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1 Introduction (i d(x,y) =d(y,x),

(i) d (xy) < d(x,u) +d(uV)+d(wy).
In metric fixed point theory the contractive conditions on _ o _
underlying functions play an important role for finding Then(X,d) is called a Branciari metric space(or for
solution of fixed point problems. Banach contraction short BMS).

principle [8] is a fundamental result in metric fixed point pefinition 2.Let (X,d) be a BMS{x,} be a sequence in X

theory. Due to its. importance and simplicity, §everal nd xe X, we say tha{x,} is convergent to x if and only
authors have obtained many interesting extensions anad (Xn,X) — 0@s n— c0. We denote this byx— x.

generalizations of the Banach contraction principle. In

1973, Geraghty40] studied a generalization of Banach Definition 3.Let (X,d) be a BMS andx,} be a sequence
contraction principle. Ciric {], introduced quasi in X. We say tha{x,} is Cauchy sequence if and only if
contraction, which is a generalization of Banach d(x,,xm) — 0asnm— co.

contraction principle. Then a lot of generalization of o )
Banach principle has been given in the literature. Over theP€finition 4.Let (X, d) be a BMS. We say thak,d) is
years, it has been generalized in different directions bycomplete if and only if every Cauchy sequence in X
several mathematicians(see [1-35]). converges to some element in X

In 2.000’ Branciari §] introduced t'he concept c.)f . On other hand, in 2012, WardowskKq] introduce a
generalized metric spaces, where the trlanglg mequgllty 'new type of contractions callgg-contractions and prove
replaced by the inequality 5 e fixed point theorem concernifigcontractions. He
d(xy) < d(xu)+d(uv)+d(vy) for all pairwise yoneralized the Banach contraction principle in a differen
distinct pointsx,y,u,v € X. Various fixed point resuits aspect from the well-known results from the literature.

were established on such spaces, s8R[{0,[12-[17))  \yardowski defined thE-contraction as follows.
and the references therein.

Definition 5.[25] Let (X, d) be a complete metric space. A

Definition 1.[6] Let X be a non-empty set and mapping T: X — X is said to be an F contraction if there
d: X xX — [0,0) be a mapping such that for all existst > 0 such that

x,y € X and all distinct points w € X, each of them
different from x and y, one has VxyeX, d(TxTy)>0=1+F (d(TxTy)) <F (d(x,y))
() d(xy) =0<=x=y, 1)
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where F: Ry — R is a mapping satisfying the following Definition 7.[31] Let (X,d) be a multiplicative metric
conditions: space{xn} be a sequence in X, andexX. If, for every
multiplicative open ball B(x), there exists a natural
number Nsuch that » N =X, € B¢(x), then the
sequencéxn} is said to be multiplicative convergent to X,
denoted by x— x as n— oo,

(F1) F is strictly increasing, i.e. for alt,y € R, such
thatx <y, F(x) < F(y);

(F2) For each sequender,},_, of positive numbers,
limpe0 an =0 if and only if

lIMp—eo F(a0n) = —oo; Definition 8.[31] Let (X,d) be a multiplicative metric
(F3) There exists k € (0,1) such that spaceandx,} be asequencein X. The sequefigg is
lima — 0takF(a) =0. called a multiplicative Cauchy sequence if, for ali> 1,

Let.Z denote the family of all functions : R, — R there exists Nt N such that dxm, xn) < € for mn> N.
which satisfy conditiongF 1), (F2) and(F3).

Wardowski P95 stated a modified version of the
Banach contraction principle as follows.

Definition 9.[31] Let (X,d) be a multiplicative metric
space. The multiplicative metric paces X is said to be
complete if and only if every Cauchy sequefigg in X
Theorem 1[25] Let (X,d) be a complete metric space for alln € N converges in X.

and let T: X — X be an F contraction. Then T has a
unique fixed point z X and for every x X the sequence
{T"X}nen CcONverges to z.

Definition 10[31] Let (X,d) be a multiplicative metric
space. A self mapping TX — X is said to be
multiplicative contraction if there existd € [0,1) such
Example 125] Let F : R, — R be given by the formula that

F(a)=Ina. Itis clear thatr satisfied (F1)-(F2)-(F3) for d(Tx Ty) < (d(x,y))*

anyk € (0,1). Each mapping : X — X satisfying(1) is

anF-contraction such that
. Theorem 2[31] Let (X,d) be a complete multiplicative
d(Tx Ty) <e7d(xy), forallx,y € X, Tx#Ty metric space and TX — X be multiplicative contraction,
It is clear that forx,y € X such thatTx = Ty the thenT has aunique fixed point.
inequalityd(Tx Ty) < e Td(x,y), also holds, i.eT is a
Banach contraction.

X,y € X.

They also extended Kannan and Chatterjea results
from complete metric space to complete multiplicative
Example 225] If F(a) =Ina +a, a > 0 thenF satisfies ~ metric spaces. Later on He et &2] extended the results
(F1)-(F3) and the conditioft.1) is of the form in [31] to two pair of self-mappings satisfying certain

commutative conditions on a multiplicative metric space.
d(TxTy) ATXTY-d0y) < o7 forallxye X, Tx£Ty  Abbas et al33 proved the results of He et 2] for
d(x,y) - ’ ’ " local conractions. Yamaod et @4 gave the concept of
cyclic (a, B)-admissible mapping in multiplicative metric
spaces and proved some fixed point results for these
mappings. For more details in multiplicative metric
On the other hand, Let X be a nonempty set. spaces we refer the reader 85[36].

Remarl{25] From (F1) and (1.1) it is easy to conclude
that everyF —contraction is necessarily continuous.

Multiplicative metric B5 is a mappingd : X x X — R The aim of this article is to introduce the notion of
satisfying the following conditions: Branciari F-contraction, multiplicative F-contractions
(m1)d(x,y) > 1 for all x,y € X andd(x,y) = 1 if and and establish new fixed point theorems for such
only if x=y, contractions. Throughout this artick¥, R*,R denote the
(m2)d (x,y) =d(y,x) > L forallx,y € X, set of natural numbers, the set of positive real numbers
(m3) d(xy) < d(x2z).d(zy)for all xyz e X and the set of real numbers, respectively.

(multiplicative triangle inequality). The following lemmas will be needed in the sequel.

Also (X,d) is called a multiplicative metric space.

Ozavsar and CervikeB[l] generalized the celebrated
Banach contraction mapping principle in the setup of
multiplicative metric spaces.

Lemma 1[1Q] Let (X,d) be a BMS and{x,} be a
Cauchy sequence ifX,d) such that and x X, we say
that d(x,,x) — 0 as n— o for some x€ X. Then
d(xn,y) — d(x,y) as n— o for all y € X. In
Definition 6.[31] Let (X,d) be a multiplicative metric  particular, {x,} does not converge to y if:¥ x.

space, e X ande > 1. We now define a set Lemma 2[31] Let (X,d) be a multiplicative metric space,

Be(x) = {ye X\d(x,y) < €}, {Xn} be asequence in X andxX. Then y — xas n—

_ o o oo if and only if d(Xn, X) — 1 as n— oo,
which is called a multiplicative open ball of radigswith

center x. Similarly, one can describe a multiplicative Lemma 3[31] Let (X,d) be a multiplicative metric space

closed ball as and{x,} be a sequence in X. Th€r,} is a multiplicative
- Cauchy sequence if and only if¢h, x,) — Las mn —
Be(x) = {ye X\d(xy) <e}. 0.
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2 Branciari F-contractions.

In this paper, we introduce the notion of Branciari
F-rational contraction and establish new fixed point
theorems for such contractions in the setting of complete

Branciari metric spaces.

Definition 11 .Let (X,d) be a BMS. Then, TX — X is

said to be Branciari F-rational contraction, there exist

F € . andt > O such that

Vx,yeX, d(TxTy)>0=T1+F (d(TxTy)) <F(M(xy)),
(2)
where
d(x,y),d(x, TX),d(y, Ty),
M(X,y):max d(X,TX)d(y,Ty d(X,TX)d(y,Ty)
1+d(xy) 7~ 1+d(TxTy)
Theorem 3Let (X,d) be a complete BMS and

T : X — X be a Branciari F-rational contraction. If T
or F is continuous, then T has a unique fixed point in X

ProofLet x be an arbitrary point irX. If for somen € N
we haveT"x = T"1x, ThenT"x will be a fixed point of
T. So with out loss of generality, we can assume that

d(T"x, T™1x) >0,V neN.
Now, from (2), for all n € N, we have

T+F (d(T™%,T"%) <F (M(T"%,T"%)), (3)

where
d(T"x, T"x),
d(T 1% TT"1x),
1 _ d(T"%, TT"x),
M(T™ 5T ) = max{ grn 13 ron- g 77w

1+d(Tn-1x TNx) )
d(T I TT"1x)d(T"X T T"X)
T+d(TT-Ix T Tx)
d(T1x,T"x),
d(T"x, T"x),
d(
d

T, T 1x),

= max (TN T%)d(T %, T 1x)

1+d(TN1x TNx) )
d(T"1x, TNX)d(T"%, T 1x)
1+d(TMx,Tn1x)

= max{d(T"x, T"x),d(T"x, T""1x)}.

Now if, M(T"1x, T"x) = d(T"x, T"1x), then inequality
(3) turns into

T+F (d(T"%, T"x))

<F (d(T"x, T 1)),

which is contradiction witlr > 0. Thus we conclude that
max{d(T" 1x, T™%),d(T"x, T"1x)} = d(T"1x, T"x)

for all n € N.Hence, the inequality3] turns into

F (d(T"% T™%) <F(d(T" % T"))— T ¥neN. (4)

Iteratively, we find that

F(d(T"%,T"x)) < FA(T" %, T"%) -7 (5)
< F(d(TM2x, T 1x)) — 21
<F

(d(T"3x, T"2x)) — 31

< F(d(x,Tx)) —nT YneN.

SinceF ¢
deduce

Z, so by taking limit asn — o in (5), we

lim F(d(T" T"x)) =

—o0 <= lim d(T"x, T""x) =0.
n—o

n—-o0
(6)
Now from (F3), there exists &< k < 1 such that

lim [d(T"% T™5%)]“F(d (T, T™1X)) =0.  (7)

n—o0

By (5), we have

T T %) F (d (T T 2x))

F
T% T F (d (x, Tx))
T, T %) [F (d

T, T ) “F (d

k

(X, TX) —nT)]

d(
_d(
d(
d( d(x,Tx))

X)
)
)k
X)

= —nt [d(T"% T"x)]“ < 0. (8)

Letting n— « in (8) and applying 6) and(7), we have,

lim n[d (T T"X)]* =0, 9)

nN— o0

and hence

lim nkd (T" T™1x) =0.

nN— 0

(10)

Then there exists; € N such than (d (T"x, T 2x))* < 1
for all n> ny, this implies

d (T T"x) < 3

1 (11)
nk

Now, we will prove that T has a periodic point. Suppose

that it is not the case, théli'x # T™x for all n,me N such
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thatn # m. Using @), we get

T+F (d(T"%, T"%x))
d T"*lx,T”Jrlx) ,
d (T I, TT"1x),
d Tn+1X,TTn+1X ’
d (TN, TT"1x) d (T, T T 1x)
14d(Tn-1x, TM+1x) ’
d (TN, TT"1x) d (T, T T 1x)
1+d(TTMx, TTN1x)
Tn—lijn+1X) ,
d(TN1x,T"x),
d Tn+1X,Tn+2X),
=F [ max{ d(T" % T"%)d (T"1x, T"2x)
14d(Tn=1x,T"1x) ’
d (T"2x, T"x) d (T"x, T 2x)
1+d(Thx, Th+2x)

— ¢ (max d (TN 2%, T 1x) . d (TN 1%, T"x)
d (Tn+1X,Tn+2X)

< F | max

d

(12)
SinceF is increasing, we obtain fronip)
F(d(T" 1, TMx)),
T+F (d(T"%, T™%x)) <max{ F (d(T" 2, T"x)),
E (d (Tn+1X,Tn+2X))
(13)
Let| be the set oh € N such that

F(d(T" % T X)),
Un = maxg F

d(T"x,T"x)),
F (d (T %, T"2x))

=F (d(T" % T"x)).
If |I| < o then thereN € N such that for alh > N,

F
max{ F
F

_ max] F (T 1)),
B F(d(TMx, T 2x)) [

In this case, we get froml@)

d
d
d

T, T")),
T n+1X’ T n+2x) )

Tnflx’ Tn+lx)) , }

T+F (d(T"%, T"%x))

< max F(d(T1x,T")),
= F(d(T"x, T"2%x))

for all n > N. Lettingn — o in the above inequality and

using 6), we obtain

lim F (d (T"x, T""2x)) = —oo.

n—o

If |I| = o, we can find a subsequence {f,}, then we
denote also byu,}, such that

un="F (d(T"*x, T"x)) for nlarge enough.
In this case, we obtain fronlg)
T+F (d(T™% T™%)) <F (d(T" %, T""x))
Iteratively, we find that
F(d(T"%,T"2x)) < F(d(T" 2% T"x) -7 (14)
< F(d(T"2x,T"x)) — 21
< Fd(T" 3%, T" 1x)) — 31

< F(d(x,T?)) —nt YneN.
Lettingn — o in the above inequality, we obtain

H n n+2 _
lim F (d(T"%, T"x)) = —co. (15)

Then in all cases,16) holds. Using {5) and the property
(F2), we have

lim d (T"x, T"x) = 0. (16)

n—o0

Now from (Fs3), there exists &< k < 1 such that

im [d (T T™2)] “F(d (T T"%)) = 0. @)

By (14), we have
d (T, T™2x) F(d (T, T™2x)) — d (T"% T2 *F (d (x, T2))
< d(T™% T2 [F (d (x,T2) —n1)] —d (T"% T™2) F (d (x, T%X))
= —nt[d(T% T2 <0. (18)

Letting n — o in (18) and applying(16) and(17), we
have,

H n n+2 k o
nIanoon [d (T, T"*x)]" =0, (19)
and hence .
lim nxd (T"x, T""?x) =0. (20)
n—-o0
Then there exists, € N such that
d (T, T"2x) < il for all n > n,. (21)
Nk

Leth = max{no,n1}. we consider two cases.

Case 1: Ifm> 2 is odd, then writingn=2L+ 1,L > 1,

using (L1), for all n > h, we obtain

d (T, T™™) < d(T"%, T %) +d (T %, T 2x)
o d (T2 T2y

1 1 1
(n42L)k

(n+1)k

| =

=

IA
M: 3
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Case 2: Ifm > 2 is even, then writingn= 2L, L > 2, using
(12) and @1), for all n > h, we have

d(T™ T ™) < d(T"%, T™2X) +d (T2, T"3x)
o d (TMFE I T2y

IN

_|_

Tt

(n+2)k (n+2L— 1)k

IN
Ms 2 |~
| =

==

Il
- 35

Thus, combining all cases, we have

| =

d (T, T Mx) < foralln>h, meN.

- M

XlH

Since the serie§ ;2 n—f is convergent (smcé > 1), we

deduce that{T"x} |s a Cauchy sequence. From the
completeness oK, therez € X such thatT"x — z as
n — oo, Now we assume thdt is continuous. Hence, we
have

z= lim TMx = lim T (T") =

n—o0

T (fim, %) =72

Next, we assume th&t is continuousWithout restriction
of the generality, we can suppose tfdx = z for all n.
Suppose thad (z, T2) > 0, we have

T+F (d(T"x,T2)

d(T"x,2),

d (T"x, T"x)

d(zT2,

d(T"x,T"x)d(z T2
1+d(T"x,2) ’

d(T"x, T"x)d(z T2

1+d(T™1x,T2)
B d(T",2),d (T"x, T"1x),
=F (max{ d(zT2)

Which implies

< F | max

)

T+F (d(T"x,T2)

[ )
< F | max .

d(Tx, T"x),
d(zT2
Lettingn — « in the above inequality, using Lemma 16,
we obtain
T+F(d(zT2)<F(d(zT2).
This implies,
d(zT2<d(zT2,

which is a contradiction. Thus we haxe= Tz which is
also a contradiction with the assumptidndoes not have a

periodic point. Thu§ has a periodic point, saof period
g. Suppose that the set of fixed pointslofs empty. Then
we have

g>1landd(z Tz > 0.

By using @), we get
T+F(d(zT2)=T+F <d (quJq“z)) <F (d (T‘H;qu)) .
This implies

F(d(zT2) <F(d(T9'zT%)

.<F(d(zT2)-

—T

<
<. ar<F(d(zT2),

which is a contradiction. Thus the set of fixed pointsTof
is non-empty (thatisT has at least one fixed point ). Now
we suppose thatu € X are two fixed points of such that
d(z,u) =d(TzTu) > 0. From the hypothesis, we obtain

u)) = u),

it is a contradiction. Thereforg has a unique fixed point.

T+F(d(z F(d(TzTu)) <F(d(z

Since a metric space is a Branciari metric space, we
can obtain the following result.

Definition 12.Let (X,d) be a metric space. Then,
T :X — X is said to be F-rational contraction, there
exist Fe .# andt > 0 such that for all xy € X

d(TxTy)>0=T1+F (d(TxTy)) <F (M(x,

y), (22)

where

X,Y)
d(x, TX)d(y, Ty)

1+d(TxTy)

Theorem 4Let (X,d) be a complete metric space and T
X — X be a F-rational rational contraction map. If T or
F is continuous, then T has a unique fixed point in X

Now we give the following definition.

Definition 13.Let (X,d) be a BMS. Then TX — X is
said to be a Branciari F-contraction map, there existF
% andt1 > O such that

vx,ye X, d(TxTy)>0=1+F (d(Tx Ty)) <F (d(x,y)).
Theorem 5Let(X,d) be a complete BMS and:TX — X

be a Branciari F-contraction map. Then T has a unique
fixed pointin X

Corollary 1.[25] Let (X,d) be a complete metric space
and T: X — X be a F-contraction map. Then T has a
unique fixed point in X
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Example det X = {1,2,3,4}. Defined : X x X — Ry
as follows

d(1,2) =d(2,1) =3,

d(2,3) =d(3,2)=d(1,3)=d(3,1) =1,

d(1,4) = d(4,1) =d(2,4) =d(4,2) =d(3,4) =d(4,3) = 4.

Itis clear thatX,d) is a complete BMS, butit is not metric

space becaustdoes not satisfy triangle inequality oh
Indeed,

3=d(1,2)>d(1,3)+d(3,2)=1+1=2.
LetT : X — X be the mapping defined by

 (2ifxe {1,2,3},
Tuy_{lﬁx:4
for

Define F : Ry — R by F(a) = Ina.Now,

x€{1,2,3},y=4, wherer = 1, we have

T+F(d(T(x),T(4))) =1+F(d(2,1))
< F(d(x,4)).

So Branciari F-contraction,T has a unique fixed point
(thatis, 2).

Example 4.et X = {0,%,7} endowed with the usual
metricd(x,y) = |[x—y| for all x,y € X. Define a mapping,
T:X — X by,

8xe {08
_J)3 »3 S
T {0x=1

Itis clear that(X,d) is a complete metric space. Now,
since, T is not continuous, soTl is not Branciari
F-contraction (oiF-contraction) by Remark.9

Next, Forx € {0,%} andy = 7, we have

8

dﬂxTU=d(§0>:’§—% 8

=2>0,

3’ 3

and

d(x,7),d(x,Tx),d(7,T7),
d(x, Tx)d(7,T7)

1+d(x7)
d(x, Tx)d(7,T7)

1+d(TxT7)

max

So, by choosings (o) =Ina +a € .% andt € (0,4.965,
we see that

T+F(d(TxTy) <F(M(XYy)), VX,ye X, Tx£Ty.

ThereforeBranciari F-rational contraction (oF -rational
contraction) and henc&, has a unique fixed point (that is,

9.

3 Multiplicative F-contractions

In this section, we give the concept multiplicative
F-contractions and introduce new fixed point theorem for
such contractions. We support these contractions by
providing some example in the context of a multiplicative
metric spaces.

Definition 14.Let (X,d) be a multiplicative metric space
and T: X — X be a self mapping. Then T is said to be
multiplicative F-contraction if there exis#s € (0,1) such
that for all x y € X,

d(TxTy) > 0= F(d(TxTy) < [F (d(xy)]*. (23)
where F: (1,0) — (1,00) is a mapping satisfying the
following conditions:

(F1*) F is strictly increasingi.e. for all x,y € (1, )
such thak <y, we haveF (x) < F(y);

(F2*) for each sequendgrn 4 C (1,0), liMp_e O
= 1" if and only if limy_e F (an) = 1;

(F3¥) F is continuous.

We denote with# the family of all functionsF that
satisfy the conditions (F}-(F3").

We support this idea by the following examples.

Example 8.et F : (1,0) — (1,0) be given by the
formulaF (a) = /Xfor a > 1. It is clear thatF satisfied
(F1)-(F3) for anyk € (0,1). Each mapping : X — X

satisfying(3.1) is an multiplicativeF-ontraction such that

d(TxTy) < [d(xy)]", forallx,y e X, Tx#Ty.

Itis clear that forx,y € X such thafl x= Tythe inequality
d(TxTy)—1<e 7(d(x,y)* —1), also holds, i.eT is a
multiplicative Banach contraction.

Remark-rom (FI) and (23) it is easy to conclude that
every multiplicative F-contraction is necessarily
multiplicative contractive mappingi.e

d(TxTy) < d(x,y)A forall x,y € X, Tx=Ty.

Thus every multiplicative--contraction is a continuous
mapping.

Now we prove the main result of the paper.

Theorem 6Let (X,d) be a complete multiplicative metric
space and T. X — X be multiplicative F-contraction.
Then T has a unique fixed point that is there existsXz
such that z= Tz And for every g € X, the sequence
{T X0} nery CONVerges to z.

ProoflLet xg € X be an arbitrary but fixed. We define a
sequencen 1 = T X, for all n € NU {0}with xg as initial
point If there exists someg € NU {0} such that,, ;1 =
Xno, thenT X, = Xn, and we are nothing to prove thatig,
is a fixed point ofT. So we suppose that 1 # X, for all
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n e NU{0}. Thend (Xn+1,%) > O for alln € NU{0}. It
follows from (23) that for eacm € N

F (d(Xn,%n11)) = F (d(TX-1,Txn))
< [F (d (X-1,%))*

< [F (d (o2, %0 0)) "
< < F o))
which implies that

F (d0nXn+1)) < [F (d (0 30))
Taking limitasn — -+, we get imF (d(Tx,-1, Tx)) =
1, which together witi{F 2*) gives us

(24)

n”Lnood (X, Xnt1) = 1. (25)

Now , we claim that{x,},_, is a cauchy sequence.
Arguing by contradiction, we have that there exists 0
and sequence{p(n)},_; and {q(n)},_, of natural
numbers such that for atle N

p(n) > q(n) >N, d(Xpm), Xqn)) > & d(Xp(n)—1, Xq(n)) ?2%')
So, we have
€ < d(Xpm)> Xq(n)) < d(Xp(n)> Xp(n)—1)-d(Xpm)—1, Xg(n)) (27)
< dXp(): Xp(n)-1)-€
= d(xp(n)—laTXp(n)—l)-g-
Lettingn — o in (27) and using 25), we obtain

M d(Xp(n), %g(n)) = € (28)

Also, from (25) there exists a natural number € N such
that

€ €
d(Xp(n), TXp(m) < 2 andd(Xgn), T X)) < 7 =

(29)
Next, we claim that
d(TXp(n)aTXq(n)) = d(xp(n)+1axq(n)+l) >1Vn>ny.
Arguing by contradiction, there exists> n; such thg())
d(Xpm)+1: Xqmy+1) = 1. (31)

It follows from (26), (29) and(31) that

& < d(Xp(m): Xg(m)) < d(Xp(m)» Xp(m)+1)-d(Xp(m)+1, Xg(m))

< d(Xp(m)» Xp(m)+1)-d (Xp(m)+1, Xg(m)+1) -d Xg(m) + 1 Xgq(m))
(my> T Xp(m))-A (Xp(m) 1, Xg(m)+1) -d (Xg(m)» T Xg(my))

This contradiction establishes the relati@0) it follows
from (30) and(23) that,

F (d (Xp(ny-r1:Xq(n2)) < [F (d (Xpm) Xgm))] < v > ?ﬁé)

So from(F3*), (28) and(32), we have
F(e) <[F(e)]“<F(e).

This contradiction show tha{x,} is a multiplicative
Cauchy sequence. From the completenessX pfthere
exists z € X such thatx, — z asn — . Finally, the
continuity of T yields

d(zT2= nIiLnoool(xn,Txn) = n”Lnood(X”’X”“) =d(z2) =1

Thuszis a fixed point ofT. Now, we show thar is the
unique fixed point ofT. Assume that is another fixed
point of T such thaflf z=z # y = Ty, then we get
F(d(zy)) =F(d(TzTy))
< [F(dzy)<F(d(zy)

a contradiction, which implies that=y.

Observe that the multiplicative Banach contraction
principle follows immediately from Theorem 31. Indeed,

if T is a multiplicative Banach contraction, i.e., there
existsA € [0,1) such that

d(TxTy) <[d(xy)]*, forallx,y € X andd (Tx Ty) >0,

then, we have
(d(TxTy)? < [(d (x,y))z]/\ forallx,y € X andd (Tx Ty) > 0.

Clearly the functionF : (1,,0) — (1,e0) defined by
F(t) = t?, t > 1 belongs to.#. So, the existence and
uniqueness of the fixed point follows from Theorem 31.
In the following example, we show that Theorem 31 is a
real generalization of the multiplicative Banach
contraction.

Example d.et X = {0,1,3} and d : R? — R* a
multiplicative metric space defined hy(x,y) = e*V.
Note that(R,d) is a complete multiplicative metric space.
DefineT : X — X by

1 ifxe{0,1},
T(X):{o ]

T is not a multiplicative Banach contraction as it is not a
continuous mapping. But, fore {0,1},y=3,A € [£,1),
by puttingF (t) = v/t, witht > 1, we get

F(d(T(x),T (1) =+/d(T(x),T (1))
— Ve
and
A A
Fx) = [Vax1)]" = [Ved]
Clearly we have
F(d(T(x),T(y) < [F(d(xy))]" forallx,ye X andTx# Ty.

Thus T is a multiplicative F-contraction andT has a
unique fixed point.
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