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Abstract: In order to characterize the systems of second-order ODEs which admit a regular Lagrangian function, Noether symmetries
for the geodesic equations of the canonical linear connection on Lie groups of dimension three or less are obtained, so the character-
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laws and the first integral for each geodesics are constructed.
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1. Introduction

Second order ordinary differential equations (ODEs) on
finite dimensional manifolds appear in a wide variety of
applications in mathematics, physics and engineering. In
classical mechanics they are Newtons equations of mo-
tion and the Euler-Lagrange equations of a mechanical La-
grangian. The inverse problem of Lagrangian dynamics
consists of finding necessary and sufficient conditions for
a system of second order ODEs to be the EulerLagrange
equations of a regular Lagrangian function and in case they
are, to describe all possible such Lagrangians.

The inverse problem of Lagrangian dynamics for the
geodesic spray associated to the canonical symmetric lin-
ear connection on a Lie group of dimension three or less
was solved in [1]. This connection was first introduced by
Cartan and J.A. Schouten [2] and its properties were stud-
ied in details in [3]. In [1], it was proved that the geodesic
equations of this connection are variational for all Lie groups
in dimensions two and three. Moreover, an explicit La-
grangians for each group in these dimensions were given.
For more details on the inverse problem and the canonical
connection we refer the reader to [4,5,1,3].

Our need to characterize those systems of second-order
ODEs which admit a regular Lagrangian function indicates
the importance of studying these geodesics that were con-
structed. In this paper, the characterization of these geodesics
through their Noether’s symmetries Lie Algebras is inves-
tigated. The corresponding conservation laws and the first
integral for each geodesics are obtained.

The outline of the paper is as follows. In Section 2,
we investigate the Noether symmetries and Noether theo-
rem. Lastly, in Sections 3 and 4, the Noether symmetries
for all the geodesic equations were derived with the in-
tegrals of motion. The classification of the Lie algebras
of the Noether symmetries is studied. Concluding and re-
marks are given in the last section.

2. Noether symmetries and Noether theorem

let us consider the k-th order system of partial differential
equations (PDEs) of n independent variables x = (x1, x2,
..., xn) and m dependent variables u = (u1, u2, ..., um)

Eα(x, u, u(1), ..., u(k)) = 0, α = 1, ...,m , (2.1)
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where u(1), u(2), ..., u(k) denote the collections of all first,
second,..., k-order partial derivatives,
i.e., uα

i = Di(u
α), uα

ij = DjDi(u
α),...respectively, with

the total differentiation operator with respect to xi given
by

Di =
∂

∂xi
+ uα

i
∂

∂uα + uα
ij

∂
∂uα

j
+ ..., i = 1, ..., n , (2.2)

in which the summation convention is used.
The following definitions are well-known (see, e.g. [7–

10]).

Definition 1(The conserved vector). The n-tuple vector
T = (T 1, T 2, ..., Tn), T j ∈ A, j = 1, ..., n,
is a conserved vector of (2.1) if T i satisfies

DiT
i |(2.1)= 0, (2.3)

where A is the space of differential functions.

Definition 2(The Lie-Bäcklund operator). The Lie-Bäcklund
operator is

X = ξi ∂
∂xi + ηα ∂

∂uα ξi, ηα ∈ A , (2.4)

where A is the space of differential functions.
The operator (2.4) is an abbreviated form of the infinite
formal sum

X = ξi ∂
∂xi + ηα ∂

∂uα +
∑
s≥1

ζαi1i2...is
∂

∂uα
i1i2...is

, (2.5)

where the additional coefficients are determined uniquely
by the prolongation formulae

ζαi = Di(W
α) + ξjuα

ij ,
ζαi1...is = Di1 ...Dis(W

α) + ξjuα
ji1...is

, s > 1,
(2.6)

in which Wα is the Lie characteristic function

Wα = ηα − ξjuα
j . (2.7)

Definition 3(The Euler-Lagrange operator). The Euler-
Lagrange operator for each α, is given by

δ
δuα = ∂

∂uα +
∑
s≥1

(−1)sDi1 ...Dis
∂

∂uα
i1i2...is

, α = 1, ...,m.

(2.8)

Definition 4(Lagrangian and Euler-Lagrange equations).
If there exists a function L = L(x, u, u(1), ..., u(l)) ∈
A, l ≤ k such that the system (2.1) can be written as
δL/δuα = 0, then L is called a Lagrangian of the sys-
tem (2.1) and the differential equations of the form

δL
δuα = 0, α = 1, ...,m, (2.9)

are called Euler-Lagrange equations.

Definition 5(The Action Integral). The action integral of
a Lagrangian L is given by the following functional

J [u] =

∫
Ω

L(x, u, u(1), ..., u(k))dx, (2.10)

where L is defined on a domain Ω in the space
x = (x1, x2, ..., xn).

Definition 6.The functional (2.10) is said to be invariant
with respect to the group Gr if for all transformations of
the group and all functions u = u(x) the following equal-
ity is fulfilled irrespective of the choice of the domain of
integration ∫

Ω

L(x, u, u(1), ..., u(k))dx

=

∫
Ω̄

L(x̄, ū, ū(1), ..., ū(k))dx̄, (2.11)

where ū and Ω̄ are the images of u and Ω, respectively,
under the group Gr.

Lemma 1.[10] The functional (2.10) is invariant with re-
spect to the group Gr with the Lie-Bäcklund operator X of
the form (2.5) if and only if the following equalities hold

WαδL/δuα +Di(N
iL) ≡ XL+ L Diξ

i = DiB
i,

(2.12)
where

N i = ξi +Wα δ
δuα

i

+
∑
s≥1

Di1 ...Dis(W
α) δ

δuα
ii1i2...is

, i = 1, ..., n.

(2.13)

Theorem 1(Noether’s Theorem). [10] Let the functional
(2.10) be invariant with respect to the group Gr with the
Lie-Bäcklund operator X of the form (2.5). Then the Euler-
Lagrange equations (2.9) have r linearly independent con-
servation laws DiT

i = 0, where

T i = Bi −N iL, i = 1, ..., n. (2.14)

3. The two-dimensional Lie algebra

In this section there are two Lie algebras to consider, namely,
the non-abelian, g2,non−abelian, and the abelian one. In
both cases the geodesic equations of the canonical con-
nection and their corresponding non-singular Lagrangians
are given. The Lie algebras of the Noether’s symmetries
for both cases are classified and the integrals of motions
are obtained. For simplicity we shall denote the deriva-
tives (ẋ, ẏ, ż) of x, y and z w.r.t. the independent vari-
able t by (x1, y1, z1). As a final remark, since the calcu-
lations are very lengthy, we will only do the non-abelian
2-dimensional case (3.1) in details and for the rest of the
cases we will list the Noether’s symmetries.
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3.1. [e1, e2] = e1 (The Lie algebra of the affine
group on the real line g2,non−abelian )

In local coordinates (x, y), the geodesic equations are given
by

ẍ = ẋẏ
ÿ = 0

(3.1)

System (3.1) has a Lagrangian [1]

L = e−y x1
2

2y1
+

y1
2

2
(3.2)

for which the Noether symmetry

X = ξ1∂t + η1∂x + η2∂y (3.3)

satisfies (2.12), viz.

η2x1
2y1 +

∂
∂tη2x1

2 − 2x1y1
∂
∂tη1 − 2x1

2y1
∂
∂x η1

−2x1y1
2 ∂
∂y η1 + y1

∂
∂y η2x1

2 + 2 y1
3 ∂
∂yB1e

y

+2 ∂
∂tB1y1

2ey − 2 ∂
∂tη2y1

3ey − 2 y1
4 ∂
∂y η2e

y

+y1
4 ∂
∂tξ1e

y + y1
5 ∂
∂y ξ1e

y + 2x1
∂
∂xB1y1

2ey

+x1
3 ∂
∂x η2 − 2x1

∂
∂x η2y1

3ey + y1
4x1

∂
∂x ξ1e

y = 0.
(3.4)

Now comparing coefficients of the derivatives of x and y,
we obtain the following overdetermined linear system.

∂
∂tη1 = 0, η2 − 2 ∂

∂x η1 +
∂
∂y η2 = 0,

∂
∂tη2 = 0, 2 ∂

∂y η2 −
∂
∂tξ1 = 0,

∂
∂x η2 = 0, ∂

∂y η1 −
∂
∂xB1e

y = 0,
∂
∂x η2 = 0, ∂

∂tη2 −
∂
∂yB1 = 0,

∂
∂x ξ1 = 0, ∂

∂tB1 = 0,
∂
∂y ξ1 = 0.

(3.5)

Solving this system gives rise to

ξ1 = c1 , η1 = 1
2 c3 x + c4 ey + c2 ,

η2 = c3 , B1 = c4 x + c5 .
(3.6)

At this stage we construct the Noether symmetries corre-
sponding to each of the constant involved. These are total
of four generators given by

X1 = ∂
∂t , X3 = x ∂

∂x + 2 ∂
∂y ,

X2 = ∂
∂x , X4 = ey ∂

∂x .
(3.7)

The nonzero commutators for the Lie algebra arising from
the 4 Noether symmetries (3.7) are given by

[X2, X3] = X2, [X3, X4] = X4. (3.8)

One can see that under a change of basis, namely,

e1 = X2, e2 = X3, e3 = X4, (3.9)

the Lie algebra g of the Noether symmetries is decompos-
able as a direct sum of the form

g = ⟨e1, e2, e3⟩ ⊕ R (3.10)

where ⟨e1, e2, e3⟩ is the three-dimensional solvable Lie al-
gebra given by the non-zero brackets
[e1, e2] = e1, [e2, e3] = e3.

To find the conservation laws corresponding to the above
Noether symmetries, we use the formula given by (2.14).

T 1 = y1
2, T 2 = e−yx1

y1
,

T 3 =
(x1y1x−x1

2+2 y1
3ey)e−y

2y1
2 , T 4 = y1x−x1

y1
.

(3.11)

3.2. [e1, e2] = 0 (Abelian Lie algebra)

In local coordinates (x, y), the geodesic equations are given
by

ẍ = 0
ÿ = 0

(3.12)

System (3.12) has a Lagrangian [1]

L = x1
2 + y1

2 (3.13)

for which the Noether symmetry

X = ξ1∂t + η1∂x + η2∂y (3.14)

satisfies (2.12), can be estimated easily as.

X1 = ∂
∂t , X3 = ∂

∂y , X5 = t ∂
∂y ,

X7 = 2t ∂
∂t + x ∂

∂x + y ∂
∂y ,

X2 = ∂
∂x , X4 = t ∂

∂x , X6 = y ∂
∂x − x ∂

∂y ,

X8 = t2 ∂
∂t + tx ∂

∂x + ty ∂
∂y .

(3.15)

with the gauge term B1 (t, x, y) = c8
(
x2 + y2

)
+2c4 x+

2c5 y + c9 .
The nonzero commutators for the Lie algebra arising from
the 8 Noether symmetries (3.15) are given by

[X1, X4] = X2, [X1, X5] = X3, [X1, X7] = 2 X1,
[X1, X8] = X7, [X2, X6] = −X3, [X2, X7] = X2,
[X2, X8] = X4, [X3, X6] = X2, [X3, X7] = X3,
[X3, X8] = X5, [X4, X6] = −X5, [X4, X7] = −X4,
[X5, X6] = X4, [X5, X7] = −X5, [X7, X8] = 2 X8.

(3.16)
One can see that under a change of basis, namely,

e1 = X2, e2 = X3, e3 = X4,
e4 = X5, e5 = X6,
e6 = X1, e7 = −X8, e8 = −X7.

(3.17)

The Lie algebra g of the Noether symmetries is a semi-
direct sum of the form

g = ⟨e1, e2, e3, e4, e5⟩ ⊕ sl(2,R) (3.18)

where ⟨e1, e2, e3, e4, e5⟩ is the five-dimensional solvable
Lie algebra given by the non-zero brackets [e1, e5] = −e2,
[e2, e5] = e1, [e3, e5] = −e4,[e4, e5] = e3.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.



314 R. A. Ghanam, A. Y. Al-Dweik: Geodesic equations of the canonical connection on ...

And the conservation laws corresponding to the above
Noether symmetries are

T 1 = x1
2 + y1

2, T 2 = x1, T
3 = y1,

T 4 =
x − x1t, T

5 = y − y1t, T
6 = x1y − y1x,

T 7 =
(
x1

2 + y1
2
)
t− x1x − y1y,

T 8 =
(
x1

2 + y1
2
)
t2 − 2 ( y1y + x1x) t+ x2 + y2.

(3.19)

4. The three-dimensional Lie algebra

In this section we consider the list of the three-dimensional
Lie algebras described in Jacobson’s classification [6]. Fol-
lowing the convention in [1], the brackets of the Lie alge-
bras (4.1-4.6) are given by

[e1, e2] = 0, [e1, e3] = a e1 + c e2, [e2, e3] = b e1 + d e2,
(4.1)

and their corresponding geodesic equations take the form

ẍ = (aẋ+ bẏ)ż
ÿ = (cẋ+ dẏ)ż
z̈ = 0

(4.2)

For the algebra 4.7, it is a direct sum of the two-dimensional
non-abelian algebra with the reals, and so we only add
z̈ = 0 to the system of the geodesic equation for the two-
dimensional case, and for the algebras in 4.8, the connec-
tion is flat and we consider a quadratic Lagrangian. For all
cases, we only list the Noether symmetries, classify their
Lie algebras and obtain the integrals of motion.

4.1. [e1, e3] = a e1, [e2, e3] = d e2 where
(a+ d) ̸= 0, ad(a− d) ̸= 0

In local coordinates (x, y, z), the geodesic equations are
given by

ẍ = aẋż
ÿ = dẏż
z̈ = 0

(4.3)

System (4.3) has a Lagrangian [1]

L =
e−a zx1

2 + e−d zy1
2

z1
+ z1

2 (4.4)

for which the Noether symmetry

X = ξ1∂t + η1∂x + η2∂y + η3∂z (4.5)

satisfies (2.12), can be estimated easily as.

X1 = ∂
∂t , X4 = ax ∂

∂x + dy ∂
∂y + 2 ∂

∂z ,

X2 = ∂
∂x , X5 = eaz ∂

∂x ,
X3 = ∂

∂y , X6 = edz ∂
∂y ,

(4.6)

with the gauge term B1 (t, x, y, z) = 2 c5 a x+2 c6 d y+
c7 .
The nonzero commutators for the Lie algebra arising from
the 6 Noether symmetries (4.6) are given by

[X2, X4] = a X2, [X3, X4] = d X3, [X4, X5] = a X5,
[X4, X6] = d X6.

(4.7)
One can see that under a change of basis, namely,
e1 = X2, e2 = X3,
e3 = X4, e4 = X5,
e5 = X6, e6 = X1.

(4.8)
the Lie algebra g of the Noether symmetries is decompos-
able as a direct sum of the form

g = ⟨e1, e2, e3, e4, e5⟩ ⊕ R (4.9)

where ⟨e1, e2, e3, e4, e5⟩ is the five-dimensional solvable
Lie algebra given by the non-zero brackets [e1, e3] = ae1,
[e2, e3] = de2, [e3, e4] = ae4, [e3, e5] = d e5.

And the conservation laws corresponding to the above
Noether symmetries are

T 1 = z1
2, T 2 = e−a zx1

z1
, T 3 = e−d zy1

z1
,

T 4 =
e−z(a+d)(2 z1

3ez(a+d)+y1(yz1d−y1)e
a z+x1e

d z (xz1a−x1))
z12 ,

T 5 = xz1a−x1

z1a
, T 6 = yz1d−y1

d z1
.

(4.10)

4.2. [e1, e3] = a e1 − b e2, [e2, e3] = b e1 + a e2
where a ̸= 0, b ̸= 0, a2 + b2 = 1

In local coordinates (x, y, z), the geodesic equations are
given by

ẍ = (aẋ+ bẏ)ż
ÿ = (−bẋ+ aẏ)ż
z̈ = 0

(4.11)

System (4.11) has a Lagrangian [1]

L =
e−a z

((
y1

2 − x1
2
)
cos (bz) + 2x1y1 sin (bz)

)
2z1

+z1
3

(4.12)
for which the Noether symmetry

X = ξ1∂t + η1∂x + η2∂y + η3∂z (4.13)

satisfies (2.12), can be estimated easily as.

X1 = ∂
∂t ,

X2 = ∂
∂x ,

X3 = ∂
∂y ,

X4 = (a x + b y) ∂
∂x + (a y − b x) ∂

∂y + 2 ∂
∂z ,

X5 = (b cos (b z)− a sin (b z)) ea z ∂
∂x

− (a cos (b z) + b sin (b z)) ea z ∂
∂y ,

X6 = (a cos (b z) + b sin (b z)) ea z ∂
∂x

+(b cos (b z)− a sin (b z)) ea z ∂
∂y .

(4.14)
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with the gauge term B1 (t, x, y, z) = c6 x + c5 y + c7 .
The nonzero commutators for the Lie algebra arising from
the 6 Noether symmetries (4.14) are given by

[X2, X4] = a X2 − b X3, [X3, X4] = b X2 + a X3,
[X4, X5] = a X5 − b X6, [X4, X6] = b X5 + a X6.

(4.15)
One can see that under a change of basis, namely,

e1 = X2, e2 = X3, e3 = X4, e4 = X5, e5 = X6, e6 = X1,
(4.16)

the Lie algebra g of the Noether symmetries is decompos-
able as a direct sum of the form

g = ⟨e1, e2, e3, e4, e5⟩ ⊕ R (4.17)

where ⟨e1, e2, e3, e4, e5⟩ is the five-dimensional solvable
Lie algebra given by the non-zero brackets
[e1, e3] = ae1 − be2, [e2, e3] = be1 + ae2,
[e3, e4] = ae4 − be5, [e3, e5] = be4 + ae5.

And the conservation laws corresponding to the above
Noether symmetries are

T 1 = z1
3,

T 2 = (x1 cos(b z)−y1 sin(b z))e−a z

z1
,

T 3 = (y1 cos(b z)+x1 sin(b z))e−a z

z1
,

T 4 =
(
(−y1y + xx1) az1 − x1

2 + y1
2
)
cos (b z) e−a zz1

−2

+((−x1y − y1x) az1 + 2x1y1) sin (b z) e
−a zz1

−2

+(x1y + y1x) b cos (b z) e
−a zz1

−1 − 6 z1
2

+(−y1y + xx1) b sin (b z) e
−a zz1

−1,

T 5 = yz1−b x1−a y1

z1

T 6 = xz1+b y1−a x1

z1
.

(4.18)

4.3. [e1, e3] = e1, [e2, e3] = e1 + e2

In local coordinates (x, y, z), the geodesic equations are
given by

ẍ = (ẋ+ ẏ)ż
ÿ = ẏż
z̈ = 0

(4.19)

System (4.19) has a Lagrangian [1]

L = x1 (ln y1 − ln z1 − z)+
e−zy1

2

z1
+yz1+z1

2 (4.20)

for which the Noether symmetry

X = ξ1∂t + η1∂x + η2∂y + η3∂z (4.21)

satisfies (2.12), can be estimated easily as.

X1 = ∂
∂t ,

X2 = ∂
∂x ,

X3 = ∂
∂y ,

(4.22)

with the gauge term B1 (t, x, y, z) = c3 z + c4 .
The commutators for the Lie algebra arising from the 3
Noether symmetries (4.22) are all zeros, so the Lie alge-
bra g of the Noether symmetries is the three-dimensional
abelian Lie algebra.

And the conservation laws corresponding to the above
Noether symmetries are

T 1 = z1
2, T 2 = ln y1 − ln z1 − z, T 3 = z − x1

y1
− 2 y1

z1
e−z .

(4.23)

4.4. [e1, e3] = −e2, [e2, e3] = e1 (The Euclidean
Group on the plane E(2))

In local coordinates (x, y, z), the geodesic equations are
given by

ẍ = ẏż
ÿ = −ẋż
z̈ = 0

(4.24)

System (4.24) has a Lagrangian [1]

L = xy1 − yx1 +
y1

2 + x1
2

z1
+ z1

2 (4.25)

for which the Noether symmetry

X = ξ1∂t + η1∂x + η2∂y + η3∂z (4.26)

satisfies (2.12), can be estimated easily as.

X1 = ∂
∂t , X5 = y ∂

∂x − x ∂
∂y ,

X2 = ∂
∂x , X6 = sin z ∂

∂x + cos z ∂
∂y ,

X3 = ∂
∂y , X7 = cos z ∂

∂x − sin z ∂
∂y ,

X4 = ∂
∂z ,

(4.27)

with the gauge term B1 (t, x, y, z) = (xc6 − yc7 ) cos (z)+
(−xc7 − yc6 ) sin (z)− xc3 + c2 y + c8 .
The nonzero commutators for the Lie algebra arising from
the 7 Noether symmetries (4.27) are given by

[X2, X5] = −X3, [X3, X5] = X2, [X4, X6] = X7,
[X4, X7] = −X6, [X5, X6] = −X7, [X5, X7] = X6.

(4.28)
One can see that under a change of basis, namely,

e1 = X2, e2 = X3, e3 = X4 +X5, e4 = X4, e5 = X6,
e6 = X7, e7 = X1.

(4.29)
The Lie algebra of the Noether symmetries is decompos-
able as a direct sum of two copies of the Euclidean algebra
and the reals (E(2)⊕ E(2)⊕ R).

And the conservation laws corresponding to the above
Noether symmetries are

T 1 = z1
2, T 2 = y − x1

z1
, T 3 = x + y1

z1
,

T 4 = y1
2

z12 + x1
2

z12 − 2 z1, T
5 = y2 + x2 + 2 xy1

z1
− 2 yx1

z1
,

T 6 = sin(z)x1+cos(z)y1

z1
, T 7 = cos(z)x1−sin(z)y1

z1
.

(4.30)
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4.5. [e1, e3] = e1, [e2, e3] = e2

In local coordinates (x, y, z), the geodesic equations are
given by

ẍ = ẋż
ÿ = ẏż
z̈ = 0

(4.31)

System (4.31) has a Lagrangian [1]

L =
2e−zy1x1

z1
+ z1

2 (4.32)

for which the Noether symmetry

X = ξ1∂t + η1∂x + η2∂y + η3∂z (4.33)

satisfies (2.12), can be estimated easily as.

X1 = ∂
∂t , X4 = y ∂

∂y + ∂
∂z , X6 = ez ∂

∂y ,

X2 = ∂
∂x , X5 = x ∂

∂x − y ∂
∂y , X7 = ez ∂

∂x ,

X3 = ∂
∂y ,

(4.34)

with the gauge term B1 (t, x, y, z) = 2c6x + 2c7y + c8.
The nonzero commutators for the Lie algebra arising from
the 7 Noether symmetries (4.34) are given by

[X2, X5] = X2, [X3, X4] = X3, [X3, X5] = −X3,
[X4, X7] = X7, [X5, X6] = X6, [X5, X7] = −X7.

(4.35)
One can see that under a change of basis, namely,

e1 = X2, e2 = X4 +X5, e3 = X6, e4 = X3, e5 = X4,
e6 = X7, e7 = X1,

(4.36)
the Lie algebra g of the Noether symmetries is decompos-
able as a direct sum of the form

g = ⟨e1, e2, e3⟩ ⊕ ⟨e4, e5, e6⟩ ⊕ R (4.37)

where ⟨e4, e5, e6⟩ is a copy of ⟨e1, e2, e3⟩ given by the
non-zero brackets [e1, e3] = e1, [e2, e3] = −e2.

And the conservation laws corresponding to the above
Noether symmetries are

T 1 = z1
2, T 2 = y1

z1
e−z , T 3 = x1

z1
e−z ,

T 4 = z1 +
x1(z1y−y1)

z12 e−z , T 5 = y1x−x1y
z1

e−z ,

T 6 = z1x−x1

z1
, T 7 = z1y−y1

z1
.

(4.38)

4.6. [e1, e3] = e1, [e2, e3] = −e2

In local coordinates (x, y, z), the geodesic equations are
given by

ẍ = ẋż
ÿ = −ẏż
z̈ = 0

(4.39)

System (4.39) has a Lagrangian [1]

L =
e−zx1

2 + ezy1
2

z1
+ z1

2 (4.40)

for which the Noether symmetry

X = ξ1∂t + η1∂x + η2∂y + η3∂z (4.41)

satisfies (2.12), can be estimated easily as.

X1 = ∂
∂t , X4 = ez ∂

∂x , X6 = yez ∂
∂x − xe−z ∂

∂y ,

X2 = ∂
∂x , X5 = e−z ∂

∂y , X7 = x ∂
∂x − y ∂

∂y + 2 ∂
∂z ,

X3 = ∂
∂y ,

(4.42)
with the gauge term B1 (t, x, y, z) = (2c6 y + 2c4 )x −
2c5 y + c8 .
The nonzero commutators for the Lie algebra arising from
the 7 Noether symmetries (4.42) are given by

[X2, X6] = −X5, [X2, X7] = X2, [X3, X6] = X4,
[X3, X7] = −X3, [X4, X6] = −X3, [X4, X7] = −X4,
[X5, X6] = X2, [X5, X7] = X5.

(4.43)
One can see that under a change of basis, namely,

e1 = X2 − i X5, e2 = X3 − i X4, e3 = (X7+i X6)
2 ,

e4 = X2 + i X5, e5 = X3 + i X4, e6 = (X7−i X6)
2 ,

e7 = X1,
(4.44)

the Lie algebra g of the Noether symmetries is decompos-
able over the complex numbers as a direct sum of the form

g = ⟨e1, e2, e3⟩ ⊕ ⟨e4, e5, e6⟩ ⊕ R (4.45)

where ⟨e4, e5, e6⟩ is a copy of ⟨e1, e2, e3⟩ given by the
non-zero brackets [e1, e3] = e1, [e2, e3] = −e2.

And the conservation laws corresponding to the above
Noether symmetries are

T 1 = z1
2, T 2 = x1

z1
e−z , T 3 = y1

z1
ez ,

T 4 = x − x1

z1
, T 5 = y + y1

z1
, T 6 = xy − x1y

z1
+ y1x

z1
,

T 7 = y1(z1y+y1)
z12 ez + x1(x1−z1x)

z12 e−z − 2z1.
(4.46)

4.7. [e1, e2] = e1 ( g2,non−abelian ⊕ R )

In local coordinates (x, y, z), the geodesic equations are
given by

ẍ = ẋẏ
ÿ = 0
z̈ = 0

(4.47)

System (4.47) has a Lagrangian [1]

L = e−y x1
2

2y1
+

y1
2

2
+

z1
2

2
(4.48)

for which the Noether symmetry

X = ξ1∂t + η1∂x + η2∂y + η3∂z (4.49)
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satisfies (2.12), can be estimated easily as.

X1 = ∂
∂t , X4 = ey ∂

∂x ,
X2 = ∂

∂x , X5 = t ∂
∂z ,

X3 = ∂
∂z , X6 = x ∂

∂x + 2 ∂
∂y ,

(4.50)

with the gauge term B1 (t, x, y) = c4 x + c5 z + c7 .
The nonzero commutators for the Lie algebra arising from
the 6 Noether symmetries (4.50) are given by

[X1, X5] = X3, [X2, X6] = X2, [X4, X6] = −X4.
(4.51)

One can see that under a change of basis, namely,

e1 = X2, e2 = X6, e3 = X4, e4 = X1, e5 = X3, e6 = X5,
(4.52)

the Lie algebra g of the Noether symmetries is decompos-
able as a direct sum of the form

g = ⟨e1, e2, e3⟩ ⊕H3 (4.53)

where ⟨e1, e2, e3⟩ is the three-dimensional solvable Lie al-
gebra given by the non-zero brackets
[e1, e2] = e1, [e2, e3] = e3 and H3 is the three dimen-
sional Heisenberg Lie algebra.

And the conservation laws corresponding to the above
Noether symmetries are

T 1 = y1
2 + z1

2, T 2 = x1

y1
e−y , T 3 = z1,

T 4 = x − x1

y1
, T 5 = z − z1t, T

6 = x1(xy1−x1)
y1

2 e−y + 2 y1.

(4.54)

4.8. [e1, e2] = 0, [e1, e3] = 0, [e2, e3] = 0
(Abelian Lie algebra)
OR
[e1, e2] = e3 (Heisenberg Lie algebra)
OR
[e1, e2] = e3, [e1, e3] = −e2, [e2, e3] = e1 (so(3))
OR
[e1, e2] = e3, [e1, e3] = −2e1, [e2, e3] = 2e2
(sl(2,R))

In local coordinates (x, y, z), the geodesic equations are
given by

ẍ = 0
ÿ = 0
z̈ = 0

(4.55)

System (4.55) has a Lagrangian [1]

L = x1
2 + y1

2 + z1
2 (4.56)

for which the Noether symmetry

X = ξ1∂t + η1∂x + η2∂y + η3∂z (4.57)

satisfies (2.12), can be estimated easily as.

X1 = ∂
∂t , X6 = t ∂

∂y ,

X2 = ∂
∂x , X7 = t ∂

∂z ,
X3 = ∂

∂y , X8 = y ∂
∂x − x ∂

∂y ,

X4 = ∂
∂z , X9 = z ∂

∂x − x ∂
∂z ,

X5 = t ∂
∂x , X10 = z ∂

∂y − y ∂
∂z ,

X11 = 2t ∂
∂t + x ∂

∂x + y ∂
∂y + z ∂

∂z ,

X12 = t2 ∂
∂t + tx ∂

∂x + ty ∂
∂y + tz ∂

∂z ,

(4.58)

with the gauge term B1 (t, x, y) = c12
(
x2 + y2 + z2

)
+

2c5 x + 2c6 y + 2c7 z + c13 .
The nonzero commutators for the Lie algebra arising from
the 12 Noether symmetries (4.58) are given by

[X1, X5] = X2, [X1, X6] = X3, [X1, X7] = X4,
[X1, X11] = 2 X1, [X1, X12] = X11, [X2, X8] = −X3,
[X2,X9]−X4, [X2, X11] = X2, [X2, X12] = X5,
[X3,X8] = X2, [X3, X10] = −X4, [X3, X11] = X3,
[X3,X12] = X6, [X4, X9] = X2, [X4, X10] = X3,
[X4,X11] = X4, [X4, X12] = X7, [X5, X8] = −X6,
[X5,X9] = −X7, [X5, X11] = −X5, [X6, X8] = X5,
[X6,X10] = −X7, [X6, X11] = −X6, [X7, X9] = X5,
[X7,X10] = X6, [X7, X11] = −X7, [X8, X9] = X10,
[X8,X10] = −X9, [X9, X10] = X8, [X11,X12] = 2 X12.

(4.59)
One can see that under a change of basis, namely,

e1 = X2, e2 = X3, e3 = X4, e4 = X5, e5 = X6, e6 = X7,
e7 = X1, e8 = X11, e9 = X12, e10 = X8, e11 = X9, e12 = X10,

(4.60)
the Lie algebra g of the Noether symmetries is a semi-direct sum
of the six-dimensional abelian solvable Lie algebra ⟨e1, e2, e3, e4, e5, e6⟩
and a six-dimensional semi-simple Lie algebra ⟨e7, e8, e9, e10, e11, e12⟩,
where the latter is a direct sum of sl(2,R) and so(3).

Finally, the conservation laws corresponding to the above
Noether symmetries are

T 1 = x1
2 + y1

2 + z1
2, T 2 = x1, T

3 = y1, T
4 = z1,

T 5 = x − x1t, T
6 = y − y1t, T

7 = z − z1t, T
8 = x1y − y1x,

T 9 = x1z − z1x, T
10 = y1z − z1y,

T 11 =
(
x1

2 + y1
2 + z1

2
)
t− (x1x + y1y + z1z),

T 12 =
(
x1

2 + y1
2 + z1

2
)
t2 − 2 (x1x + y1y + z1z) t+ x2 + y2 + z2.

(4.61)

5. Conclusion

The geodesic equations of the canonical connection on Lie groups
in dimensions two and three admit the invariance of a variational
principle under time translation ∂

∂t
which gives rise to the con-

servation of energy and invariance under translations in the x-
direction ∂

∂x
which implies conservation of linear momentum.

Additional conservation laws for each case are given. A summary
of the Noether’s symmetries Lie Algebras for the geodesic equa-
tions of the canonical connection on Lie groups in dimensions
two and three is given below:

I. In dimensions two:
1. Direct sum of three-dimensional solvable Lie algebra and R.
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2. Semi-direct sum of five-dimensional solvable Lie algebra and
sl(2,R).

II. In dimensions three:
1. The three-dimensional abelian Lie algebra.
2. Direct sum of five-dimensional solvable Lie algebra and R.
3. Direct sum of three-dimensional solvable Lie algebra and the
three dimensional Heisenberg Lie algebra.
4. Direct sum of two copies of the Euclidean algebra and the reals
g = E(2)⊕ E(2)⊕ R.
5. Direct sum of the form g = ⟨e1, e2, e3⟩ ⊕ ⟨e4, e5, e6⟩ ⊕ R
where ⟨e4, e5, e6⟩ is a copy of ⟨e1, e2, e3⟩ given by the non-zero
brackets [e1, e3] = e1, [e2, e3] = −e2 .
6. Semi-direct sum of the six-dimensional abelian solvable Lie
algebra and a six-dimensional semi-simple Lie algebra, where
the latter is a direct sum of sl(2,R) and so(3).
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Bäcklund and Noether symmetries with applications, Non-
lin. Dynam., 15(1998), 115–136.

[10] N. H. Ibragimov, selected works(volume iii), ALGA Publi-
cations, 2008.

Ryad Ghanam: I am currently as
associate professor of Mathematics at
the University of Pittsburgh at Greens-
burg. I have finished my undergrad-
uate degree in Mathematics from the
University of Jordan in 1995. I received
my PhD in Mathematics from the Uni-
versity of Toledo, Ohio U.S.A in 2000.
My areas of expertise are applied dif-
ferential geometry and Lie groups. I

am also interested in numerical analysis and scientific comput-
ing.

Ahmad Al-Dweik has finished his
undergraduate degree in Mathematics
in 2001 from the University of Cairo,
Egypt. He received the M.Sc. degree
in Mathematics in 2007 from Univer-
sity of Jordan, Jordan and the Ph.D.
degree in Mathematics in 2010 from
King Fahd University of Petroleum and
Minerals, Saudi Arabia. In 2010, he
joined the Mathematics Department of

the King Fahd University of Petroleum and Minerals as assistant
professor. His research interest currently is Symmetry Analysis
of Differential Equations.

c⃝ 2013 NSP
Natural Sciences Publishing Cor.


