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Abstract: In this paper, we prove a unique common random fixed pointréms in the framework of cone random metric spaces
for generalizedV;-contraction and generalized;y-contraction condition. An example to justify our theoreimgjiven. Our results
extends some previous work related to cone random metraesgdeom the current existing literature.
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1 Introduction contractive random operators in Polish spaces are
obtained by Papageorgiold,20] and Beg B, 4].
Fixed point theory has the diverse applications in  |n [13] Huang and Zhang generalized the concept of
different branches of mathematics, statistics, engingeri metric spaces by replacing the set of real numbers with an
and economics in dealing with the problems arising inordered Banach space, hence they have defined the cone
approximation theory, potential theory, game theory,metric spaces. They also described the convergence of
theory of differential equations, theory of integral sequences and introduced the notion of completeness in
equations and others. Developments in the investigatiotone metric spaces. They have proved some fixed point
on fixed points of non-expansive mappings, contractivetheorems of contractive mappings on complete cone
mappings in different spaces like metric spaces, Banaclnetric space with the assumption of normality of a cone.
spaces, Fuzzy metric spaces and cone metric spaces haggcording to this concept, several other authdrd §, 25,
almost been saturated. The study of random fixed poinpg] studied the existence of fixed points and common
theorems was initiated by the Prague school offixed points of mappings satisfying contractive type
probabilistic in 195010,11,29]. condition on a normal cone metric space.

Common random fixed point theorems are stochastic  |n 2008, the assumption of normality in cone normal
generalization of classical common fixed point theoremsspaces is deleted by Rezapour and Hamlbag&hj jvhich
Random methods have revolutionized the financialis an important event in developing fixed point theory in
markets. The survey article by Bharucha-Refil 1976 cone metric spaces.
attracted the attention of several mathematicians and gave Akram et al. P] introduced a new class of contraction
wings to the theory. The results &pacek and HanS in mappings called A-contraction, which is proper super
multi-valued contractive mappings was extended by Itohclass of Kannan’s16], Bianchini's [9] and Reich’s 23|
[19. Now this theory has become the full fledged type contractions as follows:

research area and various ideas associated with ra”doﬁ‘efinition 1.1.A self mappindT : X — X of a metric space

fixed point theory are used to give the solution of 'y 4yis said to be A-contraction if it satisfies the condition
nonlinear system seg6,7,12,22,26]. Common random (X,d)

fixed points, random coincidence points of a pair of d(Tx,Ty) < a(d(x,y),d(x,Tx),d(y,Ty)), for all x,y € X,
compatible random operators and fixed point theorems for (1)
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and somea € A, whereA is the set of all functionsr :
R? — R, satisfying

(A1) a is continuous on the s&3 (with respect to the
Euclidean metric ofR3).

(A2) a< kbforsomek € [0,1) whenevea < a(a,b,b)
ora<a(b,ab)ora<a(b,b,a)forallabeR.
Definition 1.2. [17] A function ¢: R, — R, is called a
comparison function if it satisfies the following condit®n

2 Preliminaries

Definition 2.1. [25 Let (E,T) be a topological vector
space. A subsd® of E is called a cone if the following
conditions satisfied:

(c1) Pis closed, nonempty arfél# {0};

(c2)a,beR,a,b>0andx,ye P= ax+bycP;

(c3) If xe Pand—x e P = x=0.

For a given cond® C E, we define a partial ordering
with respect toP by x <y iff y—x € P. We shall write
X < y to indicate thatx <y but x # vy, while x < y will
stand fory — x € P°, whereP® indicate to the interior oP.

Definition 2.2. [13,30] Let X be a nonempty set. Assume
that the mappingl : X x X — E satisfies

(d1) 0<d(x,y) forall x,y € X andd(x,y) =

(d2) d(x,y) =d(y,x) forall x,y € X;

(d3) d(x,y) <d(x,2)+d(zy) x,y,z€ X.
end is called a cone metriclB] or K-metric [30] on X
and(X,d) is called a cone metric spac&].

The concept of a cone metric space is more general
than that of a metric space, because each metric space is a
cone metric space wheke=R andP = [0, +).

) Example 2.1. L3 LetE =R?, P = {(x,y) € R? : x>0,

(i) ¢ is monotone increasing)(t) < t for somet > 0,
(i) w(0) =0,
(i) fim y"(t) =

A comparison function satisfyingg ("(t) converges for
0

0, vt > 0.

n=
allt > 0is called a (c)-comparison function.

In 2016, Olatinwo and Omidirel] proved some
fixed point theorems for some new classes of contraction
mappings which are more general than the A- contracuonsl_h
of Akram et al. They introduced the following definitions:

Definition 1.3. A self mappingsS, T : X — X of a metric
space(X,d) is said to be generalized;-contraction ifS
andT satisfy the contractive condition

( d(Sx, Sy),d(SX, Tx),d(Sy, Ty),
d(Tx,Ty) < a [ [d(STX)]"[d(Sy, TX)]5d(Sx, Ty),

O x=Yy,

y >0}, X =R andd: X x X — E defined byd(x,y) =
(x—=yl,u(|x—yl])) whereu > 0 is a constant. ThefX,d)
is a cone metric space with normal cdPghereK = 1.

Example 2.2. 4LetE =12, P = {{Xa}n>1 € E 1 %y >0,
for all n}, (X,p) a metric space and : X x X — E
defined byd(x,y) = {252 }-1. Then (X,d) is a cone
metric space.

Clearly, the above examples present that the class of
cone metric spaces contains the class of metric spaces.

Definition 2.3. [19] Let (X,d) be a cone metric space. We
say that{xn} is

(i) a Cauchy sequence if for evegyin E with 0 < &,
then there is ai¥ such that for alh,m> N, d(xn, Xm) < €;

(i) a convergent sequence if for everyn E with 0 <
g, then there is ai¥ such that for alh > N, d(xp,X) < €
for some fixedk in X.

A cone metric spac¥ is said to be complete if every
Cauchy sequence KX is convergent irX.

The following definitions are given ir2[7].

Definition 2.4. (Measurable function)Let (Q,%) be a

measurable space wifft-a sigma algebra of subsets©@f

andV be a nonempty subset of a metric spxce (X,d).
(Myy2) If any of the conditionsa < a(b,b,a,c,c) or Let 2 be the family of nonempty subsets‘aﬁfandC(V)

a< a(b,b,a b,b) ora< a(ab,b,b,b,) for aII a, b ce the family of all nonempty closed subset3/fA mapping

R, then there exists a continuous (c) Comparlsonfunctlorﬁ Q— 2V is called measurable if for each open sulset

Y : R, — R, suchthat < g(b). of V,G H(U) € =, whereG 1(U) = {we Q: G(w)NU #
According to the above definitions we extend the 9}

contractive conditions (2) or (3) to a stochastic form and

we obtain common random fixed point theorems under

these conditions in random cone metric spaces. Our main

results generalize and extend many deterministic results

as Olatinwo 17,18, Akram et al. P], Rashwan and

Hammad 21] and many others in complete metric spaces

d(Sy, TX)[d(SK. Tx)]™
2)
forall x,y e X, r,ssme R, and somex € M, whereM;
is the set of all functions : Ri — R, satisfying

(My1) @ is continuous on the s&> (with respect to
the Euclidean metric oR®),

(M32) If any of the conditiong < a(b,b,a,c,c) ora<
a(b,b,a,b,b) ora < a(a,b,b,b,b,) for all a,b,c € Ry,
then there existk € [0, 1) such that < kb.

Definition 1.4. A self mappingsS, T : X — X of a metric
spacgX,d) is said to be generalizéd,y-contraction ifS
andT satisfy the contractive condition

( d(S,Sy),d(Sx, Tx),d(Sy, Ty), )
d(Tx, Ty) < a | [d(S,TX)]'[d(Sy, TX)]*d(SX, Ty),
d(Sy, TX)[d (S, Tx))™

®3)

forallx,ye X,r,s;me R, and somex € Myy, whereM,y
is the set of all functions : Ri — R satisfying

(Mjy1) a is continuous on the s&i (with respect to
the Euclidean metric oR®),
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Definition 2.5. (Measurable selectorA mappingé : Q — V is called measurable selector of a measurable mappings
G: Q — 2V if & is measurable anél(w) € G(w) for eachw € Q.

Definition 2.6. (Random operator)The mappindl : Q xV — X is called a random operator iff for each fixed V, the
mappingT (.,x) : Q — X is measurable.

Definition 2.7. (Continuous random mapping)A random operator : Q xV — X is called continuous random operator

if for each fixedx € V andw € Q, the mappindl (w,.) : Q — X is continuous.

Definition 2.8. (Random fixed point)A measurable mappin§ : Q — V is a random fixed point of a random operator
T:QxV = Xiff T(w,é(w)) =& (w) for eachw € Q.
Definition 2.9. (Commuting random mappings)A random operator$,S: Q xV — X are called commuting random
operators ifT (w, S(w, X)) = S(w, T (w, X)) for any givenw € Q andx e V.
Definition 2.10. (Cone random metric space).etV be a nonempty set and the mappohgQ xV — P, whereP is a
cone,w € Q be a selector, satisfy the following conditions

() d(X(w),y(w)) > 0 andd(X(w),y(w)) = 0 < x(w) = y(w) for all x(w),y(w) € Q xV,

(i) d(x(w),y(w)) =d(y(w),x(w)) forall x,y € V, w € Q andx(w),y(w) € Q xV,

(i) d(X(w),y(w)) < d(X(w),z(w))+d(z(w),y(w)) for all x,y,ze V andw € Q be a selector,

(iv) foranyx,y € V, w € Q, d(x(w),y(w)) is hon-increasing and left continuous.

Thend is called cone random metric d&hand(V,d) is called a cone random metric space.

3 Main Results

In this section we shall prove a common random fixed pointréres under generalizéd;-contraction and generalized
M;y —contraction condition for two mappings in the setting of esandom metric spaces.

Theorem 3.1.Let (X,d) be a complete cone random metric space with respect to aR@mel letV be a nonempty
separable closed subsetXfLet SandT be two commuting random mappings definedorf T (X) C S(X) andSis
continuous satisfying the following generalizi€id-contraction condition

d(S(x(w)), S(V( ))),d(SX(w)), ((w)))
d(T(X(@)), T(y(w))) < a | [d(Sx(w)), T(x(w)))][d(S(y(w)), T (x
d(S{y(w)), T (x(w)))[d(S(x(w)), T (x(w

for all x(w),y(w) € Q x X, r,s;me Ry and for somex € M;. Then the two random mappings have a unigue common
random fixed point irX.

Proof. For eachs,(w) € Q x X andn=0,1,2,.. we choose/; (w) € Q x X such thaty;(w) = T (% (w)) = S(x1(w)). In
general we define sequence of elementg sfich thatn(w) = T (X (w)) = S(Xp+-1(w)). Then from (4), we get

d(Yn(w),Yn+1(w)) = d(T (Xn(@)), T (Xn+1(w)))

d(S(*n(w)), S(an(w))),d(S(xn( ), T(Xa())),
< o | ASxn(w)), (an(w))),[d(S(xn(w)),T(xn(w)))]

= 7| [d(Snsa(w)), ( n(@)))]°.d(S(xn(w)),
d(S(Xnt1(w)), T (%n(@)))[d(S(Xn(w))
d(Yn-1(w), Yn(w)), d(Yn-1(w), Yn(w)),d(
[d(Yn-1(w), Yn(w))]"[d(yn(w), yn(w))]>.d(yn

( n(®),Yn(w))[d(Yn-1(w),

= a (d(Yn-1(®),Yn(w)),d(Yn-1(w),Yn(w)), d(yn(w),

Then by axiom M) of the functiona, we get

=

d(Yn(®),Yni1(w)) < kd(Yn-1(w),Yn(w)). (5)
For somek € [0,1). In this fashion, one can obtain
d(¥n (@), Yn+1(@)) < kd(Yn-1(),Yn(@)) < Kd(Yn-2(@), Yn-1(@)) < ... <K'd(Ys (), Y2()).

Also, forn > m, we get
d(Yn(@),Ym(@)) < d(Yn(w),Yn-1(w)) +d(Yn-1(w), Yn-2(®)) + -... + d(Ym+ 1(w), ym(w))

m

< 0 N 0(@)5.(0) < (1 ) A (@b (@)
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Let 0« ¢ is given. Choose a natural numbeisuch that(%) d(y1(w),Y.(w)) < € for everym > N, hence

m

don()ym(@) < ( ) Aoy () <,

this implies thaf{yn(w)} is a Cauchy sequence @ x X.

Since (X,d) is complete, then there exis®w) € Q x X such thatyn(w) — z(w) as n — c. It follows that
lIMpseo T (Xn(w)) = liMpse S(Xn+1(w)) = z(w). SinceSis continuous and, T are random commuting mappings i.e.
T(w,S(w,X)) = S(w, T (w,xX)) for any givenw € Q. Then we have

S(()) = S(im S(xn-1(0))) = I S(Sx01(w)), (6)
S(()) = S(Im T (x,())) = lim S(T (xa(@))) = im T (S(x0(0))). 7)

Also from (4), we obtain

d(S(S(Xn(w))),S(Z(w))),d(S(S(Xn(w))) T (Sxn(w)))), d(S(z(w)), T(z(w))),
d(T(Skn(@))), T(z(w))) < a | [d(S(S(xn(w))), T (S(*n(w)))))'[d(S(Z(@)), T (S(xn(@))))I°d(S(Sxn(@))), T (Z(w))), | -
d(S(z()), T(SHa(@))))[d(S(SPn(w))), T (S(*n(w))))]™

Taking the limit as — oo, applying (6) and (7) in above inequality and from condit{®fy, ), we have
d(S(z(w)), T(z(w))) < a(0,0,d(S(z(w)), T(z(w))),0,0) <k0=0, 8

this implies thatd(S(z(w)), T (z(w))) < 0, thus —d(S(z(w)), T (zZ(w))) € P, but d(S(z(w)), T (z(w))) € P, therefore by
Definition 2.1 (g), we haved(S(z(w)), T(z(w))) = 0 and so

SZw)) = T(Z(w))- 9)

Again, by using generalized;—contraction condition, we obtain

(S(Xn(w)) S(Z(w))),d(S(*n(w)),
d(T (n(w)), T(Z(w))) < a | [d(SHn(w)), T (*n(w)))]"[d(S(z(w)),
d(S(z()), T (% (@)))[d(S(*n(w)), T

Taking limits in (10) and using (9), gives

d(z(w), T(z(w))) <

a(
this leads tad(z(w), T (z(w))) <0, thus—d(z(w), T (z(w))) € P, butd(z(w), T (z(w))) € P, therefore by Definition 2.1
(c3), we haved(z(w), T(z(w))) = Oand s(w) =T (zZ(w)).

From (9), we obtain
2(w) =T(z(w)) = SZ(w)).

Hencez(w) is a common random fixed point @fandsS.
Now, we show the uniqueness. Lgiw) # z(w) be another common random fixed pointTofindS, then from (4),
one can write

d(z(w),S(z(w))),0,0,0,0) <k.0=0, (11)

d(S(z(w)), S(Q( w))),d(S(z(w)), T (z(w ,
d(2(®),q(w) = d(T(2(®)). T(a(w))) < a | [d(SEw), T (Zw)] [dSa(w). T (2w)dSzw). T (@(w).
d(S(a(w)), T(z(w)))[d(S(z(w)), T(

By condition(My2), we get
d(z(w),q(w)) < a(d(z(w),q(w)),0,0,0,0) <k0=0, (12)

which givesz(w) = q(w), hencez(w) is a uniqgue common random fixed pointoandsS.

Theorem 3.2.Let (X,d) be a complete cone random metric space with respect to aR@mel letV be a nonempty
separable closed subsetXf Let Sand T be a commuting random mappings satisfying generaliegg-contraction
condition under same condition (3).Tf{X) C S(X) andSis continuous. ThesandT have a unigue common random
fixed pointinX.

(@© 2017 NSP
Natural Sciences Publishing Cor.



J. Ana. Num. Theol5, No. 1, 49-55 (2017) www.naturalspublishing.com/Journals.asp NS = 53

Proof. In a manner similar step by step in the proof Theorem 3.1, hy($} and axiom(M;y.) of the functiona, we get

d(yn(®), Yn+1(w)) < P(d(Yn-1(w),Yn(w))). (13)
We have inductively from (13) that
d(¥n (@), Ynr1(@)) < P(d(Yn-1(w), Yn(@))) < P(d(Yn-2(@), Yn-1(@))) < wevvvvvveee < (Yo (w),y1(@))),

this gives
d(Yn(w),Yni1(w)) < P (d(Yo (), y1(w))). (14)
Forl € N, using (14) inductively in the repeated application of tgeminequality yields
n+l-1

-1
d(Yn(®), Y1 (w)) < Z yk(d ,yl(w)))=Zow““(d(yo(w),yl(w)))

n+l-1
20 YAy (w ;w (Yo (@), y1(@)))-
Let 0« ¢ is given. Choose a natural numieisuch that

n+l-1

1-1
S YKAMe(w),yi(@) — 5 WHd(ye(w).yr(w)) <&,
k=0 k=0

for everyl € N, sincey is a (c)-comparison function, hence

n+l—1

1-1
d(yn(®), i1 (w)) < Z YA (ye (), y2(@))) = 5 YH(d(ye(w),y1(w))) < &,
k=0

this implies thafyn(w)} is a Cauchy sequence @ x X.
Since (X,d) is complete, then there exis®w) € Q x X such thaty,(w) — z(w) as n — co. It follows that

lIMpe T (X (@) = lIMpso S(Xnr1(w)) = Z(w).
Using (6), (7) andM;y2) condition in (4) then (8) yields
d(S(z(w)), T(z(w))) < a(0,0,d(S(z(w)), T(z(w))).0,0) < (0) =
which implies that (9).
Again, by using generalizeld;y —contraction condition and conditidivyy.), (11) becomes
d(z(w), T(z(w))) < a (d(z(w), S(z())),0,0,0,0) < Y(0) =
it follows that
Z(w) =T(Aw)) = Sz w)).
Hencez(w) is a common random fixed point @fandS.
For uniqueness, from (12), we have

d(z(w),q(w)) < a (d(z(w),q(w)),0,0,0,0) < ¢(0) =

which givesz(w) = q(w), hencez(w) is a uniqgue common random fixed pointbandS.
Finally, we present an example to verify the requiremenfhaforem 3.1 as follows:

Example 3.1.LetP=R andp = {x€ P: x>0}, Q =[0,1] and S be the sigma algebra of Lebesgue’s measurable
subset 0f0,1]. Let X = [0,,0) and define a mappind: (Q x X) x (Q x X) — P by d(x(w),y(w)) = |[X(w) — y(w)]|. It's

clearly (X,d) is a cone random metric space. Define random oper&drs (Q x X) — X asS(w,x) = 1= ‘*’2+2X and
T(w,x) = 1= ‘5 X Also sequence of mapping : Q — X is defined byén(w) = (1+ % — w?) for everyw € Q. Hence
T(w,X) C S(w,x) and

1-w?+2x,  2(1—w?)+x 1_“’24’2(%) 1— w?+X
T((A),S((A),X)) = T(wv 3 ): 3 = 3 :S((A),T):S((A),T(w,X)),

this show thaBandT are commuting random mappings, also

d(T(X()), T(y(w))) = %Ix(w) —Y()| < §|x(w) —Y(w)| = d(Sx(w)), Sy(w))),

which show thaBandT satisfy the generalizeld;-contraction condition. Therefore all requirements of ditean 3.1 are
satisfied and1 — w?) is a unique common random fixed point®&andT.
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