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Abstract: In this paper, a general exponential form of the underlying distribution and a general conjugate prior are used to discuss the
maximum likelihood and Bayesian estimation based on an unified hybrid censored sample. A general procedure for derivingthe point
and interval Bayesian prediction of the future order statistics from the same sample as well as that from an unobserved future sample
is also developed. The exponential and Pareto distributions are then used as illustrative examples. Finally, two numerical examples are
presented for illustrating all the inferential proceduresdeveloped here.
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1 Introduction

In life-testing experiments, the experimenter may stop theexperiment before all the units on the test have failed due to
some considerations such as time and cost. In such cases, theobtained data is called censored data. The most two common
forms of censoring are Type-I and Type-II censoring schemes. Type-I hybrid censoring scheme is introduced by Epstein
in [1] as a mixture of Type-I and Type-II censoring schemes. Type-II hybrid censoring scheme (Type-II HCS) is proposed
by Childs et al. in [2] to fix the disadvantages inherent in Type-I hybrid censoring scheme. Chandrasekar et al. in [3]
introduced generalized Type-I hybrid and generalized Type-II HCS as mixtures of Type-I hybrid and Type-II HCS. For
more details about HCS, one may refer to [4].

Recently, Balakrishnan et al. in [5] proposed the unified HCS to fix the disadvantages inherent inthe generalized Type-
I hybrid and generalized Type-II HCS, suggested by Chandrasekar et al. in [3]. This censoring scheme can be described as
follows. Consider a life-testing experiment in whichn identical units are placed on a life-test. Fix integersk, r ∈ {0, ...,n}
andT1,T2 ∈ (0,∞) such thatk < r andT1 < T2. If the kth failure occurs before timeT1, the experiment is terminated at
min{max(Xr:n,T1) ,T2}. If the kth failure occurs betweenT1 andT2, the experiment is terminated at min(Xr:n,T2) and if
thekth failure occurs after timeT2, the experiment is terminated atXk:n. Under this censoring scheme, we can guarantee
that the experiment would be completed at most in timeT2 with at leastk failure and if not, we can guarantee exactlyk
failures. The described unified HCS and inferential methodsbased on such a scheme have been discussed earlier in the
literature; see, for example; [4], [6], [7], [8], and [9].

AL-Hussaini [10] suggested a general exponential form of the underlying distribution to develop a general procedure
for the Bayesian inference. This general form can describedas follows; Motivated by the fact that the survival function
(SF) F̄(x|θ ) = 1−F(x|θ ) corresponding to any cumulative distribution function (CDF) F(x|θ ) can be written in the form

F̄(x|θ ) = exp[−ψ(x;θ )], (1)

whereψ(x;θ ) =− ln F̄(x|θ ) is monotone increasing, continuous and differentiable function, withψ(x;θ )→ 0 asx→−∞
andψ(x;θ )→ ∞ asx→ ∞.
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The probability density function (PDF) corresponding to (1) is given by

f (x|θ ) = ψ ′(x;θ )exp[−ψ(x;θ )], (2)

whereψ ′(x;θ ) is the first derivative ofψ(x;θ ) with respect tox.
Several distributions that are used in reliability studies, such as exponential, Pareto, Weibull and Burr Type-XII

distributions, can be obtained as special cases from the general exponential form (1) by using an appropriate choice of
ψ(x;θ ). Many authors considered this general exponential form to develop a general procedure of the statistical
inference based on different forms of censored data, see, for example; [11], [12], [13], [14], [15], [16], [17], and [18].
Recently, Mohie El-Din et al. in [19] have considered the inverse general exponential form and developed a general
procedures for Bayesian estimation and two-sample prediction using the unified hybrid censoring schemes. We discuss
in this paper the same problem based on the unified hybrid censoring scheme which involves some additional
complications.

The rest of this paper is organized as follows. In Section 2, ageneral procedure of deriving the maximum likelihood
(ML) and Bayesian estimators is presented. A general procedure of predicting the future order statistics from the same
sample is discussed in Section 3. In Section 4, a general procedure of predicting the future order statistics from an
unobserved future sample is then developed. The exponential and Pareto distributions are presented in Section 5 as special
cases from the general exponential form (1). Finally, in Section 6, some computational results for theexponential and
Pareto distributions are presented for illustrating all the inferential methods developed here.

2 The ML and Bayesian estimation

Let X1:n < X2:n < ... < Xn:n be the failure times ofn independent and identical units are placed on a life-test with an
absolutely continuous CDFF(x) ≡ F(x|θ ) and PDF f (x) ≡ f (x|θ ) where the parameterθ ∈ Θ may be a real vector.
Let D j denote the number ofXi:n’s that are at mostTj , j = 1,2. Then,D j is a discrete random variable has the binomial
distribution B(n,F(Tj)), j = 1,2, with support{0,1, ...,n}. Therefore, we observe one of the following six cases of
observations under the unified hybrid censoring scheme:

1.If 0 < Xk:n < Xr:n ≤ T1 < T2, then the experiment is terminated atT1 and we will observeX1:n < ... < Xk:n < ... <
Xr:n < ... < XD1:n.

2.If 0 < Xk:n ≤ T1 < Xr:n ≤ T2, then the experiment is terminated atXr:n and we will observeX1:n < ... < Xk:n < ... <
XD1:n < ... < Xr:n.

3.If 0 < Xk:n ≤ T1 < T2 < Xr:n, then the experiment is terminated atT2 and we will observeX1:n < ... < Xk:n < ... <
XD1:n < ... < XD2:n.

4.If 0 < T1 < Xk:n < Xr:n ≤ T2, then the experiment is terminated atXr:n and we will observeX1:n < ... < XD1:n < ... <
Xk:n < ... < Xr:n.

5.If 0 < T1 < Xk:n ≤ T2 < Xr:n, then the experiment is terminated atT2 and we will observeX1:n < ... < XD1:n < ... <
Xk:n < ... < XD2:n.

6.If 0 < T1 < T2 < Xk:n < Xr:n, then the experiment is terminated atXk:n and we will observeX1:n < ... < XD1:n < ... <
XD2:n < ... < Xk:n.

Thus, the joint density function of the unified hybrid censored sampleX = (X1:n,X2:n, ...,XD:n) is as follows:

fX(x) =
n!

(n−D)!

D

∏
i=1

f (xi){1−F(T)}n−D , (3)

where

(D,T) =





(D1,T1), in Case 1,
(r,Xr:n), in Cases 2 and 4,
(D2,T2), in Cases 3 and 5,
(k,Xk:n), in Case 6,

(4)

andx = (x1,x2, ...,xD) is a vector of realizations.
Upon substituting (1) and (2) in (3), the likelihood function ofθ , given the observed unified hybrid censored sample,

is obtained as

L(θ ;x) =
n!

(n−D)!

(
D

∏
i=1

ψ ′ (xi:n;θ )

)
exp

[
−

(
D

∑
i=1

ψ(xi ;θ )− (n−D)ψ(T;θ )

)]
, (5)
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The log-likelihood function ofθ , given the observed unified hybrid censored sample, is then given by

logL(θ ;x) = logn! − log(n−D)! +
D

∑
i=1

logψ ′(xi ;θ )−
D

∑
i=1

ψ(xi ;θ )− (n−D)ψ(T;θ ). (6)

By differentiating (6) with respect toθ and equating the result to zero, we can obtain the ML estimator of θ by solving
the following equation

d logL(θ |x)
dθ

= 0.

This equation is appropriate for a single valueθ , but for a vectorθ of course, the partial derivatives produce a system of
equations that are solved simultaneously.

For the Bayesian method, we consider here a general conjugate prior, suggested by AL-Hussaini [10], that is given as

π(θ ;δ )∝ A(θ ;δ )exp[−B(θ ;δ )], (7)

whereθ ∈Θ is the vector of parameters of the distribution in (1) andδ is the vector of prior parameters. The prior family
in (7) includes several priors used in the literature as special cases.

Upon combining (3) and (7), we obtain the posterior density function ofθ , given the observed unified hybrid censored
sample, as

π∗(θ ;x) = L(θ ;x)π(θ ;δ )/
∫

θ∈θ

L(θ ;x)π(θ ;δ )dθ

= I−1η(θ ;x)exp[−ζ (θ ;x)], (8)

with

η(θ ;x) = A(θ ;δ )
D

∏
i=1

ψ ′(xi ;θ ),

ζ (θ ;x) =
D

∑
i=1

ψ(xi ;θ )+ (n−D)ψ(T;θ )+B(θ ;δ ),

and
I =

∫

θ∈θ

η(θ ;x)exp[−ζ (θ ;x)]dθ .

By using the squared error loss function, the Bayesian estimator of θ is obtained as the mean of the posterior density
function, which is given by

θ̂ = I−1
∫

θ∈θ

θη(θ ;x)exp[−ζ (θ ;x)]dθ . (9)

3 One-Sample Bayesian Prediction

In one-sample prediction, we use the observed unified hybridcensored sampleX = (X1:n,X2:n, ...,XD:n) to develop a
general procedure for deriving the point and interval prediction for the future order statisticXs:n, D < s≤ n, from the same
sample.

The conditional density function ofXs:n, D < s ≤ n, given the observed unified hybrid censored sample
X = (X1:n,X2:n, ...,XD:n), is given by:

f (xs|x) =





f1(xs|x), if (D,T) = (D1,T1),
f2(xs|x), if (D,T) = (r,Xr:n),
f3(xs|x), if (D,T) = (D2,T2),
f4(xs|x), if (D,T) = (k,Xk:n),

(10)

where

f1(xs|x) =
1

P(r ≤ D1 ≤ s−1)

s−1

∑
d1=r

f (xs|x,D1 = d1)P(D1 = d1)

=
s−1

∑
d1=r

(n−d1)!φd1(T1)

(s−d1−1)!(n− s)!
[F(xs)−F(T1)]

s−d1−1 [1−F(xs)]
n−s f (xs)

[1−F(T1)]
n−d1

, xs > T1, (11)
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with x = (x1,x2, ...,xD1) andφd1(T1) =
P(D1=d1)

P(r≤D1≤s−1) ,

f2(xs|x) = f (xs|xr)

=
(n− r)!

(s− r −1)!(n− s)!
[F(xs)−F(xr)]

s−r−1 [1−F(xs)]
n−s f (xs)

[1−F(xr)]
n−r , xs > xr , (12)

with x = (x1,x2, ...,xr),

f3(xs|x) =
1

P(k≤ D2 ≤ r∗−1)

r∗−1

∑
d2=k

f (xs|x,D2 = d2)P(D2 = d2)

=
r∗−1

∑
d2=k

(n−d2)!γd2(T2)

(s−d2−1)!(n− s)!
[F(xs)−F(T2)]

s−d2−1 [1−F(xs)]
n−s f (xs)

[1−F(T2)]
n−d2

, xs > T2, (13)

with x = (x1,x2, ...,xD2), γd2(T2) =
P(D2=d2)

P(k≤D2≤r∗−1) andr∗ = min(r,s),

f4(xs|x) = f (xs|xk)

=
(n− k)!

(s− k−1)!(n− s)!
[F(xs)−F(xk)]

s−k−1 [1−F(xs)]
n−s f (xs)

[1−F(xk)]
n−k

, xs > xk, (14)

with x = (x1,x2, ...,xk).
Upon substituting (1) and (2) in (11) - (13), f1(xs|x), f2(xs|x), f3(xs|x) and f4(xs|x) will become:

f1(xs|x) =
s−1

∑
d1=r

s−d1−1

∑
w=0

C1wφd1(T1;θ )ψ ′(xs;θ )exp
{
−(n− s+w+1)

[
ψ(xs;θ )−ψ ′(T1;θ )

]}
,xs > T1, (15)

wherex = (x1,x2, ...,xD2), C1w =
(−1)w(s−d1−1

w )(n−d1)!
(s−d1−1)!(n−s)! and

φd1(T1;θ ) =

(
n
d1

)
exp[−(n−d1)ψ(T1;θ )]{1−exp[−ψ(T1;θ )]}d1

s−1
∑

d1=r

(
n
d1

)
exp[−(n−d1)ψ(T1;θ )]{1−exp[−ψ(T1;θ )]}d1

,

f2(xs|x) =
s−r−1

∑
w=0

C2wψ ′(xs;θ )exp
{
−(n− s+w+1)

[
ψ(xs;θ )−ψ ′(xr ;θ )

]}
, xs > xr , (16)

wherex = (x1,x2, ...,xr) andC2w =
(−1)w(s−r−1

w )(n−r)!
(s−r−1)!(n−s)! .

f3(xs|x) =
r∗−1

∑
d2=k

s−d2−1

∑
w=0

C3wγd2(T2;θ )ψ ′(xs;θ )exp
{
−(n− s+w+1)

[
ψ(xs;θ )−ψ ′(T2;θ )

]}
, xs > T2, (17)

wherex = (x1,x2, ...,xD2), C3w =
(−1)w(s−d2−1

w )(n−d)!
(s−d2−1)!(n−s)! and

γd2(T2;θ ) =

(
n
d2

)
exp[−(n−d2)ψ(T2;θ )]{1−exp[−ψ(T2;θ )]}d2

r∗−1
∑

d2=k

(
n
d2

)
exp[−(n−d2)ψ(T2;θ )]{1−exp[−ψ(T2;θ )]}d2

f4(xs|x) =
s−k−1

∑
w=0

C4wψ ′(xs;θ )exp
{
−(n− s+w+1)

[
ψ(xs;θ )−ψ ′(xk;θ )

]}
, xs > xk, (18)

wherex = (x1,x2, ...,xk) andC4w =
(−1)w(s−k−1

w )(n−k)!
(s−k−1)!(n−s)! .
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Upon combining (8) and (10), the Bayesian predictive density function ofXs:n, given the unified hybrid censored
sample, is obtained as

f ∗(xs|x) =





f ∗1 (xs|x), if (D,T) = (D1,T1),
f ∗2 (xs|x), if (D,T) = (r,Xr:n),
f ∗3 (xs|x), if (D,T) = (D2,T2),
f ∗4 (xs|x), if (D,T) = (k,Xk:n),

(19)

where

f ∗1 (xs|x) =
∫

θ∈θ

f1(xs|x)π∗(θ |x)dθ

= I−1
s−1

∑
d1=r

s−d1−1

∑
w=0

C1w

∫

θ∈θ

ψ ′(xs;θ )φd1(T1;θ )η(θ ;x)

×exp{−ζ (θ ;x)− (n− s+w+1) [ψ(xs;θ )−ψ(T1;θ )]}dθ , xs > T1, (20)

f ∗2 (xs|x) =
∫

θ∈θ

f2(xs|x)π∗(θ |x)dθ

= I−1
s−r−1

∑
w=0

C2w

∫

θ∈θ

ψ ′(xs;θ )η(θ ;x)

×exp{−ζ (θ ;x)− (n− s+w+1) [ψ(xs;θ )−ψ(xr ;θ )]}dθ , xs > xr , (21)

f ∗3 (xs|x) =
∫

θ∈θ

f3(xs|x)π∗(θ |x)dθ

= I−1
r∗−1

∑
d2=k

s−d2−1

∑
w=0

C3w

∫

θ∈θ

ψ ′(xs;θ )γd2(T2;θ )η(θ ;x)

×exp{−ζ (θ ;x)− (n− s+w+1) [ψ(xs;θ )−ψ(T2;θ )]}dθ , xs > T2, (22)

and

f ∗4 (xs|x) =
∫

θ∈θ

f4(xs|x)π∗(θ |x)dθ

= I−1
s−k−1

∑
w=0

C4w

∫

θ∈θ

ψ ′(xs;θ )η(θ ;x)

×exp{−ζ (θ ;x)− (n− s+w+1) [ψ(xs;θ )−ψ(xk;θ )]}dθ , xs > xk. (23)

The predictive survival function̄F∗(t|x), given the unified hybrid censored sample, can be obtained from (19) as

F̄∗(t|x) =





F̄∗
1 (t|x), if (D,T) = (D1,T1),

F̄∗
2 (t|x), if (D,T) = (r,Xr:n),

F̄∗
3 (t|x), if (D,T) = (D2,T2),

F̄∗
4 (t|x), if (D,T) = (k,Xk:n),

(24)

wheret ≥ 0 and

F̄∗
1 (t|x) =

∞∫

t

f ∗1 (xs|x)dxs

= I−1
s−1

∑
d1=r

s−d1−1

∑
w=0

C1w

n− s+w+1

∫

θ∈θ

φd1(T1;θ )η(θ ;x)

×exp{−ζ (θ ;x)− (n− s+w+1) [ψ(t;θ )−ψ(T1;θ )]}dθ , (25)
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F̄∗
2 (t|x) =

∞∫

t

f ∗2 (xs|x)dxs

= I−1
s−r−1

∑
w=0

C2w

n− s+w+1

∫

θ∈θ

η(θ ;x)exp{−ζ (θ ;x)− (n− s+w+1) [ψ(t;θ )−ψ(xr ;θ )]}dθ , (26)

F̄∗
3 (t|x) =

∞∫

t

f ∗3 (xs|x)dxs

= I−1
r∗−1

∑
d2=k

s−d2−1

∑
w=0

C3w

n− s+w+1

∫

θ∈θ

γd2(T2;θ )η(θ ;x)

×exp{−ζ (θ ;x)− (n− s+w+1) [ψ(t;θ )−ψ(T2;θ )]}dθ , (27)

and

F̄∗
4 (t|x) =

∞∫

t

f ∗4 (xs|x)dxs

= I−1
s−k−1

∑
w=0

C4w

n− s+w+1

∫

θ∈θ

η(θ ;x)exp{−ζ (θ ;x)− (n− s+w+1) [ψ(t;θ )−ψ(xk;θ )]}dθ . (28)

As in the case of estimation, prediction can be either a pointor an interval prediction. The Bayesian point predictor of
Xs:n can be obtained as the mean of the predictive density function in (19) and given by

X̂s:n =

∞∫

0

xs f ∗(xs|x)dxs, (29)

Therefore, the Bayesian predictive bounds of 100(1− γ)% two-sided equi-tailed (ET) interval forXs:n can be obtained by
solving the following two equations:

F̄∗(LET|x) =
γ
2

and F̄∗(UET|x) = 1−
γ
2
, (30)

whereLET andUET denote the lower and upper bounds of the ET interval, respectively.
For the highest posterior density (HPD) interval method, weneed to solve the following two equations:

F̄∗(LHPD|x)− F̄∗(UHPD|x) = 1− γ

and
f ∗(LHPD|x)− f ∗(UHPD|x) = 0,

whereLHPD andUHPD denote the lower and upper bounds of the HPD interval, respectively.

4 Two-Sample Bayesian Prediction

In two-sample Bayesian prediction, we use the observed unified hybrid censored sample to develop a general procedure
for deriving the point and interval prediction for the orderstatistics from an unobserved future sample from the same
distribution.

Let Y1:m ≤Y2:m ≤ . . . ≤Ym:m be the order statistics from a future random sample of sizem from the same population.
Then, the marginal density function of the order statisticYq:m, 1≤ q≤ m, see [20], is given by

fYs:m(ys|θ ) =
m!

(s−1)!(m− s)!
[F(ys)]

s−1[1−F(ys)]
m−s f (ys), ys > 0. (31)

Upon substituting (1) and (2) in (31), the marginal density function ofYs:m becomes

fYs:m(ys|θ ) =
s−1

∑
w=0

C5wψ ′(ys;θ )exp[−(m− s+w+1)ψ(ys;θ )], ys > 0. (32)
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whereC5w =
(−1)w(s−1

w )m!
(s−1)!(m−s)! .

From (8) and (32), the Bayesian predictive density function ofYs:m, given the unified hybrid censored sample, is
obtained as

f ∗Ys:m
(ys|x) =

∫

θ∈θ

fYs:m(ys|θ )π∗(θ |x)dθ

= I−1
s−1

∑
w=0

C5w

∫

θ∈θ

ψ ′(ys;θ )η(θ ;x)exp[−ζ (θ ;x)− (m− s+w+1)ψ(ys;θ )]dθ , ys > 0. (33)

From (33), the predictive survival function̄F∗
Ys:m

(t|x), for t ≥ 0, is obtained as

F̄∗
Ys:m

(t|x) =

∞∫

t

f ∗Ys:m
(ys|x)dys

= I−1
s−1

∑
w=0

C5w

m− s+w+1

∫

θ∈θ

η(θ ;x)exp[−ζ (θ ;x)− (m− s+w+1)ψ(t;θ )]dθ . (34)

The Bayesian point predictor ofYs:m, 1≤ s≤ m, can be obtained as the mean of the predictive density function in (33)
and given by

Ŷs:m =

∞∫

0

ys f ∗Ys:m
(ys|x)dys. (35)

Therefore, the Bayesian predictive bounds of 100(1− γ)% ET interval forYs:m, 1≤ s≤ m, can be obtained by solving the
following two equations:

F̄∗
Ys:m

(LET|x) =
γ
2

and F̄∗
Ys:m

(UET|x) = 1−
γ
2
, (36)

whereLET andUET denote the lower and upper bounds of the ET interval, respectively.
For the HPD interval method, also we need solve the followingequations:

F̄∗
Ys:m

(LHPD|x)− F̄∗
Ys:m

(UHPD|x) = 1− γ

and
f ∗Ys:m

(LHPD|x)− f ∗Ys:m
(UHPD|x) = 0,

whereLHPD andUHPD denote the lower and upper bounds of the HPD interval, respectively.

5 Examples

In this section, we apply the procedure derived in the preceding sections for the the exponential and Pareto distributions
as special cases from the general exponential form given in (1).

5.1 The Exponential Distribution

The survival function of the exponential distribution is

F̄(x|λ ) = exp[−λx], x> 0, (37)

whereλ > 0, and then we have
ψ(x;λ ) = λx and ψ ′(x;λ ) = λ .

Thus, the likelihood function ofλ using the unified hybrid censored sample, is given by

L(λ ;x) =
n!

(n−D)!
λ D exp

[
−λ

(
D

∑
i=1

xi +(n−D)T

)]
, (38)
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whereD andT are given as in (4). So, the ML estimator ofλ is

λ̂ML =
D

D
∑

i=1
xi +(n−D)T

.

For the Bayesian inference, we use the conjugate gamma priorfor λ with density function

π(λ ;δ ) =
ba

Γ (a)
λ a−1exp[−bλ ], λ > 0, (39)

whereδ = (a,b), a andb are positive constants andΓ (·) denotes the complete gamma function, and so we have

A(λ ;δ ) = λ a−1 and B(λ ;δ ) = λb.

Then, the posterior density function is given as in (8) where

η(λ ;x) = λ D+a−1, ζ (λ ;x) = λ

[
D

∑
i=1

xi +(n−D)T +b

]

and

I = Γ (D+a)

[
D

∑
i=1

xi +(n−D)T +b

]−(D+a)

.

Therefor, the Bayesian estimator ofλ under the squared error loss function is

λ̂B =
D+a

D
∑

i=1
xi +(n−D)T+b

. (40)

5.1.1 One-sample Bayesian prediction

The Bayesian predictive density function ofXs:n, given the unified hybrid censored sample, in this case is given as in (19),
where

f ∗1 (xs|x) = I−1
s−1

∑
d1=r

s−d1−1

∑
w=0

C1w

∞∫

0

λ d1+aφd1(T1,λ )

×exp

{
−λ

[
d1

∑
i=1

xi +(n−d1)T1+(n− s+w+1)(xs−T1)+b

]}
dλ , (41)

with

φd1(T1,λ ) =

(
n
d1

)
exp[−(n−d1)λT1](1−exp[−λT1])

d1

s−1
∑

d1=r

(
n
d1

)
exp[−(n−d1)λT1](1−exp[−λT1])d1

,

f ∗2 (xs|x) = I−1Γ (r +a+1)
s−r−1

∑
w=0

C2w

[
r

∑
i=1

xi +(n− r)xr +(n− s+w+1)(xs− xr)+b

]−(r+a+1)

, (42)

f ∗3 (xs|x) = I−1
r∗−1

∑
d2=k

s−d2−1

∑
w=0

C3w

∞∫

0

λ d2+aγd2(T2,λ )

×exp

{
−λ

[
d2

∑
i=1

xi +(n−d2)T2+(n− s+w+1)(xs−T2)+b

]}
dλ , (43)
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with

γd2(T2,λ ) =

(
n
d2

)
exp[−(n−d2)λT2](1−exp[−λT2])

d2

r∗−1
∑

d2=k

(
n
d2

)
exp[−(n−d2)λT2](1−exp[−λT2])d2

,

and

f ∗4 (xs|x) = I−1Γ (k+a+1)
s−k−1

∑
w=0

C4w

[
k

∑
i=1

xi +(n− r)xk+(n− s+w+1)(xs− xk)+b

]−(k+a+1)

. (44)

The Bayesian predictive survival function ofXs:n, given the unified hybrid censored sample , is then given as in(24),
where

F̄∗
1 (t|x) = I−1

s−1

∑
d1=r

s−d1−1

∑
w=0

C1w

(n− s+w+1)

∞∫

0

λ d1+aφd(T1,λ )

×exp

{
−λ

[
d1

∑
i=1

xi +(n−d1)T1+(n− s+w+1)(t −T1)+b

]}
dλ , (45)

F̄∗
2 (t|x) = I−1Γ (r +a)

s−r−1

∑
w=0

C2w

(n− s+w+1)

[
r

∑
i=1

xi +(n− r)xr +(n− s+w+1)(t − xr)+b

]−(r+a)

, (46)

F̄∗
3 (t|x) = I−1

r∗−1

∑
d2=k

s−d2−1

∑
w=0

C3w

(n− s+w+1)

∞∫

0

λ d2+aγd(T2,λ )

×exp

{
−λ

[
d2

∑
i=1

xi +(n−d2)T2+(n− s+w+1)(t −T2)+b

]}
dλ , (47)

and

F̄∗
4 (t|x) = I−1Γ (k+a)

s−k−1

∑
w=0

C4w

(n− s+w+1)

[
k

∑
i=1

xi +(n− r)xk+(n− s+w+1)(t − xk)+b

]−(k+a)

. (48)

5.1.2 Two-sample Bayesian prediction

The Bayesian predictive density function ofYs:m, given the unified hybrid censored sample, is given by

f ∗Ys:m
(ys|x) = I−1Γ (D+a+1)

s−1

∑
w=0

C5w

[
D

∑
i=1

xi +(n−D)T +(m− s+w+1)ys+b

]−(D+a+1)

, (49)

and the Bayesian predictive survival function ofYs:m, given the unified hybrid censored sample, is then given by

F̄∗
Ys:m

(t|x) = I−1Γ (D+a)
s−1

∑
w=0

C5w

(m− s+w+1)

[
D

∑
i=1

xi +(n−D)T +(m− s+w+1)t +b

]−(D+a)

(50)

5.2 The Pareto distribution

The survival function for Pareto distribution is given by

F̄(x|α,β ) =
(

β
x

)α
,x≥ β , (51)
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whereα > 0 andβ > 0, and so we have

ψ(x;α,β ) = α log

(
x
β

)
andψ ′(x;α,β ) =

α
x
.

Thus, the likelihood function ofα andβ using the unified hybrid censored sample, is

L(α,β ;x) =
n!

(n−D)!
αD

(
D

∏
i=1

1
xi

)
exp

{
−α

[
D

∑
i=1

logxi +(n−D) logT −nlogβ

]}
, (52)

whereD andT are given as in (4).
It is clear that the likelihood function is monotone increasing function inβ , so its maximum valuêβML will be attained

at the minimum valuex1 of β . So, the ML estimator ofα is obtained as

α̂ML =
D

D
∑

i=1
logxi +(n−D) logT −nlogx1

. (53)

For the Bayesian estimation and prediction, we consider here the joint prior density function ofα andβ which was
suggested by Lwin in [21] and generalized by Arnold and Press in [22], and given by

π(α,β ;δ ) ∝ αaβ−1exp[−α(logc−blogβ )], α > 0, 0< β < d, (54)

wherea, b, c, d are positive constants anddb < c. Then, we have

A(α,β ;δ ) = αaβ−1 and B(α,β ;δ ) = α(logc−blogβ ),

whereδ = (a,b,c,d). The posterior density function ofα andβ is then given by (8), where

η(α,β ;x) = αD+aβ−1,

ζ (α,β ;x) = α

[
D

∑
i=1

logxi +(n−D) logT − (n+b) logβ + logc

]
,

and

I =
Γ (D+a)

n+b

[
D

∑
i=1

logxi +(n−D) logT − (n+b) logx0+ logc

]−(D+a)

,

with x0 = min(x1,d).
Hence, under the squared error loss function, the Bayesian estimator ofα is obtained as

α̂B =
D+a

D
∑

i=1
logxi +(n−D) logT − (n+b) logx0+ logc

, (55)

and the Bayesian estimator ofβ is obtained as

β̂B = I−1x0

∞∫

0

αD+a

α (n+b)+1
exp

{
−α

[
D

∑
i=1

logxi +(n−D) logT − (n+b) logx0+ logc

]}
dα

=
I−1x0

(n+b)

[
D

∑
i=1

logxi +(n−D) logT − (n+b) logx0+ logc

]−(D+a)

×

∞∫

0

tD+ae−t

t +

[
D
∑

i=1
logxi +(n−D) logT − (n+b) logx0+ logc

]
/(n+b)

dt

=
x0

Γ (m+a)
Φ


D+a,

[
D
∑

i=1
logxi +(n−D) logT − (n+b) logx0+ logc

]

(n+b)


 , (56)
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where

Φ (x,y) =

∞∫

0

txe−t

t + y
dt.

A partial tabulation ofψ(x,y) = (y/Γ (x))Φ (x−1,y) has been provided by Arnold and Press in [22].

5.2.1 One-sample Bayesian prediction

The Bayesian predictive density function ofXs:n, given the unified hybrid censored sample, is given as in (19), where

f ∗1 (xs|x) =
s−1

∑
d1=r

s−d1−1

∑
w=0

C1w

xs

x0∫

0

∞∫

0

αd1+a+1β−1φd1(T1;α,β )

×exp

{
−α

[
d1

∑
i=1

logxi +(n−d1) logT1− (n+b) logβ

+(n− s+w+1)(logxs− logT1)+ logc]}dαdβ , (57)

with

φd1(T1;α,β ) =

(
n
d1

)
(β/T1)

(n−d1)α(1−β/T1)
d1

s−1
∑

d1=r

(
n
d1

)
(β/T1)(n−d1)α(1−β/T1)d1

,

f ∗2 (xs|x) =
I−1Γ (r +a+1)

n+b

s−r−1

∑
w=0

C2w

xs

[
r

∑
i=1

logxi +(n− r) logxr − (n+b) logx0

+(n− s+w+1)(logxs− logxr)+ logc]−(r+a+1) , (58)

f ∗3 (xs|x) =
r∗−1

∑
d2=k

s−d2−1

∑
w=0

C3w

xs

x0∫

0

∞∫

0

αd2+a+1β−1γd2(T2;α,β )

×exp

{
−α

[
d2

∑
i=1

logxi +(n−d2) logT2− (n+b) logβ

+(n− s+w+1)(logxs− logT2)+ logc]}dαdβ , (59)

with

γd2(T2;α,β ) =

(
n
d2

)
(β/T2)

(n−d2)α(1−β/T2)
d2

r∗−1
∑

d2=k

(
n
d2

)
(β/T2)(n−d2)α(1−β/T2)d2

,

and

f ∗4 (xs|x) =
I−1Γ (k+a+1)

n+b

s−k−1

∑
w=0

C4w

xs

[
k

∑
i=1

logxi +(n− k) logxk− (n+b) logx0

+(n− s+w+1)(logxs− logxk)+ logc]−(k+a+1) . (60)

Therefore, the Bayesian predictive survival function ofXs:n, given the unified hybrid censored sample, is given as in (24),
where

F̄∗
1 (t|x) =

s−1

∑
d1=r

s−d1−1

∑
w=0

C1w

n− s+w+1

x0∫

0

∞∫

0

αd1+aβ−1φd1(T1;α,β )

×exp

{
−α

[
d1

∑
i=1

logxi +(n−d1) logT1− (n+b) logβ

+(n− s+w+1)(logt − logT1)+ logc]}dαdβ , (61)
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F̄∗
2 (t|x) =

I−1Γ (r +a)
n+b

s−r−1

∑
w=0

C2w

n− s+w+1

[
r

∑
i=1

logxi +(n− r) logxr − (n+b) logx0

+(n− s+w+1)(logt − logxr)+ logc]−(r+a) , (62)

F̄∗
3 (t|x) =

r∗−1

∑
d2=k

s−d2−1

∑
w=0

C3w

n− s+w+1

x0∫

0

∞∫

0

αd2+aβ−1γd2(T2;α,β )

×exp

{
−α

[
d2

∑
i=1

logxi +(n−d2) logT2− (n+b) logβ

+(n− s+w+1)(logt − logT2)+ logc]}dαdβ , (63)

and

F̄∗
4 (t|x) =

I−1Γ (k+a)
n+b

s−k−1

∑
w=0

C4w

n− s+w+1

[
k

∑
i=1

logxi +(n− k) logxk− (n+b) logx0

+(n− s+w+1)(logt − logxk)+ logc]−(k+a+1) . (64)

5.2.2 Two-sample Bayesian prediction

The Bayesian predictive density function ofYs:m, given the unified hybrid censored sample, is then given by

f ∗Ys:m
(ys|x) =

{
f ∗1Ys:m

(ys|x), 0< ys ≤ x0,

f ∗2Ys:m
(ys|x), ys > x0,

(65)

where

f ∗1Ys:m
(ys|x) =

ys∫

0

∞∫

0

fYs:m(ys|x)π∗(α,σ |x)dαdβ

= I−1Γ (D+a+1)
s−1

∑
w=0

C5wy−1
s

n+b+m− s+w+1

×

[
D

∑
i=1

logxi +(n−D) logT − (n+b) logys+ logc

]−(D+a+1)

and

f ∗2Ys:m
(ys|x) =

x0∫

0

∞∫

0

fYs:m(ys|x)π∗(α,β |x)dαdβ

= I−1Γ (D+a+1)
s−1

∑
w=0

C5wy−1
s

n+b+m− s+w+1

[
D

∑
i=1

logxi +(n−D) logT

−(n+b+m− s+w+1) logx0+(m− s+w+1) logys+ logc]−(D+a+1) .

Therefore, we can obtain the predictive survival function of Ys:m, given the unified hybrid censored sample, as

F̄∗
Ys:m

(t|x) =

{
F̄∗

1Ys:m
(t|x), 0< t ≤ x0,

F̄∗
2Ys:m

(t|x), t > x0,
(66)

where
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F̄∗
1Ys:m

(t|x) =

x0∫

t

f ∗1Ys:m
(ys|x)dys+

∞∫

x0

f ∗2Ys:m
(ys|x)dys

= I−1Γ (D+a)
s−1

∑
w=0

C5w

(n+b+m− s+w+1)(n+b)(m−s+w+1)

×



(n+b+m− s+w+1)

[
D

∑
i=1

logxi +(n−D) logT − (n+b) logx0+ logc

]−(D+a)

− (m− s+w+1)

[
D

∑
i=1

logxi +(n−D) logT − (n+b) logt + logc

]−(D+a)


 , (67)

and

F̄∗
2Ys:m

(t|x) =

∞∫

t

f ∗2Ys:m
(ys|x)dys

= I−1Γ (D+a)
s−1

∑
w=0

C5w

(n+b+m− s+w+1)(m−s+w+1)

[
D

∑
i=1

logxi +(n−D) logT

−(n+b+m− s+w+1)logx0+(m− s+w+1)logt + logc]−(D+a) . (68)

6 Numerical Results

In this section, we present two numerical examples to illustrate the inferential procedures developed in the preceding
sections.

6.1 Numerical example for the exponential distribution

In order to illustrate all the inferential results established for the exponential distribution, we consider here the following
real data: 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85, 6.50, 7.35, 8.01, 8.27, 12.06, 31.75, 32.52, 33.91, 36.71 and
72.89, which consisting of the times to breakdown on insulating fluids tested at 34 kilovolts produced by Viveros and
Balakrishnan in [23] (1994) from Table 6.1 of ([24], p.228). We assume the exponential distribution for thesetimes to
breakdown and consider the following four unified hybrid censoring schemes:

1.Scheme 1: Supposek= 4, r = 6, T1 = 4 andT2 = 8, thenx4:19< x6:19< T1 and the experiment would have terminated
at T1 = 4. Therefore, we would have the following data: 0.19, 0.78, 0.96, 1.31, 2.78 and 3.16;

2.Scheme 2: Supposek = 6, r = 9, T1 = 4 andT2 = 8, thenx6:19 < T1 < x9:19 < T2 and the experiment would have
terminated atx9:20= 4.85. Therefore, we would have the following data: 0.19, 0.78,0.96, 1.31, 2.78, 3.16, 4.15, 4.67
and 4.85;

3.Scheme 3: Supposek = 6, r = 12, T1 = 4 andT2 = 8, thenx6:19< T1 < T2 < x12:19 and the experiment would have
terminated atT2 = 8. Therefore, we would have the following data: 0.19, 0.78, 0.96, 1.31, 2.78, 3.16, 4.15, 4.67, 4.85,
6.5 and 7.35;

4.Scheme 4: Supposek = 14, r = 15,T1 = 4 andT2 = 8, thenT1 < T2 < x14:19< x15:19 and the experiment would have
terminated atx14:19= 12.06. Therefore, we would have the following data: 0.19, 0.78,0.96, 1.31, 2.78, 3.16, 4.15,
4.67, 4.85, 6.50, 7.35, 8.01, 8.27 and 12.06.

Based on the above four unified hybrid censoring schemes, we used the results presented in Subsection 5.1 to calculate
the ML and Bayesian estimates of the unknown parameterλ . Also, we calculated the point predictor and 95% two-sided
ET and HPD prediction intervals for the future order statistics Xs:19, where 15≤ s≤ 19, from the same sample and that
for the order statisticsYs:10, where1≤ s≤ 10, from a future unobserved sample with sizem= 10. All obtained results
for the Bayesian estimation and prediction, presented in Tables 1-3, are computed based on two different choices of the
hyperparameters a and b, namely,
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Table 1: The ML and Bayesian estimates ofλ .

λ̂ML λ̂B
GP JP

Scheme1 0.0981 0.0857 0.0817
Scheme2 0.1261 0.1119 0.1121
Scheme3 0.1092 0.1003 0.0993
Scheme4 0.1117 0.1042 0.1037

Table 2: Bayesian point predictor and 95% ET and HPD prediction intervals forXs:19 for s= 15, ...,19.
GP JP

Scheme s X̂s:19 ET interval HPD interval X̂s:19 ET interval HPD interval
Scheme1 15 19.308 (8.529,43.908) (6.851,37.456) 20.776 (8.577,50.829) (6.705,42.346)

16 22.797 (2.128,52.681) (7.657,44.848) 24.599 (9.754,61.165) (7.471,50.848)
17 27.449 (11.203,64.626) (8.670,54.863) 29.698 (11.267,75.199) (8.434,62.345)
18 34.428 (1.546,83.231 ) ( 10.023,70.323 ) 37.345 ( 13.383,96.950) (9.723,80.031)
19 48.385 (16.853,123.775) (12.055,103.324) 52.640 (16.980,143.852) (11.672,117.498)

Scheme2 15 13.343 (7.242,25.941) (6.318,22.972) 13.469 (7.201,26.873) (6.248,23.591)
16 15.854 (8.163,31.623) (6.989,27.939) 16.018 (8.102,32.833) (6.888,28.746)
17 19.201 (9.356,39.387) (7.848,34.679) 19.415 (9.270,40.966) (7.707,35.735)
18 24.223 (11.028,51.585) (9.003,45.138) 24.512 (10.907,53.706) (8.810,46.561)
19 34.266 (13.841,78.677) (10.720,67.758) 34.705 (13.666,81.838) (10.456,69.879)

Scheme3 15 14.955 (9.576,26.072) (8.796,23.453) 15.100 (9.579,26.759) (8.778,23.947)
16 17.695 (10.550,32.106) (7.087,28.285) 17.897 (10.552,33.054) (9.457,29.490)
17 21.348 (11.850,40.327) (10.425,36.033) 21.626 (11.848,41.623) (10.374,36.974)
18 26.828 (13.697,53.257) (11.715,47.244) 27.221 (13.690,55.076) (11.638,48.571)
19 37.789 (16.823,82.156) (13.647,71.579) 38.410 (16.810,85.023) (13.538,73.670)

Scheme4 15 14.126 (12.109,20.154) (12.060,18.468) 14.149(12.109,20.285) (12.060,18.557)
16 16.709 (12.567,26.300) (12.122,23.839) 16.760 (12.568,26.565) (12.121,24.025)
17 20.153 (13.514,34.158) (12.610,30.805) 20.242 (13.515,34.602) (12.600,31.122)
18 25.318 (15.071,46.263) (13.594,41.415) 25.464 (15.070,46.978) (13.571,41.929)
19 35.650 (17.876,73.194) (10.136,63.163) 35.909 (17.870,74.452) (10.166,64.086)

1.: a= 0.1 andb= 10 Gamma informative prior(GP) by letting the mean of the prior distribution ofλ is 0.01 and its
variance is 0.001).

2.: a= 0 andb= 0 Jeffreys non-informative prior(JP).

From the results in Tables 5 and 6, we notice that, The point predictor of mean is between the upper and lower bounds
of the prediction intervals. Also, a comparison of the results for the Gamma informative prior with the corresponding ones
for Jeffreys non-informative prior reveals that the formerproduce more precise results, as we would expect. Moreover,the
HPD prediction intervals seem to be more precise than the ET prediction intervals, Finally when we use the same value
of T1 andT2 but increasingk andr, the Bayesian prediction bounds become tighter as expectedsince the duration of the
life-testing experiment is longer in this case.

6.2 Numerical example for the Pareto distribution

In order to illustrate all the inferential results established for the Pareto distribution, we generated order statistics from a
sample of sizen= 20 from the Pareto distribution withα = 5 andβ = 7. The generated order statistics as follows: 7.032,
7.159, 7.307, 7.340, 7.583, 7.718, 7.742, 7.744, 7.785, 7.826, 7.903, 8.874, 9.100, 9.141, 9.237, 9.417, 9.660, 10.132,
12.499 and 21.590. We will apply the following four unified hybrid censoring schemes:

1.Scheme 1: Supposek = 2, r = 4, T1 = 7.650 andT2 = 7.800, thenx2:20< x4:20< T1 and the experiment would have
terminated atT1 = 7.65. Therefore, we would have the following data: 7.032, 7.159, 7.307, 7.340, and 7.583;
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Table 3: Bayesian point predictor and 95% ET and HPD prediction intervals forYs:10 for s= 1, ...,10.
IP NIP

Scheme s Ŷs:10 ET interval HPD interval Ŷs:10 ET interval HPD interval
Scheme1 1 1.396 (0.030,5.913) (0.000,4.514) 1.530 (0.031,6.676) (0.000,5.020)

2 2.946 (0.281,10.093) (0.023,8.002) 3.229 (0.292,11.550) (0.020,8.999)
3 4.691 (0.729,14.546) (0.213,11.774) 5.141 (0.751,16.776) (0.198,13.318)
4 6.685 (1.325,19.548) (0.560,16.024) 7.326 (1.356,22.665) (0.526,18.194)
5 9.011 (2.063,25.363) (1.031,20.954) 9.875 (2.103,29.516) (0.974,23.860)
6 11.802 (2.967,32.370) (1.629,26.878) 12.934 (3.016,37.769) (1.542,30.668)
7 15.292 (4.092,41.223) (2.378,34.335) 16.758 (4.151,48.185) (2.254,39.234)
8 19.944 (5.550,53.264) (3.337,44.423) 21.856 (5.621,62.318) (3.167,50.804)
9 26.922 (7.597,72.012) (4.631,59.984) 29.504 (7.687,84.219) (4.400,68.593)
10 40.879 (11.065,112.863) (6.580,93.191) 44.799 (11.202,131.456) (6.268,106.278)

Scheme2 1 1.004 (0.023,4.066) (0.000,3.171) 1.019 (0.023,4.180) (0.000,3.241)
2 2.120 (0.219,6.796) (0.023,5.527) 2.152 (0.218,7.028) (0.021,5.676)
3 3.376 (0.576,9.669) (0.198,8.059) 3.426 (0.570,10.036) (0.187,8.297)
4 4.810 (1.055,12.880) (0.510,10.896) 4.882 (1.041,13.404) (0.484,11.239)
5 6.484 (1.655,16.604) (0.932,14.180) 6.581 (1.629,17.313) (0.887,14.648)
6 8.493 (2.392,21.091) (1.468,18.122) 8.619 (2.351,22.023) (1.398,18.741)
7 11.004 (3.313,26.773) (2.139,23.089) 11.168 (3.252,27.983) (2.038,23.896)
8 14.351 (4.506,34.537) (2.998,29.829) 14.565 (4.420,36.116) (2.857,30.885)
9 19.373 (6.178,46.735) (4.153,40.288) 19.662 (6.057,48.856) (3.960,41.711)
10 29.416 (8.991,73.827) (5.870,62.908) 29.855 (8.816,76.988) (5.606,65.029)

Scheme3 1 1.096 (0.025,4.364) (0.000,3.430) 1.119 (0.026,4.492) (0.000,3.517)
2 2.314 (0.246,7.236) (0.028,5.939) 2.362 (0.248,7.479) (0.027,6.110)
3 3.684 (0.650,10.242) (0.237,8.628) 3.761 (0.653,10.614) (0.231,8.893)
4 5.250 (1.196,13.594) (0.607,11.636) 5.359 (1.198,14.113) (0.593,12.009)
5 7.076 (1.880,17.477) (1.108,15.113) 7.224 (1.881,18.169) (1.084,15.613)
6 9.268 (2.724,22.156) (1.743,19.284) 9.462 (2.722,23.056) (1.706,19.938)
7 12.009 (3.779,28.086) (2.540,24.542) 12.259 (3.773,29.248) (2.485,25.389)
8 15.662 (5.147,36.208) (3.558,31.684) 15.989 (5.135,37.718) (3.482,32.789)
9 21.142 (7.062,49.018) (4.924,42.799) 21.583 (7.043,51.051) (4.822,44.289)
10 32.103 (10.273,77.712) (6.943,66.981) 32.772 (10.248,80.785) (6.807,69.232)

Scheme4 1 1.033 (0.024,4.047) (0.000,3.204) 1.045 (0.024,4.113) (0.000,3.248)
2 2.181 (0.239,6.658) (0.030,5.513) 2.205 (0.239,6.782) (0.029,5.601)
3 3.472 (0.633,9.377) (0.245,7.981) 3.511 (0.634,9.567) (0.241,8.117)
4 4.948 (1.169,12.399) (0.624,10.735) 5.003 (1.168,12.666) (0.614,10.927)
5 6.670 (1.843,15.896) (1.136,13.914) 6.744 (1.840,16.253) (1.119,14.172)
6 8.737 (2.677,20.109) (1.786,17.724) 8.833 (2.671,20.575) (1.759,18.063)
7 11.319 (3.720,25.454) (2.601,22.529) 11.444 (3.710,26.056) (2.562,22.969)
8 14.763 (5.074,32.791) (3.642,29.066) 14.926 (5.058,33.574) (3.588,29.640)
9 19.929 (6.968,44.418) (5.036,39.269) 20.148 (6.944,45.470) (4.962,40.042)
10 30.260 (10.133,70.698) (7.082,61.608) 30.593 (10.099,72.278) (6.984,62.770)

2.Scheme 2: Supposek = 4, r = 7, T1 = 7.650 andT2 = 7.800, thenx4:20< T1 < x7:20< T2 and the experiment would
have terminated atx7:20= 45. Therefore, we would have the following data: 7.032, 7.159, 7.307, 7.340, 7.583, 7.718,
and 7.742;

3.Scheme 3: Supposek= 6, r = 12,T1 = 7.650 andT2 = 7.800, thenT1 < x6:20< T2 < x14:20and the experiment would
have terminated atT2 = 7.800. Therefore, we would have the following data: 7.032, 7.159, 7.307, 7.340, 7.583, 7.718,
7.742, and 7.744;

4.Scheme 4: Supposek = 11, r = 13, T1 = 7.650 andT2 = 7.800, thenT1 < T2 < x11:20< x13:20 and the experiment
would have terminated atx11:20= 7.903. Therefore, we would have the following data: 7.032, 7.159, 7.307, 7.340,
7.583, 7.718, 7.742, 7.744, 7.785, 7.826, and 7.903.
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Table 4: The ML and Bayesian estimates ofα andβ .

α̂ML α̂B β̂ML β̂B
IP NIP IP NIP

Scheme1 3.476 3.837 2.780 7.032 6.931 6.869
Scheme2 4.335 4.387 3.716 - 6.945 6.921
Scheme3 5.286 5.033 4.698 - 6.958 6.947
Scheme4 5.988 5.536 5.444 - 6.965 6.961

Table 5: Bayesian point predictor and 95% ET and HPD prediction intervals forXs:20 for s= 16, ...,20.
IP NIP

s X̂s:20 ET HPD X̂s:20 ET HPD
interval interval interval interval

Scheme1 16 13.265 (8.226,16.791) (7.618,15.054) 13.379 (5.648,38.244) (8.067,27.318)
17 14.985 (7.658,19.650) (8.191,17.157) 15.219 (6.374,52.802) (7.393,34.803)
18 15.096 (8.597,24.366) (7.687,20.644) 16.609 (8.582,81.710) (7.709,49.503)
19 21.318 (9.079,34.161) (8.667,27.384) 22.079 (8.881,160.138) (7.290,81.055)
20 29.648 (9.447,72.251) (8.878,50.664) 31.679 (9.409,671.114) (7.591,252.658)

Scheme2 16 10.968 (8.268,14.468) (8.084,13.348) 11.020 (6.526,19.590) (8.080,16.699)
17 13.451 (8.491,16.577) (8.234,15.006) 13.689 (6.639,24.027) (8.163,19.828)
18 14.458 (8.732,19.980) (8.382,17.635) 15.986 (8.739,31.724) (8.300,24.877)
19 16.008 (9.441,26.827) (8.738,22.643) 17.761 (9.086,48.899) (8.441,35.470)
20 22.124 (9.688,51.876) (8.966,39.084) 23.145 (9.703,125.436) (8.490,75.559)

Scheme3 16 9.615 (8.310,12.297) (8.196,11.521) 10.539 (8.592,13.647) (8.092,12.536)
17 10.965 (8.741,13.762) (8.312,12.819) 11.179 (6.810,15.695) (8.187,14.122)
18 13.984 (9.027,16.061) (8.484,14.663) 14.484 (9.137,18.998) (8.318,16.600)
19 15.457 (9.534,20.511) (8.502,18.082) 16.219 (9.588,25.628) (8.478,21.219)
20 19.968 (10.177,35.580) (8.791,28.600) 20.989 (10.404,49.642) (8.664,36.597)

Scheme4 16 9.219 (8.523,11.154) (8.240,10.667) 10.303 (8.711,11.599) (8.181,10.967)
17 9.456 (8.789,12.336) (8.371,11.666) 10.693 (8.980,12.996) (8.308,12.106)
18 11.847 (9.092,14.162) (8.539,13.060) 13.359 (9.334,15.180) (8.433,13.738)
19 14.959 (8.905,17.621) (8.569,15.903) 15.725 (9.856,19.378) (8.602,17.023)
20 18.254 (10.324,28.878) (8.718,24.035) 19.270 (10.816,33.393) (8.761,26.527)

Based on the above four unified hybrid censoring schemes, we used the results presented in Subsection 5.2 to calculate
the ML and Bayesian estimates of the unknown parametersα andβ . Also, we calculate the point predictor and 95%
ET and HPD prediction intervals for the future order statistics Xs:20, where 16≤ s≤ 20, from the same sample and that
for the order statisticsYs:10, where 1≤ s≤ 10, from a future unobserved sample with sizem= 10. All obtained results
for the Bayesian estimation and prediction, presented in Tables 4-6, are computed based on two different choices of the
hyperparameters(a,b,c,d), namely,

1.: a = 3.57, b = 0.20, c = 3.27 andd = 10.83: informative prior(IP) (by letting the mean of the marginal prior
distribution ofα is 5 and its variance is 7, and the median of the marginal priordistribution ofβ is 0.5 and its third
quartile is 0.25).

2.: a=−1, b= 0, c= 1 andd = ∞: noninformative prior(NIP).

From the results in Tables 5 and 6, we notice that, The point predictor of mean is between the upper and lower bounds
of the prediction intervals. Also, a comparison of the results for the informative prior with the corresponding ones fornon-
informative prior reveals that the former produce more precise results, as we would expect. Moreover, the HPD prediction
intervals seem to be more precise than the ET prediction intervals, Finally when we use the same value ofT1 andT2
but increasingk andr, the Bayesian prediction bounds become tighter as expectedsince the duration of the life-testing
experiment is longer in this case.
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Table 6: Bayesian point predictor and 95% ET and HPD prediction intervals forYs:10 for s= 1, ...,10.
IP NIP

s Ŷs:10 ET HPD Ŷs:10 ET HPD
interval interval interval interval

Scheme1 1 7.224 (6.586,8.444) (6.457,8.218) 7.142 (6.764,7.806) (6.703,7.709)
2 7.671 (6.819,9.892) (6.604,9.280) 7.386 (6.895,8.447) (6.799,8.240)
3 8.269 (7.010,11.778) (6.750,10.606) 7.673 (7.018,9.187) (6.897,8.844)
4 9.136 (7.171,14.375) (6.887,12.363) 8.018 (7.139 10.099) (6.995,9.577)
5 10.506 (7.343,18.158) (7.012,14.814) 8.446 (7.276,11.275) (7.092,10.508)
6 12.880 (7.547,24.083) (7.122,18.458) 9.000 (7.442,12.880) (7.186,11.756)
7 17.447 (7.800 ,34.411) (7.219,24.394) 9.763 (7.649,15.249) (7.277,13.555)
8 27.511 (8.134,55.817) (7.301,35.613) 10.931 (6.640,19.210) (7.364,16.464)
9 55.218 (8.624,117.759) (7.367,63.752) 13.150 (8.319,27.611) (7.447,22.301)
10 182.722 (9.524,579.130) (7.569,217.816) 21.649 (9.027,61.720) (7.518,43.155)

Scheme2 1 7.153 (6.732,7.910) (6.660,7.792) 7.125 (6.803,7.678) (6.755,7.602)
2 7.423 (6.882,8.687) (6.764,8.411) 7.331 (6.913,8.193) (6.837,8.037)
3 7.744 (7.016,9.613) (6.869,9.132) 7.572 (7.020,8.775) (6.923,8.523)
4 8.136 (7.139,10.781) (6.971,10.024) 7.858 (7.127,9.476) (7.010,9.102)
5 8.632 (7.275,12.328) (7.067,11.182) 8.209 (7.248,10.363) (7.097,9.826)
6 9.293 (7.438,14.497) (7.157,12.766) 8.657 (7.396,11.546) (7.184,10.778)
7 10.253 (7.640,17.799) (7.240,15.103) 9.260 (7.581,13.243) (7.270,12.118)
8 11.869 (7.905,23.541) (7.316,18.988) 10.154 (7.825,15.984) (7.354,14.225)
9 15.554 (8.290,36.395) (7.383,27.086) 11.742 (8.176,21.505) (7.436,18.281)
10 34.592 (8.981,94.068) (7.437,58.055) 16.574 (8.798,41.769) (7.511,31.675)

Scheme3 1 7.121 (6.807,7.666) (6.758,7.589) 7.111 (6.836,7.577) (6.796,7.515)
2 7.320 (6.916,8.189) (6.838,8.022) 7.287 (6.930,7.999) (6.868,7.877)
3 7.553 (7.019,8.787) (6.920,8.509) 7.490 (7.022,8.469) (6.943,8.276)
4 7.830 (7.118,9.512) (7.001,9.093) 7.731 (7.115,9.026) (7.020,8.745)
5 8.170 (7.229,10.434) (7.081,9.826) 8.023 (7.222,9.720)(7.098,9.324)
6 8.605 (7.362,11.668) (7.157,10.792) 8.392 (7.353,10.630) (7.176,10.073)
7 9.193 (7.527, 13.445) (7.231,12.155) 8.882 (7.516,11.909) (7.255,11.110)
8 10.071 (6.717,16.319) (7.300,14.297) 9.595 (7.731,13.919) (7.334,12.704)
9 11.660 (8.056,22.113) (7.365,18.413) 10.817 (8.039,17.819) (7.413,15.678)
10 16.949 (8.606,43.285) (7.422,31.888) 14.135 (8.580,31.082) (7.488,24.918)

Scheme4 1 7.106 (6.843,7.552) (6.805,7.493) 7.103 (6.856,7.516) (6.821,7.463)
2 7.272 (6.934,7.964) (6.873,7.841) 7.260 (6.940,7.884) (6.886,7.781)
3 7.464 (7.021,8.425) (6.943,8.226) 7.441 (7.023,8.289) (6.954,8.129)
4 7.690 (7.107,8.97 ) (7.014,8.680) 7.654 (7.108,8.766) (7.025,8.536)
5 7.966 (7.204,9.657) (7.085,9.241) 7.913 (7.206,9.353) (7.097,9.032)
6 8.313 (7.322,10.552) (7.155,9.967) 8.236 (7.326,10.115) (7.171,9.669)
7 8.774 (7.468, 11.810) (7.223,10.970) 8.664 (7.476,11.173) (7.245,10.542)
8 9.443 (7.660, 13.779) (7.290,12.506) 9.278 (7.673,12.810) ( 7.321,11.866)
9 10.589 (7.934,17.571) (7.355,15.350) 10.311 (7.955,15.917) (7.398,14.290)
10 13.734 (8.413,30.230) (7.415,24.031) 12.977 (8.447,26.027) (7.474,21.557)
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