
J. Ana. Num. Theor.5, No. 1, 63-71 (2017) 63

Journal of Analysis & Number Theory
An International Journal

http://dx.doi.org/10.18576/jant/050110

Two New Fixed Point Results for Generalized Wardowski
Type Contractions

Eskandar Ameer1,2 and Muhammad Arshad1

1 Department of Mathematics and Statistics, International Islamic University, Islamabad 44000, Pakistan
2 Department of Mathematics, Taiz University, Taiz, Yemen.

Received: 7 Jun. 2016, Revised: 21 Dec. 2016, Accepted: 23 Sec. 2016
Published online: 1 Jan. 2017
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1 Introduction

In metric fixed point theory the contractive conditions on
underlying functions play an important role for finding
solution of fixed point problems. Banach contraction
principle [8] is a fundamental result in metric fixed point
theory. Due to its importance and simplicity, several
authors have obtained many interesting extensions and
generalizations of the Banach contraction principle. In
1973, Geraghty [20] studied a generalization of Banach
contraction principle. Ciric [7], introduced quasi
contraction, which is a generalization of Banach
contraction principle. Then a lot of generalization of
Banach principle has been given in the literature. Over the
years, it has been generalized in different directions by
several mathematicians(see [1-35]).

In 2000, Branciari [6] introduced the concept of
generalized metric spaces, where the triangle inequality is
replaced by the inequality
d (x,y) ≤ d (x,u) + d (u,v) + d (v,y) for all pairwise
distinct pointsx,y,u,v ∈ X. Various fixed point results
were established on such spaces, see ([9],[10],[12]-[17])
and the references therein.

Definition 1.[6] Let X be a non-empty set and
d : X × X −→ [0,∞) be a mapping such that for all
x,y ∈ X and all distinct points u,v ∈ X, each of them
different from x and y, one has
(i) d (x,y) = 0⇐⇒ x= y,

(ii) d (x,y) = d (y,x) ,
(iii) d (x,y)≤ d (x,u)+d (u,v)+d (v,y) .

Then (X,d) is called a Branciari metric space(or for
short BMS).

Definition 2.Let(X,d) be a BMS,{xn} be a sequence in X
and x∈ X, we say that{xn} is convergent to x if and only
if d (xn,x)−→ 0 as n−→ ∞. We denote this by xn −→ x.

Definition 3.Let (X,d) be a BMS and{xn} be a sequence
in X. We say that{xn} is Cauchy sequence if and only if
d (xn,xm)−→ 0 as n,m−→ ∞.

Definition 4.Let (X,d) be a BMS. We say that(X,d) is
complete if and only if every Cauchy sequence in X
converges to some element in X.

On other hand, in 2012, Wardowski [25] introduce a
new type of contractions calledF-contractions and prove
a new fixed point theorem concerningF-contractions. He
generalized the Banach contraction principle in a different
aspect from the well-known results from the literature.
Wardowski defined theF-contraction as follows.

Definition 5.[25] Let (X,d) be a complete metric space. A
mapping T: X → X is said to be an F contraction if there
existsτ > 0 such that

∀ x,y∈X, d(Tx,Ty)> 0⇒ τ+F (d(Tx,Ty))≤F (d(x,y))
(1)
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where F: R+ → R is a mapping satisfying the following
conditions:

(F1) F is strictly increasing, i.e. for allx,y∈ R+ such
thatx< y, F(x)< F(y);

(F2) For each sequence{αn}∞
n=1 of positive numbers,

limn→∞ αn = 0 if and only if
limn→∞ F(αn) =−∞;
(F3) There exists k ∈ (0,1) such that

lim α → 0+αkF(α) = 0.
Let F denote the family of all functionsF : R+ −→R

which satisfy conditions(F1) ,(F2) and(F3) .
Wardowski [25] stated a modified version of the

Banach contraction principle as follows.

Theorem 1.[25] Let (X,d) be a complete metric space
and let T : X → X be an F contraction. Then T has a
unique fixed point z∈ X and for every x∈ X the sequence
{Tnx}n∈N converges to z.

Example 1.[25] Let F : R+ → R be given by the formula
F(α) = lnα. It is clear thatF satisfied (F1)-(F2)-(F3) for
anyk ∈ (0,1). Each mappingT : X → X satisfying(1) is
anF-contraction such that

d(Tx,Ty)≤ e−τd(x,y), for all x,y∈ X, Tx 6= Ty.

It is clear that for x,y ∈ X such that Tx = Ty the
inequalityd(Tx,Ty) ≤ e−τd(x,y), also holds, i.e.T is a
Banach contraction.

Example 2.[25] If F(α) = lnα +α, α > 0 thenF satisfies
(F1)-(F3) and the condition(1.1) is of the form

d(Tx,Ty)
d(x,y)

ed(Tx,Ty)−d(x,y) ≤ e−τ
, for all x,y∈ X, Tx 6= Ty.

Remark.[25] From (F1) and (1.1) it is easy to conclude
that everyF−contraction is necessarily continuous.

On the other hand, Let X be a nonempty set.
Multiplicative metric [35] is a mappingd : X ×X −→ R

satisfying the following conditions:
(m1) d (x,y) > 1 for all x,y ∈ X and d (x,y) = 1 if and
only if x= y,
(m2)d (x,y) = d (y,x) > 1 for all x,y∈ X,
(m3) d (x,y) ≤ d (x,z) .d (z,y)for all x,y,z ∈ X
(multiplicative triangle inequality).

Also (X,d) is called a multiplicative metric space.
Ozavsar and Cervikel [31] generalized the celebrated

Banach contraction mapping principle in the setup of
multiplicative metric spaces.

Definition 6.[31] Let (X,d) be a multiplicative metric
space, x∈ X andε > 1. We now define a set

Bε(x) = {y∈ X \d(x,y)< ε } ,
which is called a multiplicative open ball of radiusε with
center x. Similarly, one can describe a multiplicative
closed ball as

Bε(x) = {y∈ X \d(x,y)≤ ε } .

Definition 7.[31] Let (X,d) be a multiplicative metric
space,{xn} be a sequence in X, and x∈ X. If, for every
multiplicative open ball Bε(x), there exists a natural
number Nsuch that n≥ N =⇒xn ∈ Bε(x), then the
sequence{xn} is said to be multiplicative convergent to x,
denoted by xn −→ x as n−→ ∞.

Definition 8.[31] Let (X,d) be a multiplicative metric
space and{xn} be a sequence in X. The sequence{xn} is
called a multiplicative Cauchy sequence if, for allε > 1,
there exists N∈ N such that d(xm,xn)< ε for m,n≥ N.

Definition 9.[31] Let (X,d) be a multiplicative metric
space. The multiplicative metric paces X is said to be
complete if and only if every Cauchy sequence{xn} in X
for all n ∈ N converges in X.

Definition 10.[31] Let (X,d) be a multiplicative metric
space. A self mapping T: X → X is said to be
multiplicative contraction if there existsλ ∈ [0,1) such
that

d(Tx,Ty)≤ (d(x,y))λ

∀x,y∈ X.

Theorem 2.[31] Let (X,d) be a complete multiplicative
metric space and T: X → X be multiplicative contraction,
then T has a unique fixed point.

They also extended Kannan and Chatterjea results
from complete metric space to complete multiplicative
metric spaces. Later on He et al. [32] extended the results
in [31] to two pair of self-mappings satisfying certain
commutative conditions on a multiplicative metric space.
Abbas et al.[33] proved the results of He et al.[32] for
local conractions. Yamaod et al.[34] gave the concept of
cyclic (α,β )-admissible mapping in multiplicative metric
spaces and proved some fixed point results for these
mappings. For more details in multiplicative metric
spaces we refer the reader to [35,36].

The aim of this article is to introduce the notion of
Branciari F-contraction, multiplicative F-contractions
and establish new fixed point theorems for such
contractions. Throughout this article,N,R+,R denote the
set of natural numbers, the set of positive real numbers
and the set of real numbers, respectively.

The following lemmas will be needed in the sequel.

Lemma 1.[10] Let (X,d) be a BMS and{xn} be a
Cauchy sequence in(X,d) such that and x∈ X, we say
that d(xn,x) −→ 0 as n−→ ∞ for some x∈ X. Then
d (xn,y) −→ d (x,y) as n −→ ∞ for all y ∈ X. In
particular,{xn} does not converge to y if y6= x.

Lemma 2.[31] Let (X,d) be a multiplicative metric space,
{xn} be a sequence in X and x∈X. Then xn −→ x as n−→
∞ if and only if d(xn,x)−→ 1 as n−→ ∞.

Lemma 3.[31] Let (X,d) be a multiplicative metric space
and{xn} be a sequence in X. Then{xn} is a multiplicative
Cauchy sequence if and only if d(xm,xn)−→ 1 as m,n−→
∞.
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2 Branciari F-contractions.

In this paper, we introduce the notion of Branciari
F-rational contraction and establish new fixed point
theorems for such contractions in the setting of complete
Branciari metric spaces.

Definition 11.Let (X,d) be a BMS. Then, T: X −→ X is
said to be Branciari F-rational contraction, there exist
F ∈ F andτ > 0 such that

∀x,y∈ X, d(Tx,Ty)> 0⇒ τ +F (d(Tx,Ty))≤ F (M(x,y)) ,
(2)

where

M(x,y) = max







d(x,y),d(x,T x),d(y,Ty),
d(x,Tx)d(y,Ty)

1+d(x,y)
,
d(x,Tx)d(y,Ty)
1+d(Tx,Ty)







.

Theorem 3.Let (X,d) be a complete BMS and
T : X −→ X be a Branciari F-rational contraction. If T
or F is continuous, then T has a unique fixed point in X.

Proof.Let x be an arbitrary point inX. If for somen ∈ N

we haveTnx = Tn+1x, ThenTnx will be a fixed point of
T. So with out loss of generality, we can assume that

d(Tnx,Tn+1x)> 0,∀ n∈N.

Now, from (2), for all n∈ N, we have

τ +F
(

d(Tnx,Tn+1x)
)

≤ F
(

M(Tn−1x,Tnx)
)

, (3)

where

M(Tn−1x,Tnx) = max



























d(Tn−1x,Tnx),
d(Tn−1x,TTn−1x),
d(Tnx,TTnx),
d(Tn−1x,TTn−1x)d(Tnx,TTnx)

1+d(Tn−1x,Tnx)
,

d(Tn−1x,TTn−1x)d(Tnx,TTnx)
1+d(TTn−1x,TTnx)



























= max































d(Tn−1x,Tnx),
d(Tn−1x,Tnx),
d(Tnx,Tn+1x),
d(Tn−1x,Tnx)d(Tnx,Tn+1x)

1+d(Tn−1x,Tnx)
,

d(Tn−1x,Tnx)d(Tnx,Tn+1x)
1+d(Tnx,Tn+1x)































= max{d(Tn−1x,Tnx),d(Tnx,Tn+1x)}.
Now if, M(Tn−1x,Tnx) = d(Tnx,Tn+1x), then inequality
(3) turns into

τ +F
(

d(Tnx,Tn+1x)
)

≤ F
(

d(Tnx,Tn+1x)
)

,

which is contradiction withτ > 0. Thus we conclude that

max{d(Tn−1x,Tnx),d(Tnx,Tn+1x)}= d(Tn−1x,Tnx)

for all n∈ N.Hence, the inequality (3) turns into

F
(

d(Tnx,Tn+1x)
)

≤ F(d(Tn−1x,Tnx))−τ ∀n∈N. (4)

Iteratively, we find that

F
(

d(Tnx,Tn+1x)
)

≤ F(d(Tn−1x,Tnx))− τ (5)

≤ F(d(Tn−2x,Tn−1x))−2τ
≤ F(d(Tn−3x,Tn−2x))−3τ

...

≤ F(d(x,Tx))−nτ ∀n∈ N.

SinceF ∈ F , so by taking limit asn −→ ∞ in (5), we
deduce

lim
n−→∞

F(d
(

Tnx,Tn+1x
)

) =−∞ ⇐⇒ lim
n−→∞

d
(

Tnx,Tn+1x
)

= 0.

(6)
Now from (F3), there exists 0< k< 1 such that

lim
n−→∞

[

d
(

Tnx,Tn+1x
)]k

F(d
(

Tnx,Tn+1x
)

) = 0. (7)

By (5), we have

d
(

Tnx,Tn+1x
)k

F(d
(

Tnx,Tn+1x
)

)

− d
(

Tnx,Tn+1x
)k

F (d (x,Tx))

≤ d
(

Tnx,Tn+1x
)k
[F (d (x,Tx)−nτ)]

− d
(

Tnx,Tn+1x
)k

F (d (x,Tx))

=−nτ
[

d
(

Tnx,Tn+1x
)]k ≤ 0. (8)

Letting n−→ ∞ in (8) and applying(6) and(7), we have,

lim
n−→∞

n
[

d
(

Tnx,Tn+1x
)]k

= 0, (9)

and hence

lim
n−→∞

n
1
k d

(

Tnx,Tn+1x
)

= 0. (10)

Then there existsn1 ∈N such thatn
(

d
(

Tnx,Tn+1x
))k ≤ 1

for all n≥ n1, this implies

d
(

Tnx,Tn+1x
)

≤ 1

n
1
k

. (11)

Now, we will prove that T has a periodic point. Suppose
that it is not the case, thenTnx 6= Tmx for all n,m∈N such
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thatn 6= m. Using (2), we get

τ +F
(

d
(

Tnx,Tn+2x
))

≤ F





















max







































d
(

Tn−1x,Tn+1x
)

,

d
(

Tn−1x,TTn−1x
)

,

d
(

Tn+1x,TTn+1x
)

,

d
(

Tn−1x,TTn−1x
)

d
(

Tn+1x,TTn+1x
)

1+d (Tn−1x,Tn+1x)
,

d
(

Tn−1x,TTn−1x
)

d
(

Tn+1x,TTn+1x
)

1+d (TTnx,TTn+1x)



























































= F





















max







































d
(

Tn−1x,Tn+1x
)

,

d
(

Tn−1x,Tnx
)

,

d
(

Tn+1x,Tn+2x
)

,

d
(

Tn−1x,Tnx
)

d
(

Tn+1x,Tn+2x
)

1+d (Tn−1x,Tn+1x)
,

d
(

Tn−1x,Tnx
)

d
(

Tn+1x,Tn+2x
)

1+d (Tnx,Tn+2x)



























































= F

(

max

{

d
(

Tn−1x,Tn+1x
)

,d
(

Tn−1x,Tnx
)

,

d
(

Tn+1x,Tn+2x
)

})

.

(12)
SinceF is increasing, we obtain from (12)

τ+F
(

d
(

Tnx,Tn+2x
))

≤max







F
(

d
(

Tn−1x,Tn+1x
))

,

F
(

d
(

Tn−1x,Tnx
))

,

F
(

d
(

Tn+1x,Tn+2x
))







.

(13)
Let I be the set ofn∈ N such that

un = max







F
(

d
(

Tn−1x,Tn+1x
))

,

F
(

d
(

Tn−1x,Tnx
))

,

F
(

d
(

Tn+1x,Tn+2x
))







= F
(

d
(

Tn−1x,Tn+1x
))

.

If |I | < ∞ then thereN ∈N such that for alln≥ N,

max







F
(

d
(

Tn−1x,Tn+1x
))

,

F
(

d
(

Tn−1x,Tnx
))

,

F
(

d
(

Tn+1x,Tn+2x
))







= max

{

F
(

d
(

Tn−1x,Tnx
))

,

F
(

d
(

Tn+1x,Tn+2x
))

}

.

In this case, we get from (13)

τ +F
(

d
(

Tnx,Tn+2x
))

≤ max

{

F
(

d
(

Tn−1x,Tnx
))

,

F
(

d
(

Tn+1x,Tn+2x
))

}

for all n≥ N. Lettingn−→ ∞ in the above inequality and
using (6), we obtain

lim
n−→∞

F
(

d
(

Tnx,Tn+2x
))

=−∞.

If |I | = ∞, we can find a subsequence of{un}, then we
denote also by{un}, such that

un = F
(

d
(

Tn−1x,Tn+1x
))

for n large enough.

In this case, we obtain from (13)

τ +F
(

d
(

Tnx,Tn+2x
))

≤ F
(

d
(

Tn−1x,Tn+1x
))

Iteratively, we find that

F
(

d(Tnx,Tn+2x)
)

≤ F(d(Tn−1x,Tn+1x))− τ (14)

≤ F(d(Tn−2x,Tnx))−2τ
≤ F(d(Tn−3x,Tn−1x))−3τ

...

≤ F(d(x,T2x))−nτ ∀n∈N.

Lettingn−→ ∞ in the above inequality, we obtain

lim
n−→∞

F
(

d
(

Tnx,Tn+2x
))

=−∞. (15)

Then in all cases, (15) holds. Using (15) and the property
(F2), we have

lim
n−→∞

d
(

Tnx,Tn+2x
)

= 0. (16)

Now from (F3), there exists 0< k< 1 such that

lim
n−→∞

[

d
(

Tnx,Tn+2x
)]k

F(d
(

Tnx,Tn+2x
)

) = 0. (17)

By (14), we have

d
(

Tnx,Tn+2x
)k

F(d
(

Tnx,Tn+2x
)

)−d
(

Tnx,Tn+2x
)k

F
(

d
(

x,T2x
))

≤ d
(

Tnx,Tn+2x
)k [

F
(

d
(

x,T2x
)

−nτ
)]

−d
(

Tnx,Tn+2x
)k

F
(

d
(

x,T2x
))

=−nτ
[

d
(

Tnx,Tn+2x
)]k ≤ 0. (18)

Letting n −→ ∞ in (18) and applying(16) and(17), we
have,

lim
n−→∞

n
[

d
(

Tnx,Tn+2x
)]k

= 0, (19)

and hence
lim

n−→∞
n

1
k d

(

Tnx,Tn+2x
)

= 0. (20)

Then there existsn2 ∈ N such that

d
(

Tnx,Tn+2x
)

≤ 1

n
1
k

for all n≥ n2. (21)

Let h= max{n0,n1}. we consider two cases.
Case 1: Ifm> 2 is odd, then writingm= 2L+ 1,L ≥ 1,
using (11), for all n≥ h, we obtain

d
(

Tnx,Tn+mx
)

≤ d
(

Tnx,Tn+1x
)

+d
(

Tn+1x,Tn+2x
)

+...+d
(

Tn+2Lx,Tn+2L+1x
)

≤ 1

n
1
k

+
1

(n+1)
1
k

+ ...+
1

(n+2L)
1
k

≤
∞

∑
i=n

1

i
1
k

.
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Case 2: Ifm> 2 is even, then writingm= 2L,L ≥ 2, using
(11) and (21), for all n≥ h, we have

d
(

Tnx,Tn+mx
)

≤ d
(

Tnx,Tn+2x
)

+d
(

Tn+2x,Tn+3x
)

+...+d
(

Tn+2L−1x,Tn+2Lx
)

≤ 1

n
1
k

+
1

(n+2)
1
k

+ ...+
1

(n+2L−1)
1
k

≤
∞

∑
i=n

1

i
1
k

.

Thus, combining all cases, we have

d
(

Tnx,Tn+mx
)

≤
∞

∑
i=n

1

i
1
k

for all n≥ h, m∈ N.

Since the series∑∞
i=n

1

i
1
k

is convergent (since1k > 1), we

deduce that{Tnx} is a Cauchy sequence. From the
completeness ofX, therez ∈ X such thatTnx −→ z as
n−→ ∞. Now we assume thatT is continuous. Hence, we
have

z= lim
n−→∞

Tn+1x= lim
n−→∞

T (Tnx) = T
(

lim
n−→∞

Tnx
)

= Tz.

Next, we assume thatF is continuous. Without restriction
of the generality, we can suppose thatTnx 6= z for all n.
Suppose thatd (z,Tz)> 0, we have

τ +F
(

d
(

Tn+1x,Tz
))

≤ F





















max







































d (Tnx,z) ,
d
(

Tnx,Tn+1x
)

,

d (z,T z) ,
d
(

Tnx,Tn+1x
)

d (z,Tz)

1+d (Tnx,z)
,

d
(

Tnx,Tn+1x
)

d (z,Tz)

1+d (Tn+1x,Tz)



























































= F

(

max

{

d (Tnx,z) ,d
(

Tnx,Tn+1x
)

,

d (z,T z)

})

.

Which implies

τ +F
(

d
(

Tn+1x,Tz
))

≤ F



max







d (Tnx,z) ,
d
(

Tnx,Tn+1x
)

,

d (z,T z)









 .

Lettingn−→ ∞ in the above inequality, using Lemma 16,
we obtain

τ +F (d (z,Tz))≤ F (d (z,T z)) .

This implies,
d (z,T z)< d (z,Tz) ,

which is a contradiction. Thus we havez= Tz, which is
also a contradiction with the assumption:T does not have a

periodic point. ThusT has a periodic point, sayzof period
q. Suppose that the set of fixed points ofT is empty. Then
we have

q> 1 andd (z,T z)> 0.

By using (2), we get

τ+F (d(z,Tz))= τ+F
(

d
(

Tqz,Tq+1z
))

≤F
(

d
(

Tq−1z,Tqz
))

.

This implies

F (d (z,Tz)) ≤ F
(

d
(

Tq−1z,Tqz
))

− τ
≤ ...≤ F (d (z,Tz))−qτ < F (d (z,T z)) ,

which is a contradiction. Thus the set of fixed points ofT
is non-empty (that is,T has at least one fixed point ). Now
we suppose thatz,u∈X are two fixed points ofT such that
d (z,u) = d (Tz,Tu)> 0. From the hypothesis, we obtain

τ +F (d (z,u)) = F (d (Tz,Tu))≤ F (d (z,u)) ,

it is a contradiction. ThereforeT has a unique fixed point.

Since a metric space is a Branciari metric space, we
can obtain the following result.

Definition 12.Let (X,d) be a metric space. Then,
T : X −→ X is said to be F-rational contraction, there
exist F∈ F andτ > 0 such that for all x,y∈ X

d(Tx,Ty)> 0⇒ τ +F (d(Tx,Ty))≤ F (M(x,y)) , (22)

where

M(x,y) = max



















d(x,y),d(x,T x),d(y,Ty),
d(x,Tx)d(y,Ty)

1+d(x,y)
,

d(x,Tx)d(y,Ty)
1+d(Tx,Ty)



















.

Theorem 4.Let (X,d) be a complete metric space and T:
X −→ X be a F-rational rational contraction map. If T or
F is continuous, then T has a unique fixed point in X.

Now we give the following definition.

Definition 13.Let (X,d) be a BMS. Then T: X −→ X is
said to be a Branciari F-contraction map, there exist F∈
F andτ > 0 such that

∀x,y∈X, d(Tx,Ty)> 0⇒ τ+F (d(Tx,Ty))≤F (d(x,y)) .

Theorem 5.Let(X,d) be a complete BMS and T: X −→X
be a Branciari F-contraction map. Then T has a unique
fixed point in X

Corollary 1.[25] Let (X,d) be a complete metric space
and T : X −→ X be a F-contraction map. Then T has a
unique fixed point in X.
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Example 3.Let X = {1,2,3,4}. Defined : X ×X −→ R+

as follows

d(1,2) = d(2,1) = 3,

d(2,3) = d(3,2) = d(1,3) = d(3,1) = 1,

d(1,4) = d(4,1) = d(2,4) = d(4,2) = d(3,4) = d(4,3) = 4.

It is clear that(X,d) is a complete BMS, but it is not metric
space becaused does not satisfy triangle inequality onX.
Indeed,

3= d (1,2)> d (1,3)+d (3,2) = 1+1= 2.

Let T : X −→ X be the mapping defined by

T (x) =

{

2 if x∈ {1,2,3} ,
1 if x= 4.

Define F : R+ → R by F(α) = lnα.Now, for
x∈ {1,2,3},y= 4, whereτ = 1, we have

τ +F (d (T (x) ,T (4))) = 1+F (d (2,1))

≤ F (d(x,4)) .

So Branciari F-contraction,T has a unique fixed point
(that is, 2).

Example 4.Let X = {0, 8
3,7} endowed with the usual

metricd(x,y) = |x− y| for all x,y∈ X. Define a mapping,
T : X → X by,

Tx=

{

8
3 x∈ {0, 8

3},
0 x= 7.

It is clear that(X,d) is a complete metric space. Now,
since, T is not continuous, soT is not Branciari
F-contraction (orF-contraction) by Remark 9.

Next, Forx∈ {0, 8
3} andy= 7, we have

d (Tx,T7) = d

(

8
3
,0

)

=

∣

∣

∣

∣

8
3
−0

∣

∣

∣

∣

=
8
3
> 0,

and

max



















d (x,7) ,d (x,Tx) ,d (7,T7) ,
d (x,Tx)d (7,T7)

1+d (x,7)
,

d (x,Tx)d (7,T7)
1+d (Tx,T7)



















= 7.

So, by choosing,F (α) = lnα +α ∈F andτ ∈ (0,4.965] ,
we see that

τ +F (d(Tx,Ty))≤ F (M(x,y)) , ∀x,y∈ X, Tx 6= Ty.

Therefore,Branciari F-rationalcontraction (orF-rational
contraction) and hence,T has a unique fixed point (that is,
8
3).

3 Multiplicative F-contractions

In this section, we give the concept multiplicative
F-contractions and introduce new fixed point theorem for
such contractions. We support these contractions by
providing some example in the context of a multiplicative
metric spaces.

Definition 14.Let (X,d) be a multiplicative metric space
and T : X → X be a self mapping. Then T is said to be
multiplicative F-contraction if there existsλ ∈ (0,1) such
that for all x,y∈ X,

d(Tx,Ty)> 0⇒ F (d(Tx,Ty))≤ [F (d(x,y))]λ , (23)

where F : (1,∞) → (1,∞) is a mapping satisfying the
following conditions:

(F1∗) F is strictly increasing,i.e. for all x,y ∈ (1,∞)
such thatx< y, we haveF(x)< F(y);

(F2∗) for each sequence{αn}∞
n=1 ⊂ (1,∞), limn→∞ αn

= 1+ if and only if limn→∞ F(αn) = 1;
(F3∗) F is continuous.
We denote withF the family of all functionsF that

satisfy the conditions (F1∗)-(F3∗).
We support this idea by the following examples.

Example 5.Let F : (1,∞) → (1,∞) be given by the
formulaF(α) =

√
xfor α > 1. It is clear thatF satisfied

(F1∗)-(F3∗) for anyk ∈ (0,1). Each mappingT : X → X
satisfying(3.1) is an multiplicativeF-ontraction such that

d (Tx,Ty)≤ [d (x,y)]k , for all x,y∈ X, Tx 6= Ty.

It is clear that forx,y∈ X such thatTx= Ty the inequality
d(Tx,Ty)−1 ≤ e−τ (d(x,y)λ −1

)

, also holds, i.e.T is a
multiplicative Banach contraction.

Remark.From (F1∗) and (23) it is easy to conclude that
every multiplicative F-contraction is necessarily
multiplicative contractive mapping i.e

d (Tx,Ty)< d (x,y)λ for all x,y∈ X, Tx 6= Ty.

Thus every multiplicativeF-contraction is a continuous
mapping.

Now we prove the main result of the paper.

Theorem 6.Let (X,d) be a complete multiplicative metric
space and T: X → X be multiplicative F-contraction.
Then T has a unique fixed point that is there exists z∈ X
such that z= Tz. And for every x0 ∈ X, the sequence
{Tx0}n∈N converges to z.

Proof.Let x0 ∈ X be an arbitrary but fixed. We define a
sequencexn+1 = Txn for all n∈ N∪{0}with x0 as initial
point. If there exists somen0 ∈ N∪{0} such thatxn0+1 =
xn0, thenTxn0 = xn0 and we are nothing to prove that isxn0

is a fixed point ofT. So we suppose thatxn+1 6= xn for all
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n ∈ N∪{0}. Thend (xn+1,xn) > 0 for all n∈ N∪{0}. It
follows from (23) that for eachn∈N

F (d (xn,xn+1)) = F (d (Txn−1,Txn))

≤ [F (d (xn−1,xn))]
λ

≤ [F (d (xn−2,xn−1))]
λ2

≤ ...≤ [F (d (x0,x1))]
λn

.

which implies that

F (d(xn,xn+1))≤ [F (d (x0,x1))]
λ n

. (24)

Taking limit asn→+∞, we get lim
n−→∞

F (d (Txn−1,Txn)) =

1, which together with(F2∗) gives us

lim
n−→∞

d (xn,xn+1) = 1. (25)

Now , we claim that{xn}∞
n=1 is a cauchy sequence.

Arguing by contradiction, we have that there existsε > 0
and sequence{p(n)}∞

n=1 and {q(n)}∞
n=1 of natural

numbers such that for alln∈ N

p(n)> q(n)> n, d(xp(n),xq(n))≥ ε,d(xp(n)−1,xq(n))< ε.
(26)

So, we have

ε ≤ d(xp(n),xq(n))≤ d(xp(n),xp(n)−1).d(xp(n)−1,xq(n))(27)

≤ d(xp(n),xp(n)−1).ε
= d(xp(n)−1,Txp(n)−1).ε.

Lettingn−→ ∞ in (27) and using(25), we obtain

lim
n−→∞

d(xp(n),xq(n)) = ε. (28)

Also, from(25) there exists a natural numbern1 ∈ N such
that

d(xp(n),Txp(n))<
ε
4

andd(xq(n),Txq(n))<
ε
4
, ∀n≥ n1.

(29)
Next, we claim that

d(Txp(n),Txq(n))= d(xp(n)+1,xq(n)+1)> 1 ∀n≥ n1.

(30)
Arguing by contradiction, there existsm≥ n1 such that

d(xp(m)+1,xq(m)+1) = 1. (31)

It follows from (26), (29) and(31) that

ε ≤ d(xp(m),xq(m))≤ d(xp(m),xp(m)+1).d(xp(m)+1,xq(m))

≤ d(xp(m),xp(m)+1).d(xp(m)+1,xq(m)+1).d(xq(m)+1,xq(m))

= d(xp(m),Txp(m)).d(xp(m)+1,xq(m)+1).d(xq(m),Txq(m))

<
ε
4
.1.

ε
4
= .

This contradiction establishes the relation(30) it follows
from (30) and(23) that,

F
(

d
(

xP(n)+1,xq(n)+1
))

≤
[

F
(

d
(

xp(n),xq(n)

))]k ∀n≥ n1.

(32)

So from(F3∗), (28) and(32), we have

F (ε)≤ [F (ε)]k < F (ε) .

This contradiction show that{xn} is a multiplicative
Cauchy sequence. From the completeness ofX, there
exists z ∈ X such thatxn → z as n → ∞. Finally, the
continuity ofT yields

d(z,Tz)= lim
n−→∞

d(xn,Txn)= lim
n−→∞

d(xn,xn+1)= d(z,z)= 1.

Thusz is a fixed point ofT. Now, we show thatz is the
unique fixed point ofT. Assume thaty is another fixed
point ofT such thatTz= z 6= y= Ty, then we get

F (d(z,y)) = F (d(Tz,Ty))

≤ [F (d (z,y))]k < F (d (z,y))

a contradiction, which implies thatz= y.

Observe that the multiplicative Banach contraction
principle follows immediately from Theorem 31. Indeed,
if T is a multiplicative Banach contraction, i.e., there
existsλ ∈ [0,1) such that

d (Tx,Ty)≤ [d (x,y)]λ , for all x,y∈X andd (Tx,Ty)> 0,

then, we have

(d (Tx,Ty))2 ≤
[

(d (x,y))2
]λ

, for all x,y∈ X andd (Tx,Ty)> 0.

Clearly the functionF : (1,∞) −→ (1,∞) defined by
F(t) = t2

, t > 1 belongs toF . So, the existence and
uniqueness of the fixed point follows from Theorem 31.
In the following example, we show that Theorem 31 is a
real generalization of the multiplicative Banach
contraction.

Example 6.Let X = {0,1,3} and d : R
2 −→ R

+ a
multiplicative metric space defined byd (x,y) = e|x−y|.
Note that(R,d) is a complete multiplicative metric space.
DefineT : X −→ X by

T (x) =

{

1 if x∈ {0,1} ,
0 if x= 3.

T is not a multiplicative Banach contraction as it is not a
continuous mapping. But, forx∈ {0,1}, y= 3, λ ∈

[

1
5,1

)

,
by puttingF(t) =

√
t, with t > 1, we get

F (d (T (x) ,T (1))) =
√

d (T (x) ,T (1))

=
√

e

and

[F (d (x,1))]λ =
[

√

d (x,1)
]λ

=
[√

e|x−1|
]λ

.

Clearly we have

F (d (T (x) ,T (y)))≤ [F (d (x,y))]λ for all x,y∈ X andTx 6= Ty.

Thus T is a multiplicativeF-contraction andT has a
unique fixed point.
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4 Conclusion

In this connection, the main aim of our paper is to present
the concept of BranciariF−Contractions, multiplicative
F-contractions. Existence of fixed point results of such
type of F-contractions are established. The study of
results is very useful in the sense that it generalizes the
F-contraction given in [25]. The new concepts lead to
further investigations and applications.
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