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Abstract: The present paper introduces a discrete compound distribution model, which is obtained by compounding size 

biased Consul Distribution with generalized beta distribution. The proposed distribution has several properties such as it 

can be nested to different compound distributions on specific parameter setting. Factorial moments and parameter 

estimation through maximum likelihood estimation and method of moment have been disused. The potentiality of the 

proposed model has been tested by chi-square goodness of fit test by modeling the real world count data sets. 
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1 Introduction 

From the last few decades researchers are busy to obtain new probability distributions by using different techniques such as 

compounding, T-X family, transmutation etc. but compounding of probability distribution has received maximum attention 

which is an innovative and sound technique to obtain new probability distributions.  The compounding of probability 

distributions enables us to obtain both discrete as well as continuous distribution. Compound distribution arises when all or 

some parameters of a distributionknown as parent distribution vary according to some probability distribution called the 

compounding distribution for instance negative binomial distribution can be obtained from Poisson distribution when its 

parameter  follows gamma distribution. If the parent distribution is discrete then resultant compound distribution will 

also be discrete and if the parent distribution is continuous then resultant compound distribution will also be continuous i,e. 

the support of the original (parent) distribution  determines the support of compound distributions.  

In several research papers it has been found that compound distributions are very flexible and can be used efficiently to 

model different types of data sets. With this in mind many compound probability distributions have been constructed. 

Sankaran (1970) obtained a compound of Poisson distribution with that of Lindley distribution,  Zamani and Ismail (2010) 

constructed a new compound distribution by compounding negative binomial with one parameter Lindley distribution that 

provides good fit for count data where the probability at zero has a large value. The researchers like Adil Rashid and Jan 

obtained several compound distributions for instance, (2013) a compound of zero truncated generalized negative binomial 

distribution with generalized beta distribution, (2014a) they obtained compound of Geeta distribution with generalized beta 

distribution and (2014b) compound of Consul distribution with generalized beta distribution recently Adil Rashid  and Jan 

(2014c) explored a mixture  of generalized negative binomial distribution with that of generalized exponential distribution 

which contains several compound distributions as its sub cases  and  proved that this particular model is better in 

comparison to others when it comes to fit observed count data set. Most recently Adil and Jan (2015, 2016(a), 2016 (b)) 

constructed a new lifetime distribution and some count data models with wide applications in real life situations.   

2 Consul Distribution (CD) 

Consul distribution was introduced by Consul and Shenton (1975) was modified by Islam and Consul (1990) who derived it 

as a bunching model in traffic flow through the branching process and also discussed its applications to automobile 

insurance claims and vehicle bunch size data. 
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Suppose a queue is initiated with one member and has traffic intensity with binomial arrivals, given by generating function 
mtpptg )1()( 

 and constant service time. Then the probability that exactly x  members will be served before the 

queue vanishes is given by Consul distribution with probability mass function given by 

A discrete r.vX is said to have a Consul distribution if its probability function is given by  
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where
10  p

 and 
11  pm

. The mean and the variance of the model exist when 
.1 pm
 The Consul 

distribution reduces to the geometric distribution when 1m . Famoye(1997a) obtained the model in (1.3) by using 

Lagrange expansion on the probability generating function of a geometric distribution and called it a generalized geometric 

distribution. The mean and variance of Consul distribution are given by  
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Consul distribution satisfies the dual properties of under-dispersion and over-dispersion. The model is under-dispersion for 

all values of 1m when 
  215 

 and is over-dispersion for all values of 1m  when 
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and .1m  

3 Generalized BetaDistribution (GBD) 

A random variable X is said to have a generalized beta distribution if its density function is given by 
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where , , , 0a b w r  and ,
r

B w
a

 
 
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 is a beta function.  Distribution (2.2) is a special limit case of the Bessel distribution 

investigated by Srodka (1973). It was also analysed by Seweryn (1986) and by Oginiski (1979)was applied in reliability 

theory. GBD reduces to beta distribution a=1 b=1/w. 

4 Compounding of Size biased Consul Distribution (SCD) with the Generalized Beta Distribution 

(GBD) 

Here, we shall present a compound of size biased Consul Distribution (SCD) with that of generalized beta distribution 

(GBD) by treating the success probability parameter in Consul distribution as a generalized beta variate. The resulting 

distribution so obtained generalizes several distributions. In addition to this, first order factorial moments of some 

compound distributions will also be discussed. 

The pmf associated with the size biased version of (1) is given by 
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Usually the parameters m and p in (3) are fixed but here we have considered a problem in which the parameter m  is 

fixed but the probability parameter 
p

 is itself a random variable following generalized beta distribution , in that case the 
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probability that exactly 𝑥 members will be served before the queue vanishes is given by the compound of sized biased 

Consul distribution with that of generalized beta distribution.  

Let us now consider SCD (3) that depends on 
:cy
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where 0 1cy  and 
1

1 m
cy

  andY is a random variable following GBD (2) 

4.1 Definition of proposed distribution 

If 
pX |

 be a random variable following SCD
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, the parameter 
m

 is fixed but
p

instead of being a fixed 

constant is also a random variable such that 
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where Y is distributed as GBD
),,,;( rwbay

 then determining the 

distribution that results from marginalizing over Y will be known as a compound of CD  with that of GBD.  

Theorem 1: The probability function of the compound ofsize biased Consul distribution with generalized beta distribution 

is given by the expression 
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4.2 Special cases 

Case I:  In case when 1m  in (3) SCD reduces to the size biased geometric distribution (SGD) and a compound of SGD 

with GBD is simply followed from (5) when we put 𝑚 = 1 
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Case III: When
1

b
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 , 1a  and 1m   in (2) and (3) respectively, we obtain geometric and beta distribution and a 

compound of GD with BD is followed from (5) when we substitute 1m and
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5 Factorial Moments of the Compound of SCD distribution with GBD and Some Special Cases 
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Theorem 2: The first order factorial moment of a compound SCD with GBD is given by the formula 
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Corollary 5.1 The Ist order factorial moment of a compound of size biased geometric distribution GBD is 
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Corollary5.2The Ist order factorial moment of a compound of size biasedConsul distribution with beta distribution is 
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Proof: When 
1

b
w

 and 1a , in (2)  generalized beta distribution reduces to beta distribution and Ist order factorial 

moment of a compound of CD with beta distribution is simply followed from (10) on 
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b
w

  and 1a  
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Corollary 5.3 The Ist order factorial moment of a compound of size biased geometric distribution beta distribution  is 

 
    20

2
( )

1, ,
,

k

k

c
k

B r k w c B r k z w
B r w





 
 

 
     



 



J. Stat. Appl. Pro. 6, No. 1, 233- 241 (2017) / http://www.naturalspublishing.com/Journals.asp                                                           239 
  

 

 

         © 2017 NSP 

           Natural Sciences Publishing Cor. 
 

Proof: When
1

b
w

 , 1a and 1m  in (2) and (3) respectively, we obtain geometric and beta distribution and therefore 

Ist order factorial moments of a compound of GD with BD is followed from (10) when we substitute 1m and
1

b
w

 ,

1a in it 
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6 Applications 

In this section we will explore the applicability of the proposed compound distribution by using a real data set on bunching 

traffic in Australian rural highways which have been taken from Taylor et al. (1974).The data which appears in the first two 

columns of table 1 gives bunch size with observed corresponding frequency and the data which appears in the 3 rd and 4th 

column of this table is the fitted Consul distribution, Consul Kumaraswamy distribution and proposed distribution. 

Table 1: Bunch size frequency distribution of Australian rural highways (Taylor et al.,1974) 

Number 

of                                                    

mites per 

leaf 

Observed 

Frequency 

Fitted Distribution  

CD CKSD SCGBD 

1 127 125.42 125.64 127.24 

2 53 58.83 59.27 66.99 

3 29 29.07 29.60 31.4 

4 21 14.84 14.51 23.10 

5 5 9.29 6.77 3.50 

6 4 


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
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
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7 1 

8 5 

Total 245 245 245  
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ˆ ˆ2.10, 1.64

ˆ 201.8
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a r
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

 

  

ChiSquare 

Estimate 

 

  

 

5.93 

 

 

4.12 

 

4.05 

 

7 Conclusions 

In this paper, we have proposed a compound of SCD with GBD by compounding, the SCD with GBD. The new 

distribution so obtained has some desirable properties that is they can be nested to different compound distributions on 

specific parameter setting. Moreover, the factorial moments of proposed distributions have also been discussed along with 

some special cases.In the end it has been shown that proposed distribution provides a adequate fit to the reported real life 

data set. 
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