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Abstract: In this paper, a new family of distributions called T-X distribution is defined. Some of its properties and special 

cases are discussed. A member of the family, namely, the three-parameter Weibull-Rayleigh distribution is defined and 

studied. Some of its properties including distribution shapes, limit behavior, hazard function, moments, and characteristic 

function are discussed. The method of maximum likelihood estimation, method of moments and L-moment estimator is 

used for estimating the model parameters and the observed Fisher’s Information matrix is derived. The flexibility of the 

Weibull-Rayleigh distribution is assessed by applying it to the real data set and comparing it with other distributions.  
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1 Introduction 

Statistical distributions are important for parametric 

inferences and applications to fit real world phenomena.  

Although many distributions have been developed, there 

are many methods for generating statistical distributions in 

the literature. Some well-known methods in the early days 

for generating univariate continuous distributions include 

methods based on differential equations developed by 

Pearson [1], methods of translation developed by Johnson 

[2], and the methods based on quantile functions developed 

by Tukey [3]. The interest in developing new methods for 

generating new or more flexible distributions continues to 

be active in the modern decades. Lee et al. [4] indicated 

that the majority of methods developed after 1980s are the 

methods of ‘combination’ for the reason that these new 

methods are based on the idea of combining two existing 

distributions or by adding additional parameters to an 

existing distribution to generate a new family of 

distributions. As a result, many new families of 

distributions have been developed and studied by 

researchers.  

Mudholkar and Srivastava [5] proposed the exponentiated 

Weibull distribution to analyze bathtub failure data. Gupta 

et al. [6] defined the exponentiated exponential distribution 

by taking F(x) to be the cumulative distribution function 

(CDF) of an exponential distribution. The exponentiated 

Weibull distribution in Mudholkar and Srivastava [5] is a 

member of the class of exponentiated distributions by 

taking F(x) to be the CDF of a Weibull distribution. Eugene 

et al. [7] introduced a new class of distributions generated 

from the beta distribution. The cumulative distribution 

function F(x), the class of beta-generated distributions is 

defined as  
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where X is any continuous random variable with CDF F(x). 

Eugene et al. [2] developed and studied the beta-normal 

distribution by taking F(x) to be the CDF of a normal 

distribution.  

Alzaatreh, Lee and Famoye [8] proposed a method for 

generating new distributions, namely, the T-Xfamily. Let 

r(t) be the PDF of a non-negative continuous random 

variable T defined on [0,∞), and let F(x) denote the CDF of 

a random variable X. Then the CDF for the T-X class of 

distributions for a random variable X is 
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where R(t) is the CDF of the random variable T.  The 

corresponding PDF of the exponentiated T-X distribution is 

given by 
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In this new class, the distribution of the random variable T 

is the generator. The new family of distributions generated 

from (1) is called “T-X distribution”. Alzaatreh, Famoye 

and Lee [9] defined the Weibull-Pareto distribution from 

(1) by taking r(t) to be the Weibull distribution and F(x) to 

be the Pareto distribution. Note that the upper limit for 

generating the T-X distribution is − log(1 − F(x)). It is clear 

that one can define a different upper limit for generating 

different types of T-X distributions. Some continuous 

distributions of the T-X families that have been studied are 

Weibull-exponential distribution (Alzaghal et al. [10]) and 

Kareema and Boshi [11], developed the Exponential Pareto 

distribution.  

In this article we present a new generalization of the 

Rayleigh distribution called the Weibull-Rayleigh 

distribution. This Rayleigh model was first introduced by 

Rayleigh [12]. The Rayleigh distribution has a wide range 

of applications including life testing experiments, 

operations research reliability analysis, applied statistics, 

agriculture and clinical studies. This distribution is a special 

case of the two parameter Weibull distribution with the 

shape parameter equal to 2. Siddiqui [13] discussed the 

origin and properties of the Rayleigh distribution. Merovci 

et al [14] developed the transmuted Rayleigh distribution 

while Ahmad et al [15] studied the transmuted inverse 

Rayleigh distribution using Quadratic transmutation map 

and discussed some properties of this family. Several 

authors have contributed to this model, namely, Howlader 

and Hossian [16] and Abd Elfattah et al. [17]. The paper is 

outlined as follows. In Section 2, we define the cumulative, 

density and hazard functions of the Weibull-Rayleigh (WR) 

distribution. In Section 3, we introduced the statistical 

properties include, skewness and kurtosis, rth moment and 

moment generating function. The distribution of order 

statistics is expressed in Section 4. Finally, the Section 5 

gives the estimation of the model parameters using Least 

squares and weighted least squares estimators, method of 

moments and the Maximum likelihood estimation.  

2 T-X Weibull-Rayleigh Distribution 

If the random variable T follows the Weibull distribution 

with parameter and   then its probability density 

function (PDF) is given as 
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where and are shape and scale parameter respectively. 

Thus by using the cumulative distribution function (CDF) 

of Weibull distribution the cdf of Weibull-X family using 

(1) is defined as 
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and the corresponding probability density function is given 

by 

   
1( ) log(1 ( )) log(1 ( ))

( ) exp
1 ( )

f x F x F x
g x

F x

 
 

     
  

  

    (5) 

Thus the CDF of the Weibull-Rayleigh distribution (WRD) 

when X follows the Rayleigh distribution in equation (5) is 

given by 
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and the corresponding PDF of the Weibull-Rayleigh 

distribution is given by 
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 when 1 and 1 , the WRD reduces to the Rayleigh 

distribution with parameter . 

Figuer (1.1) and Figure (1.2) represents pdf’s and cdf’s of 

TX-Weibull-Rayleigh distribution 

 

Figure 1.1 and 1.2 illustrates some of the possible shapes of 

Weibull-Rayleigh distribution for different values of the 



Appl. Math. Inf. Sci. Lett. 5, No. 2, 71-79 (2017) / http://www.naturalspublishing.com/Journals.asp                                                         73 
 

 

        © 2017 NSP 

         Natural Sciences Publishing Cor. 
 

parameters , and . Figure 1.1 shows that the density 

function of Weibull-Rayleigh is unimodal and, for fixed 

and , it becomes more and more peaked as the value of 
is decreased.     

2.1 Survival and hazard functions 

The WRD can be a useful characterization of the survival 

time of a given system because of it analytical structure. 

The survival function is given by S(𝑥) = 1 − G(𝑥). Thus 

using (6), 
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Another characteristics of interest of a random variable is 

the hazard function defined by 

             
)(

)(
)(

xS

xg
xh 

 

Thus using (6) and (8), the hazard function is given by 
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From the hazard function the following can be observed: 

By setting 1  , the hazard function in (9) reduces to 

the hazard function of the Rayleigh distribution. 

3  Statistical Properties 

In this section, we present the statistical properties of WRD 

especially mean, variance, coefficient of variation, moment, 

Skewness, Kurtosis, Moment generating function and 

Characteristic function.  

3.1 Moments 

Theorem 3.1: If 𝑋 is a random variable distributed as a 

),,;( XWRD
, then the 

thr   non-central moment is 

given by 
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which completes the proof. 

Substitute r=1,2 in equation (10) we get mean and variance 

for Weibull Rayleigh distribution. 

        Mean =  
1

1
2 1

2
  



     
                

(11) 

          

2

2

1
2 1 



     
 

 

Variance =

2

2

2

1 1
2 1 1

2
 

 

     
                

 

By putting 1   , in equation (11) we get mean of the 

Rayleigh distribution. 

3.2 Moment generating function 

In this sub section we derived the moment generating 

function of Weibull-Rayleigh distribution. 

Theorem 3.2: If X has the ( ; , , )WRD X     then the 

moment generating function ( )XM t has the following 
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3.3 Characteristic function 

In this sub section we derived the characteristic function of 

Weibull-Rayleigh distribution. 

Theorem 3.3: If X has the ( ; , , )WRD X     then the 

Characteristic function 
)(tX has the following form 
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Proof: We begin with the well known definition of the 

characteristic function given by 
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4 Order Statistics 

In this section, we derive closed form expressions for the 

pdfs of the kth order statistic of the Weibull-Rayleigh 

distribution. In statistics, the kth order statistic of a 

statistical sample is equal to its kth smallest value. Together 

with rank statistics, order statistics are among the most 

fundamental tools in non-parametric statistics and 

inference. We know that if 
(1) (2) ( ), ,..., nX X X denotes the 

order statistics of a random sample nXXX ,...,, 21 from a 

continuous population with cdf 
)(xGX and pdf 

)(xg X , 

then the pdf of rth order statistics X(r) is given by 
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Substituting equation (6) and equation (7) in equation (12), 

we get pdf of kth order statistic given as 
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Note that at 1  , (13) yields the pdf of the kth order 

statistic of Rayleigh distribution. 

Therefore, the pdf of the first (smallest) order statistic X(1) is 

given by 
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and the pdf of the largest order statistic X(n) is given by 
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5 Estimation of Parameters  

In this section, we discuss the various methods of 

estimation like moment method, L moment estimator, and 

Maximum likelihood estimation for Weibull-Rayleigh 

distribution and verifying their efficiencies. 

5.1 Method of Moment Estimators 

In this section, we study the method of moment estimators 

(MMEs) of the parameters of Weibull-Rayleigh 

distribution. If X follows WRD
),,( 
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It is well known that the principle of the moment’s method 

is to equate the sample moments with the subsequent 
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population moments. 

From (16) and (17), we obtain the coefficient of variation 

(C.V) as 
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The C.V. is independent of the parameters λ and  . 

Therefore, equating the sample C.V. with the population 

C.V., we obtain 
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5.2 L-Moment Estimator 

In this section, we propose a method of estimating the 

unknown parameter of Weibull- Rayleigh distribution by L-

moments estimators, which can be obtained as the linear 

combination of order statistics. The L-moments estimators 

were originally proposed by Hosking [18], and it is 

observed that the L-moments estimators are more robust 

than the usual moment estimators. It is observed (see, 

Gupta and Kundu [19] that the LMEs have certain 

advantages over the conventional moment estimators. 

       The standard method to compute the L-moment 

estimators is same as the common moment estimators, i.e. 
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Thus for Weibull-Rayleigh distribution, we obtain 
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Analogously to the usual method of moments, the L-

moment method also consists of equating the first few 

population L-moments (λr) to the corresponding sample L-

moments (lr), thus obtaining as many equations as are 

needed to solve for the unknown population parameters, 

i.e. 

                      r rl  r = 1,2,..,p 

for the p parameters. 

Therefore, LMEs can be obtained by solving the following 

three equations. Substituting the values of the population L-

moments λ1, λ2, and λ3 for the sample L-moments, we get 

                  
1

1
2 1

2
l  



 
   

                    

(20) 

        

2 1

2

1 1
2 1 1

2
2

l


 


 
      

  
 

      (21) 

3 1 1

2 2

1 2 3
2 1 1

2
3 2

l
 

 


 
       

  
 

     (22) 

Solving these equations do not yield explicit solution for 

the estimates of parameters, we used the L-skewness 

measure to estimate   

First, we obtain the LME of , say LME



 , as the solution 

of the following nonlinear equation 

             

2

1

1 2

1
1

2

l

l


 
  
 
             

(23) 

Once LME



  is obtained, the LME of λ and   say LME




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and LME



  , can be obtained from (21) and (22) 

5.3 Maximum Likelihood Estimation 

Let 1 2, ,..., nX X X be a random sample of size n from 

Weibull-Rayleigh distribution. Then the likelihood function 

is given by 


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                                         (24) 

By taking logarithm of (24), we find the log likelihood 

function 

2 2

2 2
1 1 1

log log log 2 log log ( 1) log
2 2

n n n
i i

i

i i i

x x
L n n n x



   
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  (25) 

Therefore, the MLE of , and  which maximizes (25) 

must satisfy the following normal equations 
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The solution of the non-linear system of equations obtained 

by differentiating equation (25) with respect to 

, and    gives the maximum likelihood estimates of 

the model parameters. The solution can also be obtained 

directly by using R software when data sets are available. 

In order to compute the standard error and asymptotic 

confidence interval we use the usual large sample 

approximation in which the maximum likelihood estimator 

of a parametercan be treated as being approximately 

multivariate normal. Hence as n the asymptotic 

distribution of the maximum likelihood estimators 

( , , )  
  

is given by 
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is the 

approximate variance covariance matrix with its elements 

obtained from 
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6 Applications 

To compare the flexibility of the Weibull-Rayleigh 

distribution over the well-known Rayleigh and sub models, 

two real data sets are used and analysis performed with the 

help of R software. 

Data set I: The first data set (n=63) is on the strengths of 

1.5 cm glass fibres. The data was originally obtained by 

workers at the UK National Physical Laboratory and it has 

been used by Smith and Naylor [20] and Bourguignon et al. 

[21] applied the Weibull G family to fit the data. The data 

is as follows: 

0.55, 0.74, 0.77, 0.81, 0.84, 0.93, 1.04, 1.11, 1.13, 1.24, 

1.25, 1.27, 1.28, 1.29, 1.30, 1.36, 1.39, 1.42, 1.48, 1.48, 

1.49, 1.49, 1.50, 1.50, 1.51, 1.52, 1.53, 1.54, 1.55, 1.55, 

1.58, 1.59, 1.60, 1.61, 1.61, 1.61, 1.61, 1.62, 1.62, 1.63, 

1.64, 1.66, 1.66, 1.66, 1.67, 1.68, 1.68, 1.69, 1.70, 1.70, 

1.73, 1.76, 1.76, 1.77, 1.78, 1.81, 1.82, 1.84, 1.84, 1.89, 

2.00, 2.01, 2.24. 

The summary of the data is given in Table 1. The MLEs of 

WRD parameters and the goodness of fit statistics are 

reported in Table 2. 

Table 2, displays the Maximum Likelihood estimates of the 

model parameters. It was obvious that T-X Weibull-

Rayleigh provides a better fit as compared to other 

Rayleigh models since it has lowest value of -2logL, 

Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC). Hence, the Weibull Rayleigh distribution 

performed better than other generalizations of Rayleigh 

distribution. The distribution of the data is skewed to the 

left with skewness -0.878. This shows that T-X Weibull-

Rayleigh has the ability to fit the left skewed data.   

 

 



Appl. Math. Inf. Sci. Lett. 5, No. 2, 71-79 (2017) / http://www.naturalspublishing.com/Journals.asp                                                         77 
 

 

        © 2017 NSP 

         Natural Sciences Publishing Cor. 
 

Table 1: Data summary for strength of 1.5 cm glass fibres 

Statistics Values Statistics Values 

n 63 Median 1.590 

Minimum 0.550 Maximum 2.240 

First Quartile    1.375 Third Quartile 1.685 

Mean 1.507 Variance 0.105 

Skewness -0.878 Kurtosis 3.923 

Table 2:Estimates and Performance of the distributions 

Distribution 
Parameters  

(S.E) 
-2logL AIC BIC 

Weibull Rayleigh 

distribution 

 =2.8903 

(0.2880) 

 =0.3926  

(2.7012) 

 =1.8372  

(6.3200) 
 

 

30.4136 

 

36.4136 

 

47.2096 

Rayleigh 

distribution 
 =1.0894   

(0.0686) 
99.5817 101.5817 103.1803 

Exponentiated 

Rayleigh 
distribution 

 =2.4564  

(155.247) 

 =2.3925  
(151.208) 

 =5.4859   

(1.1848) 

 

47.8575 

 

53.8575 

 

58.6535 

Transmuted 
Rayleigh 

distribution 

 =2.1673 

(76.1721) 

 =1.3342 

(57.3636) 

 =-1.000  

(0.3813) 

 

54.3135 

 

57.3135 

 

65.2307 

Data set II: The data set is on the breaking stress of carbon 

fibres of 50 mm length (GPa). The data has been previously 

used by Cordeiro and Lemonte [22] and Al-Aqtash et al. 

[23]. The data is as follows: 

0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 

1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 2.35, 2.41, 2.43, 

2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 

2.79, 2.81, 2.82, 2.85, 2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 

3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 

3.31, 3.31, 3.33, 3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 

3.75, 4.20, 4.38, 4.42, 4.70, 4.90. 

The summary of the data is given in Table 3. The MLEs of 

WRD parameters and the goodness of fit statistics are 

reported in Table 4. 

Table 4, displays the Maximum Likelihood estimates of the 

model parameters. It was obvious that T-X Weibull-

Rayleigh provides a better fit as compared to other 

Rayleigh models since it has lowest value of -2logL, 

Akaike Information Criterion (AIC), Bayesian Information 

Criterion (BIC). Hence, the Weibull Rayleigh distribution 

performed better than other generalizations of Rayleigh 

distribution. The distribution of the data is skewed to the 

left with skewness -0.128. This shows that T-X Weibull-

Rayleigh has the ability to fit the left skewed data.   

Table 3:Data summary 

Statistics Values Statistics Values 

N 66 Median 2.835 

Minimum 0.390 Maximum 4.900 

First 

Quartile 

2.178 Third 

Quartile 

3.278 

Mean 2.760 Variance 0.794 

Skewness -0.128 Kurtosis 3.222 

Table 4:Estimates and Performance of the distributions 

Distribution 

Parameters  

(S.E) 

 

-2logL AIC BIC 

Weibull 

Rayleigh 

distribution 

 =1.7205 

(0.1654) 

 =1.2534  

(23.5972) 

 =1.9340  

(18.2054) 

 
172.1352 

 
178.1352 

 

189.0524 

 

Rayleigh 
distribution 

 =2.0491  

(0.1261) 
196.4168 198.4168 202.0558 

Exponentiated 

Rayleigh 

distribution 

 =2.1908  

(51.5533) 

 =0.4205   

(9.8959) 

 =2.3483   

(0.4311) 

 

177.2735 

 

183.2735 

 

188.1907 

Transmuted 

Rayleigh 
distribution 

 =1.6653  

(27.3984) 

 =0.2844   

(5.1687) 

 =-0.9587  

(0.0929) 

 
177.7488 

 
183.7488 

 
188.666 

7 Conclusion 

In this article we propose a new model of T-X family, 

called the Weibull-Rayleigh distribution which extends the 

Rayleigh distribution in the analysis of data with real 

support. An obvious reason for generalizing a standard 

distribution is because the generalized form provides larger 

flexibility in modeling real data. We derive expansions for 

the moments, moment generating function, characteristic 

function and Order statistics. The estimation of parameters 

is approached by the method of L-moment estimator, 

method of moments and maximum likelihood estimation. 

An application of the Weibull-Rayleigh distribution to real 

data is provided which show that the new distribution can 

be used quite effectively to provide better fits than the 

Rayleigh distribution, Exponentiated Rayleigh distribution 

and Transmuted Rayleigh distribution. 
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