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1 Introduction

The general theory of fractional calculus and fractiondledéntial equations have deeply been given in excellent
monographs, for instance, by Miller and Rog3, [Podlubny P], Kilbas et al. B], Lakshmikantham et al.4] and
Diethelm [B]. Several papers have been devoted to studying existertteualitative properties for various kinds of
fractional differential equations, se6,7,8,9,10,11,12,13,14,15,16,17] and some of the references cited therein. The
system of fractional differential equations with fractadderivative defined in the Caputo sense have been investiga
the interesting papers by Zhoi4] and Daftardar-Gejji et al.1[5,16].

Motivated by B,15,17], we consider a more general problem for the system of fvaeti differential equations
(SFDEs) of the form:

a0 ™) 4 &y DPat) = (), 60) = B, 0< a < 1,

whereag # 0 anda; be any real number§DP{ denotes Caputo fractional derivative of ordemwith base limit 0 and
f:®(Cc RxR") — R". Dividing by ag we obtain the SFDEs of the form:

M) | acppa) = .0, 00) =%, 0< a <1 o)
wherea is some real number.

The main objective of this paper is to obtain existence tesuhiqueness and continuous dependence of solutions on
initial conditions for SFDEsX). Further, we prove validity and convergence of Picardgsssive approximations to the
solutions of SFDEs (1.1) and obtain bound for the error. Matysis is based on the techniques use®ji,17,18].

The important aspect of this paper is that with very few festns onf we have obtained various existence results
and different properties of solutions. This paper exterdsresults of §,15,17] and fora= 0 in (1) it includes the study
of system of nonlinear ordinary differential equations.

This paper is organized as follows. Section 2 contains difité and basic results of the fractional calculus. In
Section 3, equivalent system of fractional Volterra ingdgrquation is obtained and proved theorems on the existence
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and uniqueness of a solution to the probleih (n Section 4, continuous dependence of solutions orairgtndition is
proved. Section 5 deals with convergence of Picard’s ssaeeapproximations to the solutions of SFDEs and obtained
bound for the error. In Section 6, an illustrative examplprisvided in support of the results obtained. The conclusion
are provided in Section 7.

2 Preliminaries

In this section we recall definitions and few basic resulttheffractional calculus from2[3,5,19].
Definition 1.The Riemann-Liouville fractional integral of order > 0 (u € R) with base limit O of the function g
C[0,+) is defined as
1Hg(t) = L /t(t —9)H 1g(s)dst > 0if u >0,
I (u) Jo
I°9(t) = g(t),

wherefl (-) is the Euler's Gamma function.
Note that{g(t) = /5 g(s)ds and (i + 1) = ul (p).

Definition 2.Let n— 1 < u < n(n € N). Then the Caputo fractional derivative of ordemwith base limit O of the function
g € C"[0,+) is defined as

n t
Diig(t) =I{" ¥ {%g(w} = ﬁ/ (t—9s)"H1gMW(s)dst >0if n—1< pu<n,
- 0

°Df'g(t) = g™ (t) if p=n.
Lemma 1Let ge C"[0,+») andn—1< u <n(neN). Then

g0

I (*Dg(t)) =g(t) = Y =

k=0
Note that:

M°D'g(t) =1 " { &)}, 1 e (0,1].
(i 1{* (°Dt'g(t)) = g(t) —9(0), p € (0,1].
(iii) °Df K = 0, whereu > 0 andK is a constant.

Following fixed point theorems are used to establish tha@xié® and uniqueness results.

Theorem 1[[ 20],(Schauder)] Let X be a Banach space(dX a nonempty convex bounded closed set and i@ + D
be a completely continuous operator. Then T has at least reé fioint.

Theorem 2[9] LetV be a nonempty closed subset of a Banach space E, aod }e0, n€ NU {0} be a sequence such
that 37 an converges. Moreover, let the mapping¥A — V satisfy the inequality

|A"u— A < anflu—v]

for every ne N and every w € V. Then, A has a uniquely defined fixed point feurthermore, for each ye V the
sequencéA’ug}y_; converges to this fixed point.u

3 Existence and Uniqueness Results

In the following lemma we obtain an equivalent system oftitawal \Volterra integral equation to the initial value plein
for SFDEs ().
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Lemma 2If f = (f1,..., fn) is continuous then the initial value problem for SFD@ES$ is equivalent to the system of
fractional Volterra integral equation.

ait) — (1+ ﬁtl") 0o — ﬁ/ot(t — 9 9(9)ds+ /0t f(s,a(s))ds )

ProofLet u(t) is the solution of SFDESL. Integrating ), we obtain
(t) - 6(0) +ak D) = I f(t, ut)).

Note that; D u(t) = I; (It*-9da()) =11 (I dat)) = 117 (U(t) — u(0)) above equation reduces to

T -G+ e | (t— 9 T@sds et - [ fiss)as

This gives
) = (1+ =t —L/t(t—s)—au—(s)olsju/t f(s,a(s))d
“UTre—a CTFa—a) o 0 S
which is @).
Conversely, let(t) satisfies equation system of fractional \olterra integgalagion @). Differentiating @) we obtain
du(t) a Ca—
dt _l'(l—a)t to— 1 a) dt/ ( ds+f( utt)). ®)

Integrating by parts and then differentiating, we have
Cg-vgedee & 4 [t / du(s)
1 a) dt/ S s)ds= I‘(l—a)dt{l— 0)+ a ds ds

1
- /'(1% {t“Jo+/0 (t—s) @ <£> ds}
N 90+ all” o dult)

ri—a) dt

_ 7“16‘_ a)t*"LTO+aCDt“LT(t). (4)

Using @) in (3) we obtain B
d‘é—(tt) +a°Daat) = f(t,at)).

Further, from 2) we haveu(0) = Up. This provesi(t) satisfies the IVPY). We have proved that Volterra integral equation
(2) is equivalent to SFDE4LJ.

Theorem 3(Existence): Letf: © — R (j = 1,...,n) be continuous where

n
D =1[0,T] x I_l[uJ'(O)—bj,Uj(O)-i-bj]a T>0,b; >0,
=1

and letf = (fy,..., f,). Then, the SFDEK) has a solutioni(t) : [0, x] — R" where

X = min{T, [ bl'(2_— a)

T b d b=min{by,...,bn}
) and b= min{by,...,bn}.
2[a|(2]|uol|e + b) 2|/l "
ProofDefine the operatoh(u) = (Aju, AoU, ..., Apl) in which for eachj (j = 1,2, ...,n),

A 0) = (14 0t w0 g €9 “uedst [ (s s)ds )
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With this operator the Volterra integral equatid?) tan be written asi(t) = Au(t). We prove thaiA has a fixed point.
SetV = {Ue £ :0(0) = Uy, |uj(t) —uj(0)| <b,1< j <n}, where = C[0, x]". Sincelg € V, V is nonempty. One can
verify thatV is closed, bounded and convex subse#bfFirstly we prove thaf maps the sée¥ into itself. For anyu e V
andt € [0, x| from the definition of operatok, we have

-rem ﬁ [t (fis) - @) + w0 os

+/f ©6)

th0(0) —

Therefore,

o ax - . 12l(b+ [|Uoll) /X —a
Au(t) —u(0 mi o T —— —S dS-l— Su f TU ds
ATE) = TO) | < 5 — s 100lle+ = = [ (X9 i o<r£’s‘ )|
1<j<n

IIX1 “ G/l + Ial(b+|\lToIIoo)X1 a+xllﬂ|
r—a)"™"" rM-a) 1-a ®
_ [a(2[Uol[«+b) 1 ¢ o
_la@lotb) br-e) b o
- F@2-a) 2al(2|uolle+b) 2| foll
=h.
Further, foranyu'e V and 0< 11 < 1, < X, we have
[AU(T1) — AU(T2)][e
||| Uol|e» a |al /Tl e — _
<7 - - - - 0 0
<Sre—a) 8 2 Fa gy fy (IS~ Tolle + 1G]} ds

Ial

b [t 9 109 - W+ s | [ s o) [ fls e

[ee]

[all[Uolle> | 1-a

- - b+ [|Uol|w) [ /™ . f2 - Al
e oo O (e ags [, gy oas) il
< Fe_a) 15} 7, i a) A (11 —9) %ds A (1o —s)"%ds) + |11 — 2| f|

- Jalltolle a1 . lal(b+|Gollw) - _
ST2-a) L A F(270|Tl T+ [ el - 2l
Ial(b+2|\UoIIw) _ _
B e L U ) fllen| 72— 2.

The above inequality implies thairis continuous.

We have proved that for anye V we haveAu € 2, Au(0) = Up and||Au(t) — u(0)||,, < b. ThereforeAu e V, whenever
u e V. This provesA maps the se¥ into itself.

Next we decompose the operatoasA = F + G, whereF andG are defined o by

Fu(t) = —ﬁ/ot(t —5)~%U(s)ds

GU(t) = (1+ ﬁtl") LT(O)+/Ot f(s,0(s))ds

Let{un} CV be a sequence such that— uin V. Then we have

IR - FaOl = | gy -9l -dojad| < BlR=te My g-eas
Therefore
1-a
|F'~TH_FJI00—A(|2X7)HUH J”oo—>0
(@© 2017 NSP
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ThusFu, — Fuwheneveu, — uin V. This impliesF is continuous.
Let € > 0 be given. Since eacl) is continuous on compact s&, it is uniformly continuous or® and hence there
existsd > 0 such that

u,veVand||u— Ve < &= |fjt,0) — fj(t,V)]| < =

Thus foru,ve V and|ju— V]| <  we have

i)~ o). = | [/ [flss) - s s)]ds

[ee]

= sup
1<j<n

X

< [7 sup [f(r.a(0) - fj(r.()| ds
0 0<t1<s
1<j<n

t —
[ 11i(s9) - (79l

<—X=E.
XX

This provesG is continuous. We have proved that= F + G is continuous.
Fix anyve A(V) = {Au: ueV}, then for allt € [0, x],

¥ o = AT o
t
< (14 X ) 1Bt | gy [ (- 97(@9)~ 00+ W0

H/fsu s))d

< (v e ) o+ S [ 9o
+ sup

o [ (au‘(s))ds{

|al 1—0{) _ |al(b+[[Uolle) 1«
1+ Ulleo + ———"7+—+= + sup |fj(t,u(1))|ds
( P L e Ry v I S A o<r£’s‘ 2

1<j<n

[ee]

|al(2[|uoll-+b) 1-q

< gl _w

<ol +=F gy X"+ xlf
_Jal@lile+b)  br2-a) b

S uO o+ _ + foo
ol + = F 2= ey 22l +B) " 2ol

— [[Gofl s +b.

It remains to prove thaA(V) is equicontinuous. For any€ V and anyt;, 72 € [0, x] with 0 < 1} < T < ¥ we have
already proved that

IAdry ~ Al | < AP 2Rl e

o+ f | T — T2l.
Noting that right hand side of above inequality is indepeniaé u and|1; — 12| — O implies||Au(T1) — AU(T2)|| — O.
This provesA(V) is equicontinuous.

In the view of Ascoli-Arzela theoren2fl], A(V) is relatively compact. This completes the proofofV — V is
completely continuous operator. Hence by the Thedtduhas fixed pointi: [0, x] — R". This fixed point is then desired
solution of SFDEs]).

In the next theorem, assumirizjs Lipschitz and using the generalisation of Banach’s fixeithiptheorem we prove
another existence result, which guarantee the uniquefisstution also.
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Theorem 4(Uniqueness): LeD, x and b are as defined in the Theorem 3.2. Assume tha®f— R (j =1,...,n) be
continuous and = (f4,..., fy) satisfies the Lipschitz condition,

76,0 — F(t, D]l < L) T— T

Ify:= ‘a(‘x +Lx < 1then the SFDE§L) has unique solution(t) : [0, x] — R".

ProofWe use the same operatddefined in 2). In the Theorem 3.2 it is already proved tieis continuous operator and
it maps the nonempty, closed and convex set

V= {Ue Z:u0) = o, |uj(t) —uj(0)| <b,1<j<n}
into itself. By method of induction we shall prove that foeeyn € NU {0} and everyu,v € V, A satisfies the condition
AT Ao < Y| T Vo ©

The inequality 7) is trivial for n = 0. Firstly, we prove that it is hold fon = 1. By using definition of operatok and
Lipschitz condition onf, we obtain

[AU(t) — AV(E)]|o»
a

m/ot(t—s) (u(s) —v(s)) s{ H/fsu s))ds— /fS\Rs s{

< % [a=972 sup ar) - ods+ [ 2000~ 5T s

lal » t -
ra- )”“ Ve /( —s)"%ds+L [ sup [u(T) —V(T)[~ds

0 o<t<s
alxt _
— )T T

Let us assume7j is true forn = m— 1. We prove it is hold fom = m. Again using definition of operatok and the
Lipschitz condition onf, we have

[ATA(t) — A™(t) o
= ||AA™ 1Y) —A(Am‘lV(t))Ilw

IN

H/fsu s))ds— /fS\T(s s‘

|a| /t —a m—1-7 m—1
<——— | (t—5s sup ||A™U(T) — A™ V(1) || ds
SFi-a (=9 OSTESII (1) v(T)|
t
+ [ sup |fj(t, A™t0(1)) — fj(t, A" 1V(1))| ds
0 o<1<s
1<j<n
1
lal lajx* @ " / a
<
SFa—o \Fe—a tHX) 0=V ds
t
+L [ sup|[A™0(1) — A™ V(1) ds
0 o<t<s
jalx* e ) " Jalxt e (lel" )"‘l_
< +L U—V||eo+L +L U—V||o
(Fog ) gl () 1a-9]
[ Jalxte " Jalxt e _
_(r(z—a)+LX Fo—a) X)) U=Vl
=Y [U=V]w.
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By induction the proof of inequality7) is completed.
Letan=y", ne NU{0}.Since O< y< 1, 5% gan=Sn oy = rly Further, form inequality

|A"U— AV]|e < an||U—V]|e, U,VEV, n€ NU{0}.
Therefore by the Theorethwe conclude thaf has a unique fixed point. This fixed point is the solution of &EBIIL).

4 Continuous Dependence of Solution

Theorem 5Assume thaf = (f1,..., fn) satisfies the Lipschitz condition,

[f(t,0) = £t V)]l < L[JU—=V]|es,
where §:(j =1,...,n) is asin Theorem 3.2. Le{t) andv(t) are the solutions of SFDEs

%—kacD{’J(t):f_(t,G), te0,T],0<a<1, (8)
corresponding the initial conditions(0) = up andv(0) = vp. If B := ‘ra(g—:a) +LT < 1then
ja) -0l < { (1+ A8+ L -G, te 0.7 ©
00 > I_(2_ a) 1_ B 0 0ffoos ) .

ProofLet u(t) andv(t) be the solutions of SFDES) corresponding to the initial conditiong0) = Up andv(0) = vo.
Consider the sequencéa"up} and{A"p} defined respectively by
0\ (4) — a  1-a)\g
(A°w)(t) = <1+/_(2—U)t >U0

(Ao 1) = (1+ ﬁtl—") B g 9 AT )9

1 _
+ [ fls (A" t)(9)ds (1=1,2.3,..),
0

and
(A%) 1) = <1+ r(%_a)t”) %o
t
(A)(t) = (1+ r(%_a)t”) = ﬁ | =9 sy
+/t f(s, (A" 1)(s))ds (n=1,2,3,...).
0
Then
O R [
[ A () - () (9)]. s
ri—a)lo 0 0 S

+ H /0 s (A1) (9)))ds— /0 s (A”l\70>(8>>ds{

Proceeding as in the proof of Theordmve obtain

[ee]

r2-a r2-a)

- { <1+ %ﬁ—ﬂ +B“} 180 — ol o-

N A e\ oo (AT T
||(A Uo)(t) AVo(t)HooS 1+ )t HUO VoHoo+ +LT HUO V0||oc
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From above inequality it follows that

(AT §) - ATGo(t) o < {(”% )+ B”} o ol t < [0,7T).

k=1

Taking limit asn — o in above inequality and using the Theor@nwe obtain

2l

||J<t>—v7t>|m<{(1+r(2— e ) ZB }||%—v‘o|m7te[o:].

Since 0< B < 1,

0 -0 < { (14 7B ) 4 L2 i@ Gt 1)

5 Successive Approximation (Picard)

Define the successive approximations to the solution aainialue problem1) by

Oo(t) = (1+ ) o, (10)
t
Unya(t) = (1+ ) Up — 0 (t—s)‘“u_n(s)ds
+/fsun §)ds (N=0,1,2,..). (11)

Theorem 6Let f and x are as defined in the Theorem 3.2. Then, the successive apptons given by10)-(11) are
valid on[0, x|, and satisfy

|Gn(t) — Toll < b, ¥n € NU{0}, t € [0,x]. (12)
ProofObviouslyug(t) is defined or0, x], and from @0), we have

X br(2—a) _|ltofl

AN w < A )
F(Z—G)HUOH - 2(2||U0Hoo+b) r2—-a)—

[[Uo(t) — Uof|eo <

which is L2) for n= 0.
Assume, for anyn = me N, Up(t) is defined on0, x| and satisfies12). Thereforeum,1(t) is defined on0, x| and
from (11) we have

[[Ums2(t) — U(0) [

1-a _
< P o+ s | [ (o o) +J<o>>ds{ | [ s tusnad
1-a . b L1 o X —a
Sl v A A
A Al @) 4
SI’( )H ol|eo + WX T+ x|l folle
_ [2l(2]o]l» ) (1?'(“2’0_'2; O X x|l
_ @Gl +b)  br2-a) i
< T Tl 15 AT
—b. (13)
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Thusum,1(t) satisfies 12). By induction proof of the theorem is completed.

In the next theorem it is proved that the successive apprtkms{Us(t)} to the solutions of IVP 1) defined by
(10)-(12) converges uniformly to a functiam(t) on [0, x|, and this limit functioru(t) is a solution of SFDESL).

Theorem 7Let®, x and b are as defined in the Theorem 3.2. Assume thaDf— R (j = 1,...,n) be continuous and
f = (f4,..., fn) satisfies the Lipschitz condition,

[[(t,0) = f(t,V)leo < L[|U—V]o.

1-a
Ify:= ‘ragia) +Lx < 1then the successive approximatidus(t) }_g to the solution of initial value problem for system

of FDEs(1) defined by(10)-(11) converges on the interv{D, x] to a solutionu(t) of SFDES(1).

ProofFor anyt € [0, x|, we can writeun(t) = Uo(t) + Y (Uk(t) — Ux_1(t)), which is a partial sum of the serieg(f) +
Y ko1 (Uk(t) — Uk—1(t)). Now from (10) and (1) we have

a

JG50) - B0l = |- g [ -9 “T(os+ [ Tlsdi)as

X —
< 1-a Uolleo |a| / _o\—a -
< (Hir(z-a)x >|UO| Fa—a) o (X —s) “ds+ x| f]

_ 1-a |a 1-o £l
— (1 Foma ) X Bl x

- H/Ot[ﬂs,al(s))— f_(S,U_o(S))]ds‘

< /Ot<t—s>—“<m<s>—%<s>>ds{

0

- ﬂ) /Ot(t_sya sup |[3() — Go(T) s+ L /0 sup || (1) — Go(7) =dis

0<t<s 0<t<s

< e a) {<1+7r(2'a_' a)xl“’> %_'a)xl‘“ll%llwxl f‘||m} JACEEREE

|a| 1-a |a| 1-o T £
(4 ) gt Il X1
_ I S e AL (a8 xte
(v ) e X1l (g i X

= {<1+ %x“’) %xl‘“I%wallﬂm} (% +Lx>

|a| 1-a |a| 1o £l . laxte

We shall prove by induction that

where,A = (1+

8n(t) = On-1(t) o < AY*. (14)
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Already it is proved fon = 1,2. Now assumel(d) form n = m € N. By definition ofun1(t) andum(t) we obtain

[[Ums-2() = Um(t) [

<% /Ot(t—s)‘“(u_m(s)—ﬁm 1(s s{ H/ (S,Um(s)) — f(s, U 1(3))]ds{oo
B o sup e o

< gy 9 S (0) G a0 L || SUp ()~ (7)o

S,_(1|a|a ym / (X —9) %ds+Ay™ Ly

(g )
W

Above inequality is just14) for n= m+ 1. We have proved that{) is true far alln € N.

SinceO<y<1,5h 1Ay = ATVy and therefore from the inequalit§4) it follows thatug(t) + S_; (Uk(t) — Uk_1(t))
, t € [0, x] converges with respect to the noim||.. This implies the sequendgin(t)};_; converges uniformly to a
continuous function(t), t € [0, x]. Thus taking limit as1 — « on both sides of}0), we obtain

ait) — <1+ ﬁtl—a) o) — m/ot(t—s)‘“u_(s)dSJr /0t f(s,0(s))ds

This proveai(t), t € [0, x] is a solution of the integral equation equivalent to I\, (

Corollary 1.Let n(t) be the ' successive approximation to the solutigf) of the initial value problen{1). Then the
error U(t) — un(t) satisfies the estimate

|6(t) = Un(t)fleo < ==V, (15)

where,y == ‘(‘ ;)

and

Using the inequality14), we obtain

- % )\)}< )\yn+1

® k=n+1 1- 4

[[ult) = Un(t)leo = || > (Uk(t) — U2 (t))

1

=
[l

Remark 5.1: Since 0< y < 1, from above inequality it followsiy(t) — U(t) asn — o i.e. the sequencéun(t)} of
successive approximation converges to the solutjohof system of FDE1).

6 Examples

Consider the following system of FDEs:

rfy .z
%—F% Dius(t) = 1+2t+1t5 +uf —up, u(0) =0, (16)
du T(§) o 3 r(3) w
= — 2 {3 =
ot > DEua(t) 4tu1+12/_(%3)t , up(0) =1 (17)
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LetT > 0,b; > 0 (j =1,2) and consider the functiorfs : ® — R (j = 1,2) defined by
f(t,0) = 1+ 2t +3 + U2 — up,
r Z
fo(t,u) = 4tu; + 12 (( ))t_3_
where® = [0,T] x [—by,bs] x [1— by, 1+ by] andu(t) = (ug(t), ux(t)).

[-
— 7
Let f (t,0) = ( 1(t,0), f2 J)) = (1+2t+t3 +u2 Up,4tu; +12—3~ ((33>)t 0). Then above SFDEs can be written in
3
the form
dait) ) . z2_ _ _
a0 T8 ey = (.0, w0 = (0.2). te 0.T]

Note thatf : ® — R2? is clearly continuous. We prove thatsatisfies a Lipschitz condition with respect to the second
variable.
For any(t,u), (t,v) € ©, we have

f(t,0) — f(t,V) = (U — V5 —Up+Ya, 4t(up—Vvy)).

Therefore, _ _
[f(t,0)—f(t,v)],= SUD {sup{|uf — Vi — Uz + o, [4t(ug — V1) | } } .
Note that
U2 —V§ — Up+ Y| < [Uf —VE| + |up — Vs
< Jug +va|ug — vi| + Uz — 2
< (Jug| + va|)|ug — va| + [u2 — y2|
< 2bg|uy —vi| + [uz — yo
< (1+2by){|ug — vi| + |uz — yo|}
< 2(1+2bg)max{|up —va|, [uz —Yo|}
= 2(1+ 2by)[|U— V]|
and _
4tlug — vi| < dtmax{|up —va|, [z —yo|} = 4t||U— V]e.
Hence

(6.0~ (4.9, = Sup {SUB(2(1+251) |GV, 4G} } < LG T

This provesf satisfies a Lipschitz condition d@ with Lipschitz constant = max{2(1-+ 2b;),4T}. Further

r 7
]|, = sup | fi(t,d(t))| = max{ 2T + T3 + b3 — by, 4Thy +12 (1) TS Y.

0<t<T r(?)

1<j<2
All the assumptions of the Theore®and4 are satisfied and hence the SFDE§{ (17) has a unique solutiom: [0, ] —
R? where

brd) 1° b
X=min{ T, , andb = min{by,b,}.
[F(%)(H b)| 2ffle

One can verify that(t) = (t2, t*+ 1) is the unique solution of the SFDESE)- (17).

7 Conclusions

With boundedness and Lipschitz condition bwe have proved various results such as existence, unigsi@ogginuous
dependence of solutions and convergence of Picards siveapproximations related to the system of nonlinear @gin
differential equationsl).
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