervals. Also, a comparison of the resfdr the Gamma informative prior with the corresponding®n
for Jeffreys non-informative prior reveals that the forrpesduce more precise results, as we would expect. Moreibner,
HPD prediction intervals seem to be more precise than therEdigion intervals, Finally when we use the same value
of T; andT, but increasing andr, the Bayesian prediction bounds become tighter as expeited the duration of the
life-testing experiment is longer in this case.

6.2 Numerical example for the Pareto distribution

In order to illustrate all the inferential results estaldid for the Pareto distribution, we generated order stifiiom a
sample of sizen = 20 from the Pareto distribution witth = 5 andf3 = 7. The generated order statistics as follows: 7.032,
7.159, 7.307, 7.340, 7.583, 7.718, 7.742, 7.744, 7.78267.8.903, 8.874, 9.100, 9.141, 9.237, 9.417, 9.660, 10.132
12.499 and 21.590. We will apply the following four unifieddnig censoring schemes:

1.Scheme 1: Suppoge=2,r =4, T; = 7.650 andT, = 7.800, therxz.29 < X4:20 < T1 and the experiment would have
terminated af; = 7.65. Therefore, we would have the following data: 7.032, 9,75307, 7.340, and 7.583;
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Table 3: Bayesian point predictor and 95% ET and HPD prediction WtisrforYs1o for s=1, ..., 10.

IP NIP
Scheme s Ys10 ET interval HPD interval Ys10 ET interval HPD interval
Schemel 1 1.396 (0.030,5.913) (0.000,4.514) 1.530 (GB0z316) (0.000,5.020)
2 2.946  (0.281,10.093)  (0.023,8.002) 3.229  (0.292,13.550 (0.020,8.999)
3 4691  (0.729,14.546)  (0.213,11.774) 5141  (0.751,8.77 (0.198,13.318)
4 6.685  (1.325,19.548)  (0.560,16.024) 7.326  (1.356,5).66 (0.526,18.194)
5 9.011  (2.063,25.363)  (1.031,20.954) 9.875  (2.103,8).51 (0.974,23.860)
6 11.802 (2.967,32.370) (1.629,26.878) 12.934 (3.018635. (1.542,30.668)
7 15.292  (4.092,41.223)  (2.378,34.335) 16.758  (4.15188.  (2.254,39.234)
8 19.944 (5.550,53.264) (3.337,44.423) 21.856 (5.62316). (3.167,50.804)
9 26.922  (7.597,72.012)  (4.631,59.984) 20.504  (7.68218).  (4.400,68.593)
10 40.879 (11.065,112.863) (6.580,93.191) 44,799 (111212456) (6.268,106.278)
Scheme2 1 1.004 (0.023,4.066) (0.000,3.171) 1.019 (C10EER) (0.000,3.241)
2 2.120 (0.219,6.796) (0.023,5.527) 2.152 (0.218,7.028) 0.02(1,5.676)
3 3.376 (0.576,9.669) (0.198,8.059) 3.426  (0.570,10.036)(0.187,8.297)
4 4.810 (1.055,12.880) (0.510,10.896) 4.882 (1.041,143.40 (0.484,11.239)
5 6.484  (1.655,16.604)  (0.932,14.180) 6.581  (1.629,Bj.31 (0.887,14.648)
6 8.493  (2.392,21.091)  (1.468,18.122) 8.619  (2.351,2).02 (1.398,18.741)
7 11.004 (3.313,26.773) (2.139,23.089) 11.168 (3.25983). (2.038,23.896)
8 14351  (4.506,34.537)  (2.998,29.829) 14565  (4.4201%). (2.857,30.885)
9 19.373 (6.178,46.735) (4.153,40.288) 19.662 (6.05858). (3.960,41.711)
10 29.416  (8.991,73.827)  (5.870,62.908) 29.855 (8.81888  (5.606,65.029)
Scheme3 1 1.096 (0.025,4.364) (0.000,3.430) 1.119 (10ER) (0.000,3.517)
2 2.314 (0.246,7.236) (0.028,5.939) 2.362 (0.248,7.479) 0.02(7,6.110)
3 3.684 (0.650,10.242) (0.237,8.628) 3.761 (0.653,10.614 (0.231,8.893)
4 5250  (1.196,13.594)  (0.607,11.636) 5359  (1.198,B).11 (0.593,12.009)
5 7.076  (1.880,17.477)  (1.108,15.113) 7.224  (1.881,18.16 (1.084,15.613)
6 9.268  (2.724,22.156)  (1.743,19.284) 9.462  (2.722,8).05 (1.706,19.938)
7 12.009  (3.779,28.086)  (2.540,24.542) 12259  (3.7734%).  (2.485,25.389)
8 15.662 (5.147,36.208) (3.558,31.684) 15.989 (5.13%18). (3.482,32.789)
9 21.142  (7.062,49.018)  (4.924,42.799) 21583  (7.048H).  (4.822,44.289)
10 32.103 (10.273,77.712)  (6.943,66.981) 32.772  (108D4835) (6.807,69.232)
Scheme4 1 1.033 (0.024,4.047) (0.000,3.204) 1.045 (1) (0.000,3.248)
2 2.181 (0.239,6.658) (0.030,5.513) 2.205 (0.239,6.782) 0.020,5.601)
3 3.472 (0.633,9.377) (0.245,7.981) 3.511 (0.634,9.567) 0.24(1,8.117)
4 4.948 (1.169,12.399) (0.624,10.735) 5.003 (1.168,8).66 (0.614,10.927)
5 6.670  (1.843,15.896)  (1.136,13.914) 6.744  (1.840,15.25 (1.119,14.172)
6 8.737 (2.677,20.109) (1.786,17.724) 8.833 (2.671,8).57 (1.759,18.063)
7 11.319  (3.720,25.454)  (2.601,22.529) 11.444  (3.71058).  (2.562,22.969)
8 14.763  (5.074,32.791)  (3.642,29.066) 14.926  (5.058733.  (3.588,29.640)
9 19.929 (6.968,44.418) (5.036,39.269) 20.148 (6.94474%. (4.962,40.042)
10 30.260 (10.133,70.698)  (7.082,61.608) 30.593 (10729278)  (6.984,62.770)

2.Scheme 2: Suppoge=4,r =7, Ty = 7.650 andT, = 7.800, therxs.20 < Ty < X7:20 < T> and the experiment would
have terminated a&.,0 = 45. Therefore, we would have the following data: 7.032, 9,75307, 7.340, 7.583, 7.718,
and 7.742;

3.Scheme 3: Suppo&e=6,r = 12,T; = 7.650 andT, = 7.800, thenT; < Xg.20 < T2 < X14.20and the experiment would
have terminated ab = 7.800. Therefore, we would have the following data: 7.03259,7.307, 7.340, 7.583, 7.718,
7.742, and 7.744;

4.Scheme 4: Suppose=11,r = 13, T; = 7.650 andT, = 7.800, thenT; < Tr < X11:20 < X13:20 @and the experiment
would have terminated at1.00 = 7.903. Therefore, we would have the following data: 7.03259,17.307, 7.340,
7.583,7.718,7.742,7.744, 7.785, 7.826, and 7.903.
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Table 4: The ML and Bayesian estimates@fand 3.

amL as BuL Bs
1P NIP 1P NIP
Schemel 3.476 3.837 2.780 7.032 6.931 6.869
Scheme2 4.335 4.387 3.716 - 6.945 6.921
Scheme3 5.286 5.033 4.698 - 6.958 6.947
Scheme4 5.988 5.536 5.444 - 6.965 6.961

Table 5: Bayesian point predictor and 95% ET and HPD prediction watisrfor Xs. 2o for s= 16, ..., 20.

IP NIP
s Xs:20 ET HPD X520 ET HPD
interval interval interval interval
Schemel 16 13.265 (8.226,16.791) (7.618,15.054) 13.379.64838.244) (8.067,27.318)
17 14985 (7.658,19.650) (8.191,17.157) 15.219 (6.378022 (7.393,34.803)
18 15.096 (8.597,24.366) (7.687,20.644) 16.609  (8.582181 (7.709,49.503)
19 21.318 (9.079,34.161) (8.667,27.384) 22.079 (8.8811BB) (7.290,81.055)
20 29.648 (9.447,72.251) (8.878,50.664) 31.679 (9.409144) (7.591,252.658)
Scheme2 16 10.968 (8.268,14.468) (8.084,13.348) 11.020.526A.9.590) (8.080,16.699)
17 13.451 (8.491,16.577) (8.234,15.006) 13.689 (6.630223 (8.163,19.828)
18 14.458 (8.732,19.980) (8.382,17.635) 15.986  (8.738221) (8.300,24.877)
19 16.008 (9.441,26.827) (8.738,22.643) 17.761  (9.0889%8 (8.441,35.470)
20 22.124 (9.688,51.876) (8.966,39.084) 23.145 (9.7@34BB)  (8.490,75.559)
Scheme3 16 9.615 (8.310,12.297)  (8.196,11.521) 10.539 5928.3.647) (8.092,12.536)
17 10.965 (8.741,13.762) (8.312,12.819) 11.179 (6.8169B) (8.187,14.122)
18 13.984 (9.027,16.061) (8.484,14.663) 14.484  (9.1399B3 (8.318,16.600)
19 15.457 (9.534,20.511) (8.502,18.082) 16.219  (9.588283) (8.478,21.219)
20 19.968 (10.177,35.580) (8.791,28.600) 20.989 (10490842) (8.664,36.597)
Scheme4 16 9.219 (8.523,11.154)  (8.240,10.667) 10.303 7118.1.599) (8.181,10.967)
17  9.456 (8.789,12.336)  (8.371,11.666) 10.693  (8.98098). (8.308,12.106)
18 11.847 (9.092,14.162) (8.539,13.060) 13.359  (9.3318H (8.433,13.738)
19 14959 (8.905,17.621) (8.569,15.903) 15.725 (9.8587H) (8.602,17.023)
20 18.254 (10.324,28.878) (8.718,24.035) 19.270 (103R1893) (8.761,26.527)

Based on the above four unified hybrid censoring schemessee thhe results presented in Subsection 5.2 to calculate
the ML and Bayesian estimates of the unknown parametessd 3. Also, we calculate the point predictor and 95%
ET and HPD prediction intervals for the future order statsKs20, Where 16< s < 20, from the same sample and that
for the order statistic¥s10, where 1< s < 10, from a future unobserved sample with size- 10. All obtained results

for the Bayesian estimation and prediction, presented niega4-6, are computed based on two different choices of the
hyperparameter@, b, c,d), namely,

1.:.a=357b=0.20,c= 3.27 andd = 10.83: informative prior(IP) (by letting the mean of the marginal prior
distribution ofa is 5 and its variance is 7, and the median of the marginal jgiigiribution of 3 is 0.5 and its third
quartile is 0.25).

2.:a=-1,b=0,c=1 andd = c: noninformative priofNIP).

From the results in Tables 5 and 6, we notice that, The poettiptor of mean is between the upper and lower bounds
of the prediction intervals. Also, a comparison of the resfdr the informative prior with the corresponding onesrfon-
informative prior reveals that the former produce more jseeresults, as we would expect. Moreover, the HPD predictio
intervals seem to be more precise than the ET predictiomvai® Finally when we use the same valueTgfand T,
but increasind andr, the Bayesian prediction bounds become tighter as expstted the duration of the life-testing
experiment is longer in this case.
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Table 6: Bayesian point predictor and 95% ET and HPD prediction wtsrforYs1o for s=1, ..., 10.

IP NIP
s Ys10 ET HPD Ys10 ET HPD
interval interval interval interval
Schemel 1 7.224 (6.586,8.444) (6.457,8.218) 7.142 (61 78%5) (6.703,7.709)
2 7.671 (6.819,9.892) (6.604,9.280) 7.386 (6.895,8.447) 6.799,8.240)
3 8.269 (7.010,11.778) (6.750,10.606) 7.673 (7.018,9.187(6.897,8.844)
4 9.136 (7.171,14.375) (6.887,12.363) 8.018  (7.13910.0996.995,9.577)
5 10.506 (7.343,18.158) (7.012,14.814) 8.446  (7.2767H).2 (7.092,10.508)
6 12.880 (7.547,24.083) (7.122,18.458) 9.000 (7.4428M.8 (7.186,11.756)
7 17.447 (7.800,34.411) (7.219,24.394) 9.763  (7.64941.2 (7.277,13.555)
8 27.511 (8.134,55.817) (7.301,35.613) 10.931 (6.64R11H. (7.364,16.464)
9 55.218 (8.624,117.759) (7.367,63.752) 13.150 (8.318]4AF (7.447,22.301)
10 182.722 (9.524,579.130) (7.569,217.816) 21.649 (9602720) (7.518,43.155)
Scheme2 1 7.153 (6.732,7.910) (6.660,7.792) 7.125 (67880%8) (6.755,7.602)
2 7.423 (6.882,8.687) (6.764,8.411) 7.331 (6.913,8.193) 6.83(7,8.037)
3 7.744 (7.016,9.613) (6.869,9.132) 7.572 (7.020,8.775) 6.923,8.523)
4 8.136 (7.139,10.781) (6.971,10.024) 7.858 (7.127,9.476(7.010,9.102)
5 8.632 (7.275,12.328) (7.067,11.182) 8.209 (7.248,1).36 (7.097,9.826)
6 9.293 (7.438,14.497) (7.157,12.766) 8.657 (7.396,H).54(7.184,10.778)
7 10.253 (7.640,17.799) (7.240,15.103) 9.260 (7.581413.2 (7.270,12.118)
8 11.869 (7.905,23.541) (7.316,18.988) 10.154 (7.8298W). (7.354,14.225)
9 15.554 (8.290,36.395) (7.383,27.086) 11.742 (8.176(B). (7.436,18.281)
10 34.592 (8.981,94.068) (7.437,58.055) 16.574 (8.79868) (7.511,31.675)
Scheme3 1 7.121 (6.807,7.666) (6.758,7.589) 7.111 (60838 (6.796,7.515)
2 7.320 (6.916,8.189) (6.838,8.022) 7.287 (6.930,7.999) 6.868,7.877)
3 7.553 (7.019,8.787) (6.920,8.509) 7.490 (7.022,8.469) 6.943,8.276)
4 7.830 (7.118,9.512) (7.001,9.093) 7.731 (7.115,9.026) 7.020,8.745)
5 8.170 (7.229,10.434) (7.081,9.826) 8.023 (7.222,9.720)7.098,9.324)
6 8.605 (7.362,11.668) (7.157,10.792) 8.392  (7.353,10).63(7.176,10.073)
7 9.193 (7.527, 13.445) (7.231,12.155) 8.882 (7.516,1).90(7.255,11.110)
8 10.071 (6.717,16.319) (7.300,14.297) 9.595 (7.731183.9 (7.334,12.704)
9 11.660 (8.056,22.113) (7.365,18.413) 10.817 (8.0391M). (7.413,15.678)
10 16.949 (8.606,43.285) (7.422,31.888) 14.135 (8.58082) (7.488,24.918)
Scheme4 1 7.106 (6.843,7.552) (6.805,7.493) 7.103 (678813) (6.821,7.463)
2 7.272 (6.934,7.964) (6.873,7.841) 7.260 (6.940,7.884) 6.886,7.781)
3 7.464 (7.021,8.425) (6.943,8.226) 7.441 (7.023,8.289) 6.95¢4,8.129)
4 7.690 (7.107,8.97) (7.014,8.680) 7.654 (7.108,8.766) .02&,8.536)
5 7.966 (7.204,9.657) (7.085,9.241) 7.913 (7.206,9.353) 7.09(7,9.032)
6 8.313 (7.322,10.552) (7.155,9.967) 8.236  (7.326,10.1157.171,9.669)
7 8.774 (7.468, 11.810) (7.223,10.970) 8.664  (7.476,1).17(7.245,10.542)
8 9.443 (7.660, 13.779) (7.290,12.506) 9.278 (7.673,19.81(7.321,11.866)
9 10.589 (7.934,17.571) (7.355,15.350) 10.311 (7.95811A. (7.398,14.290)
10 13.734 (8.413,30.230) (7.415,24.031) 12.977 (8.4402%  (7.474,21.557)
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