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1 Introduction 

 

In this paper, the Adomian decomposition method is introduced for solving approximately the following nonlinear 
age-structured population models [1]. 
 


 
p

 
(t,

 
x)

 + 


 
p

 
(t,

 
x)

 = − [d1 (x) + d2 (x) P (t)] p (t, x) , t ≥ 0, 0 ≤ x ≤ A,  
t  x   

p (0, x) = p0 (x) , 0 ≤ x ≤ A, (1) 
p (t, 0) = 

Z
 a [b1 ( ) + b2 ( ) P (t)] p (t,  ) d , t ≥ 0, 

 A   

P (t) = 
Z 

A 

t ≥ 0, 

 

0 p (t, x) dx,  
where t, x denote time and age, respectively, P (t) denotes the total population number at time t, p (t, x) is the age-specific 

Z
 a+ a 

density of individuals of age x at time t, which means that p (t, x) dx gives the number of individuals that have age 
a 

between a and a +  a at time t, d1 (x) is the natural death rate (without considering competition), d2 (x) is the increase 

of death rate considering competition, b1 (x) is the natural fertility rate (without considering competition), b2 (x) is the 
decrease of fertility rate considering competition, a denotes the lowest age when an individual can bear, and A is the 
maximum age that an individual of the population may reach.  

Recently, Li [2] used the Variational Iteration Method (VIM) for solving Eq. (1) and Ghoreishi et al. [3] applied the 
Homotopy Analysis Method (HAM) and Optimal Homotopy Asymptotic Method (OHAM) to solve it.  

For nonlinear age-structured population model (1), Adomian decomposition method has not yet been applied. The 
aim of this paper is to fill this gap. In the beginning of the 198 0's, Adomian [4-7] proposed a new and fruitful method 
(hereafter called the Adomian Decomposition Method or ADM) for solving linear and nonlinear (algebraic, differential, 
partial differential, integral, etc.) equations. It has been shown that this method yields a rapid convergence of the 
solutions series to linear and nonlinear deterministic and stochastic equations. 
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The main objective of this paper is to apply ADM to solve nonlinear age-structured population model to obtain the 
approximate-exact solutions. 

 

2 Analysis of the method 
 

In an operator form, Eq. (1) can be written as       

Lt p + Lx p = −d1 (x) p − d2 (x) N p, (2) 

where the differential operators Lt and Lx are defined by       

Lt = 

 

Lx = 

  
 

, 

 

, 

 

t  x  

and N p = P (t) p (t, x) is the nonlinear operator. Assuming Lt  is invertible, therefore the inverse operator Lt
−1

 is given by 

the integral L
−1 [·] = t [·] dt.   

t   0  on both sides of Eq. (2), and using the initial conditiont, we obtain  

  the inverse operator L−1  

Operating with R  t   

    p (t, x) = p (0, x) − Lt
−1

 [Lx p + d1 (x) p + d2 (x) N p] . (3)  
The details of the ADM are well known now in the literature and can be found in [4-7]. The Adomian's technique 

consists of approximating the solution p (t, x) of Eq. (2) as an infinite series  
  

p (t, x) = å pn (t, x) , (4) 
n=0  

where the components pn (t, x) of the solution p (t, x) will be determined in a recursive manner, and decomposing the 

nonlinear operator N as  
         !  !     
     n=0  n=0 n=0    

N p =   å Pn (t) å 
p

n (t, x) = å An,   (5) 

where An are Adomian polynomials of p0, . . . , pn [4-7] given by      
      n    =0     
 n!  d ni=0      

An = 
 1   d   

N å  
i
yi , n = 0, 1, . . . . 

  

(6)          

              
The proofs of the convergence of the series å pn and å An are given in [6,8-12]. Substituting (4) and (5) into both sides 

of (3) yields 
n=0    n=0       

              

        "      #  
n=0  

      
n=0  

 
n=0  

 
n=0  

 

å pn = p (0, x) − Lt
−1 L

x å 
p

n + 
d

1 (x) å pn + d2 (x) å 
A

n . (7)  
From Eq. (7), the iterates are then determined in the following recursive way:  

 

p0 = p (0, x) , 

(8) pn+1 = −Lt
−1

 [Lx pn + d1 (x) pn + d2 (x) An] , n = 0, 1, . . . . 


For the nonlinear term N p = P (t) p (t, x) = å An, the corresponding Adomian polynomials are given by 
n=0 

A0 = P0 p0, 
 

A1 = P1 p0 + P0 p1, 
 

A2 = P2 p0 + P1 p1 + P0 p2, 
 

A3 = P3 p0 + P2 p1 + P1 p2 + P0 p3, 
 

A4 = P4 p0 + P3 p1 + P2 p2 + P1 p3 + P0 p4, 
. 
. 

. 
n 

An = å Pn−i pi, n ≥ i, n = 0, 1, . . . . 
i=0 
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Thus all components of p can be calculated once the pn and An are given. We then define the  n-term approximant to the 

solution p by n[p] = å
n−1

 pi with lim n[p] = p. 
i=0 n→

 

3 Applications and numerical results 
 

In this section, the ADM for solving nonlinear age-structured population models is illustrated in the following two 
examples. The computations associated with the examples were performed using a Maple 13 package with a precision 
of 30 d´ıgits. 
 

 

Example 1 We consider the nonlinear age-structured population model (1) with d1 (x) = 0, d2 (x) = 
 
Thus the model can be written as [1-3]     

 p (t, x) + 


 
p

 
(t,

 
x)

 = −P (t) p (t, x) , t ≥ 0, 0 ≤ x ≤ A, 

t    x  

p (0, x) = e−x  0 ≤ x ≤ A, 
 , 

  2   

p (t, 0) = P (t) , t ≥ 0, 

 

1 and p0 (x) = 
e−x

 . 2 

 
 
 
 
 

 

(9) 

Z A 
P (t) = p (t, x) dx, t ≥ 0, 

0 

e−x 

Where A → +¥. And it is easy to verify that p (t, x) = 1 + e−t , t ≥ 0, x ≥ 0, is the exact solution of the problem (9). 

Solution: Take  = [0, 1] × [0, 100], which denotes (1 unit time) × (100 unit age). Applying the ADM for this 

problem, we obtain the following recursion scheme 

 p0 (t, x) = 
e 

−x 
2  

, 

     

 

pn+1 (t, x) = −Lt
−1

 [Lx pn + An] , n = 0, 1, . . . . 
 

Following the algorithm (10), we find that the even iterates pn (t, x) = 0t
n
, n = 2, 4, 6, 

. . . 

p1 (t, x) = 1  t e
−x

,                 
                 

 4                         

p
3 (t, x) = − 

1 
 t

3
e
−x

, 
           

48            
                         

p5 (t, x) = 1 t5e−x,              
               

 480                     

p7 (t, x) = − 
17  

t7e−x,            
80640 

           

                     

p9 (t, x) = 
   31    

t
9
e
−x

, 
           

                    

                    

 1451520               

p
11 (t, x) = − 

  691  
t11e−x, 

        
                  

                  

     319334400            

 .                         
 .                         

 .                         

Thus, the approximate solution in a series form is given by  
80640

t7 
+ 0t

8 
n (t, x) = e−x 

2 
+ 4 t + 0t

2 − 48 t3 + 0t
4 + 480 t5 + 0t6 −  

       1   1   1    1  17   
                

 
+

 1451520 t
9
 + 0t 

10
 
−

 319334400 t
11

 + · · · + O tn−1, n ≥ 1. 
       31          691        

 
 

(10) 
 
 
and the odd iterates are given by 
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This series has the closed form as n →    

p (t, x) = lim n (t, x) = e−x  

1 + e
−t 

, 

n→   
which is the exact solution of the problem (9) compatible with VIM and HAM.  

In Tables 1-4, we list the absolute errors using the ADM (4-term approximation), the numerical solution of (10) with the 

trapezoidal rule (TRAP) pT and the numerical solution of (10) with the Simpson rule (SIMP) pS for various values of x at time 
t = 0.001, 0.01, 0.1 and t = 1.0. Twenty points have been used in the trapezoidal and Simpson rules. Comparing them with the 

HAM (4-term approximation) [3] results. At the end of all tables, the k·k2 has been calculated. Table 5 reproduces the residual 
error obtained by ADM (4-term approximation). In figure 1 we represent the contour plot of both the exact solution and the 
approximate solution of the problem (9) by using ADM (4-term approximation). 
 

Table 1: Comparison of the absolute errors for example 1 with t = 0.001  
      

x  ADM: |p − 4| TRAP: |p − pT | SIMP: |p − pS| HAM: |p − 4| 

0  2.08333 × 10−18 
2.60416 × 10−14 

3.89935 × 10−25 
0 

5  1.40374 × 10
−20 

1.75467 × 10
−16 

2.62736 × 10
−27 

0 

10  9.45832 × 10
−23 

1.18228 × 10
−18 

1.77030 × 10
−29 

0 

20  4.29407 × 10
−27 

5.36758 × 10
−23 

8.03717 × 10
−34 

2.06795 × 10
−25 

30  1.94950 × 10
−31 

2.43688 × 10
−27 

3.64887 × 10
−38 

0 

40  8.85074 × 10
−36 

1.10634 × 10
−31 

1.65658 × 10
−42 

0 

50  4.01823 × 10
−40 

5.02278 × 10
−36 

7.52088 × 10
−47 

0 

k·k 2 1.07820 × 10
−24 

1.84142 × 10
−14 

2.75726 × 10
−25 

2.06795 × 10
−25 

Table 2: Comparison of the absolute errors for example 1 with t = 0.01  
      

x  ADM: |p − 4| TRAP: |p − pT | SIMP: |p − pS| HAM: |p − 4| 

0  2.08331 × 10
−13 

2.60407 × 10
−11 

1.51218 × 10
−18 

2.08278 × 10
−13 

5  1.40372 × 10
−15 

1.75461 × 10
−13 

1.01890 × 10
−20 

1.40339 × 10
−15 

10  9.45822 × 10
−18 

1.18225 × 10
−15 

6.86531 × 10
−23 

9.45628 × 10
−18 

20  4.29403 × 10
−22 

5.36740 × 10
−20 

3.11684 × 10
−27 

4.29307 × 10
−22 

30  1.94949 × 10
−26 

2.43679 × 10
−24 

1.41504 × 10
−31 

1.94943 × 10
−26 

40  8.85065 × 10
−31 

1.10630 × 10
−28 

6.42430 × 10
−36 

8.84772 × 10
−31 

50  4.01819 × 10
−35 

5.02261 × 10
−33 

2.91662 × 10
−40 

4.01666 × 10
−35 

k·k2 1.47312 × 10
−13 

1.84136 × 10
−11 

1.06927 × 10
−18 

2.08283 × 10
−13 

 
  Table 3: Comparison of the absolute errors for example 1 with t = 0.1     
        

 

 

  x  ADM: |p − 4| TRAP: |p − pT | SIMP: |p − pS| HAM: |p − 4|  

  0  2.08123 × 10
−8 

2.59400 × 10
−8 1.48620 × 10−11 2.08123 × 10

−8 
  

  5  1.40232 × 10
−10 

1.74782 × 10
−10 

1.00139 × 10
−13 

1.40232 × 10
−10  

  10  9.44876 × 10
−13 

1.17767 × 10
−12 

6.74734 × 10−16 9.44876 × 10−13  

  20  4.28973 × 10
−17 

5.34664 × 10
−17 

3.06329 × 10
−20 

4.28973 × 10
−17  

  30  1.94753 × 10
−21 

2.42737 × 10
−21 

1.39073 × 10−24 1.94753 × 10−21  

  40  8.84179 × 10
−26 

1.10202 × 10
−25 6.31391 × 10−29 8.84179 × 10−26  

  50  4.01417 × 10
−30 

5.00319 × 10
−30 

2.86651 × 10
−33 

4.01417 × 10
−30  

  k·k 2 1.47165 × 10
−8 

1.83424 × 10
−8 

1.05090 × 10
−11 

2.08127 × 10
−8  

  Table 4: Comparison of the absolute errors for example 1 with t = 1     
         

  x  ADM: |p − 4| TRAP: |p − pT | SIMP: |p − pS| HAM: |p − 4|  

  0  1.89191 × 10
−3 

1.11512 × 10
−4 

1.29417 × 10
−4 

1.89191 × 10
−3  

  5  1.27476 × 10
−5 

7.51362 × 10
−7 

8.72008 × 10
−7 

1.27476 × 10
−5  

  10  8.58927 × 10
−8 

5.06263 × 10
−9 

5.87554 × 10
−9 

8.58927 × 10
−8  

  20  3.89952 × 10
−12 

2.29843 × 10
−13 

2.66749 × 10
−13 

3.89952 × 10
−12  

  30  1.77038 × 10
−16 

1.04348 × 10
−17 

1.21104 × 10
−17 

1.77038 × 10
−16  

  40  8.03751 × 10
−21 

4.73742 × 10
−22 

5.49811 × 10
−22 

8.03751 × 10
−21  

  50  3.64902 × 10
−25 

2.15078 × 10
−26 

2.49614 × 10
−26 

3.64902 × 10
−25  

  k·k2  1.33778 × 10
−3 

7.88509 × 10
−5 

9.15120 × 10
−5 

1.89195 × 10
−3  
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Fig. 1: Continuous line: Exact solution ADM 4 (t, x) 

 
 
 

 

Table 5: Residual error for example 1 
 

x t = 0.001 t = 0.01 t = 0.1  t = 1  

0 1.04167 × 10−14 
1.04166 × 10−10 

1.04123 × 10−6 
9.98264 × 10−3 

5 7.01869 × 10
−17 

7.01867 × 10
−13 

7.01577 × 10
−9 

6.72625 × 10
−5 

10 4.72916 × 10
−19 

4.72914 × 10
−15 

4.72719 × 10
−11 

4.53211 × 10
−7 

20 2.14703 × 10
−23 

2.14703 × 10
−19 

2.14614 × 10
−15 

2.05758 × 10
−11 

30 9.74752 × 10
−28 

9.74748 × 10
−24 

9.74346 × 10
−20 

9.34138 × 10
−16 

40 4.42537 × 10
−32 

4.42535 × 10
−28 

4.42353 × 10−24 4.24098 × 10−20 

50 2.00911 × 10
−36 

2.00911 × 10
−32 

2.00828 × 10
−28 

1.92540 × 10
−24 

k·k2 7.36570 × 10
−15 

7.36566 × 10
−11 

7.36263 × 10
−7 

7.05879 × 10
−3 

 
 
 

 

Example 2 We consider the nonlinear age-structured population model (1) with d1 (x) = 1, d2 (x) = 
 
Thus the model can be written as [1-3] 
 

 p (t, x) + 


 
p

 
(t,

 
x)

 = − [1 + P (t)] p (t, x) , t ≥ 0, 0 ≤ x ≤ A, 

t   x  

p (0, x) = e−x  0 ≤ x ≤ A, 
 , 

  2   

p (t, 0) = P (t) , t ≥ 0, 

 

 

e−x 

1 and p0 (x) = 2  . 
 
 
 
 
 

 

(11) 

Z A 
P (t) = p (t, x) dx, t ≥ 0, 

0 

e−x 

where A → +. And it is easy to verify that p (t, x) = 2 + t , t ≥ 0, x ≥ 0, is the exact solution of the problem (11). 
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Solution: Take  = [0, 1] × [0, 100], which denotes (1 unit time) × (100 unit age). On applying the ADM for this 

problem, we obtain the following recursion scheme 

 

 p0 (t, x) = 
e 
−x  
   

 2  
, (12) 

 pn+1 (t, x) = −Lt
−1 [Lx pn + pn + An] , n = 0, 1, . . . . 

      
Using the algorithm (12), we find that the iterations as  A → + are given by 
 

p0 (t, x) = 1 e
−x

,       
       

 2             

p1 (t, x) = − 1 t e
−x       

        

 4          

p
2 (t, x) = 1 t2e−x,       

       

 8             

p3 (t, x) = − 1 t
3
e
−x

,       
        

 16         

p4 (t, x) = 1 t4e−x,       
       

 32           

 .             
 .             

 .             

p
n (t, x) = 

(−1)
n 

tne−x , n = 0, 1, . . . . 
     

      

  2n+1       
Thus, the approximate solution in a series form is given by      

         n−1 (−1)
i 

   
         

n (t, x) = e
−x

 å 
 

t
i
, n ≥ 1.          2i+1 

         i=0      

which is a geometric series. This series has the closed form as n →    

         
p (t, x) = lim n (t, x) = 

e−x 
            

         

2 
, 

         n→   + t 
 
which is the exact solution of the problem (11) compatible with VIM and HAM.  

In Tables 6-9, we list the absolute errors using the ADM (4-term approximation), the numerical solution of (12) with the 

trapezoidal rule (TRAP) pT and the numerical solution of (12) with the Simpson rule (SIMP) pS for various values of x at time 
t = 0.001, 0.01, 0.1 and t = 1.0. Twenty points have been used in the trapezoidal and Simpson rules. Comparing them with the 

HAM (4-term approximation) [3] results. At the end of all tables, the k·k2 has been calculated. Table 10 reproduces the 
residual error obtained by ADM (4-term approximation). In figure 2 we represent the contour plot of both the exact solution 
and the approximate solution of the problem (11) by using ADM (4-term approximation). 

 

Table 6: Comparison of the absolute errors for example 2 with t = 0.001  
       

 x ADM: |p − 4| TRAP: |p − pT | SIMP: |p − pS| HAM: |p − 4|  

 0 3.12344 × 10
−14 

7.80406 × 10
−14 

6.24479 × 10
−18 

3.11973 × 10
−14  

 5 2.10456 × 10
−16 

5.25833 × 10
−16 

4.20770 × 10
−20 

2.10335 × 10
−16  

 10 1.41804 × 10
−18 

3.54304 × 10
−18 

2.83513 × 10
−22 

1.41624 × 10
−18  

 20 6.43789 × 10
−23 

1.60853 × 10
−22 

1.28714 × 10
−26 

6.43133 × 10
−23  

 30 2.92280 × 10
−27 

7.30275 × 10
−27 

5.84364 × 10
−31 

2.92194 × 10
−27 

 

 40 1.32695 × 10
−31 

3.31544 × 10
−31 

2.65300 × 10
−35 

1.32504 × 10
−31 

 
 50 6.02433 × 10

−36 
1.50520 × 10

−35 
1.20446 × 10

−39 
6.03029 × 10

−36  

 k·k2 2.20860 × 10
−14 

5.51830 × 10
−14 

4.41573 × 10
−18 

3.11980 × 10
−14  
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Table 7: Comparison of the absolute errors for example 2 with t = 0.01  
      

x  ADM: |p − 4| TRAP: |p − pT | SIMP: |p − pS| HAM: |p − 4| 

0  3.10945 × 10
−10 

7.67278 × 10
−11 

6.19824 × 10
−13 

3.10945 × 10
−10 

5  2.09513 × 10
−12 

5.16987 × 10
−13 

4.17634 × 10
−15 

2.09513 × 10
−12 

10  1.41169 × 10
−14 

3.48343 × 10
−15 

2.81400 × 10
−17 

1.41169 × 10
−14 

20  6.40906 × 10
−19 

1.58147 × 10
−19 

1.27755 × 10
−21 

6.40906 × 10
−19 

30  2.90971 × 10
−23 

7.17989 × 10
−24 

5.80008 × 10
−26 

2.90971 × 10
−23 

40  1.32101 × 10
−27 

3.25966 × 10
−28 

2.63323 × 10
−30 

1.32101 × 10
−27 

50  5.99736 × 10
−32 

1.47988 × 10
−32 

1.19548 × 10
−34 

5.99736 × 10
−32 

k·k2 2.19872 × 10
−10 

5.42547 × 10
−11 

4.38282 × 10
−13 

3.10952 × 10
−10 

Table 8: Comparison of the absolute errors for example 2 with t = 0.1  
      

x  ADM: |p − 4| TRAP: |p − pT | SIMP: |p − pS| HAM: |p − 4| 

0  2.97619 × 10
−6 

1.30793 × 10
−8 

5.76078 × 10
−8 

2.97619 × 10
−6 

5  2.00534 × 10
−8 

8.81280 × 10
−11 

3.88158 × 10
−10 

2.00534 × 10
−8 

10  1.35119 × 10
−10 

5.93802 × 10
−13 

2.61539 × 10
−12 

1.35119 × 10
−10 

20  6.13439 × 10
−15 

2.69585 × 10
−17 

1.18738 × 10
−16 

6.13439 × 10
−15 

30  2.78501 × 10
−19 

1.22391 × 10
−21 

5.39072 × 10
−21 

2.78501 × 10
−19 

40  1.26439 × 10
−23 

5.55657 × 10
−26 

2.44738 × 10
−25 

1.26439 × 10
−23 

50  5.74033 × 10
−28 

2.52268 × 10
−30 

1.11111 × 10
−29 

5.74033 × 10
−28 

k·k 2 2.10448 × 10
−6 

9.24850 × 10
−9 

4.07349 × 10
−8 

2.97626 × 10
−6 

Table 9: Comparison of the absolute errors for example 2 with t = 1  
      

x  ADM: |p − 4| TRAP: |p − pT | SIMP: |p − pS| HAM: |p − 4| 

0  2.08333 × 10
−2 

3.06013 × 10
−3 

3.08779 × 10
−3 

2.08333 × 10
−2 

5  1.40374 × 10
−4 

2.06190 × 10
−5 

2.08054 × 10
−5 

1.40374 × 10
−4 

10  9.45832 × 10
−7 

1.38929 × 10
−7 

1.40185 × 10
−7 

9.45832 × 10
−7 

20  4.29407 × 10
−11 

6.30740 × 10
−12 

6.36442 × 10
−12 

4.29407 × 10
−11 

30  1.94950 × 10
−15 

2.86355 × 10
−16 

2.88944 × 10
−16 

1.94950 × 10
−15 

40  8.85074 × 10
−20 

1.30005 × 10
−20 

1.31180 × 10
−20 

8.85074 × 10
−20 

50  4.01823 × 10
−24 

5.90223 × 10
−25 

5.95558 × 10
−25 

4.01823 × 10
−24 

k·k 2 1.47314 × 10
−2 

2.16384 × 10
−3 

2.18340 × 10
−3 

2.08338 × 10
−2 

Table 10: Residual error for example 2   
      

x  t = 0.001 t = 0.01 t = 0.1 t = 1 
0  1.24953 × 10

−10 
1.24533 × 10

−7 
1.20465 × 10

−4 
8.98438 × 10

−2 

5  8.41928 × 10
−13 

8.39095 × 10
−10 

8.11686 × 10
−7 

6.05362 × 10
−4 

10  5.67286 × 10
−15 

5.65378 × 10
−12 

5.46910 × 10
−9 

4.07890 × 10
−6 

20  2.57548 × 10
−19 

2.56681 × 10
−16 

2.48297 × 10
−13 

1.85182 × 10
−10 

30  1.16926 × 10
−23 

1.16533 × 10
−20 

1.12726 × 10
−17 

8.40724 × 10
−15 

40  5.30845 × 10
−28 

5.29059 × 10
−25 

5.11777 × 10
−22 

3.81688 × 10
−19 

50  2.41003 × 10
−32 

2.40193 × 10
−29 

2.32347 × 10
−26 

1.73286 × 10
−23 

k·k2 8.83552 × 10
−11 

8.80580 × 10
−8 

8.51815 × 10
−5 

6.35291 × 10
−2 

 
 
 

4 Conclusions 

 

In this work ADM has been successfully used to solve nonlinear age-structured population models giving it a 
wider applicability. The proposed scheme was applied directly without any need for transformation formulae or 
restrictive assumptions. Results have shown that the analytical approximate solution process of ADM is compatible 
with those methods in the literature providing analytical approximation such as VIM and HAM. The results obtained in 
the two cases demonstrate the reliability and the efficiency of this method. 
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Fig. 2: Continuous line: Exact solution ADM 4 (t, x) 

 

 

References 
 
[1] M.G. Cui, C. Chen, The exact solution of nonlinear age-structured population model, Nonlinear Analysis: Real World 

Application 8 (4) (2007) 1096-1112.  
[2] Xiuying Li, Variational iteration method for nonlinear age-structured population models, Comput. Math. Appl. 58 (2009) 2177-

2181.  
[3] M. Ghoreishi, A.I.B.Md. Ismail, A.K. Alomari, A. Sami Bataineh, The comparison between Homotopy Analysis Method and 

Optimal Homotopy Asymptotic Method for nonlinear age-structured population models, Commun. Nonlinear Sci. Numer. 

Simulat. 17 (2012) 1163-1177.  
[4] G. Adomian, Stochastic Systems, Academic Press, New York, 1983.  
[5] G. Adomian, Nonlinear Stochastic Operator Equations, Academic Press, New York, 1986.  
[6] G. Adomian, Nonlinear Stochastic Systems Theory and Applications to Physics, Kluwer Academic Publishers, Dordrecht, 1989.  
[7] G. Adomian, Solving Frontier Problems of Physics: The Decomposition Method, Kluwer Academic Publishers, Dordrecht, 1994.  
[8] A.M. Wazwaz, A new algorithm for calculating Adomian polynomials for nonlinear operators, Appl. Math. Comput. 111 (2000) 

53-69.  
[9] K. Abbaoui, Y. Cherruault, Convergence of Adomian's method applied to differential equations, Math. Comput. Modelling 28 

(5) (1994) 103-109.  
[10] K. Abbaoui, Y. Cherruault, New ideas for proving convergence of decomposition methods, Comput. Math. Appl. 29 (7) (1995) 

103-108.  
[11] K. Abbaoui, Y. Cherruault, Convergence of Adomian's method applied to nonlinear equations, Math. Comput. Modelling 20 (9) 

(1994) 60-73.  
[12] Y. Cherruault, G. Adomian, Decomposition methods: a new proof of convergence, Math. Comput. Modelling 18 (12) (1993) 

103-106.  
[13] S. Guellal, Y. Cherruault, Practical formula for calculation of Adomian's polynomials and application to the convergence of the 

decomposition method, Internat. J. Bio-Medical Comput. 36 (1994) 223-228. 
 
 
 
 
 
 
 
 
 
 

 
c 2016 NSP  
Natural Sciences Publishing Cor. 



 
Sohag J. Sci. 1, No. 1, 19-27 (2016) / www.naturalspublishing.com/Journals.asp 27 

  

 

 

Waleed Al-Hayani is an Assistant Professor in the Department of Mathematics, 
College of Computer Science and Mathematics, Mosul University, Iraq. He was an 
Assistant Professor, Departamento de Matemticas, Escuela Politcnica Superior, 
Universidad Carlos III de Madrid, Spain (2007-2012). He received his Ph.D. degree 
from the Universidad Politcnica de Madrid, Spain. His fields of research include 
Adomian Decomposition Method, Homotopy Perturbation Method, Variational Iteration 
Method, Laplace Transform related to before topics and Fractional Calculus related to 
before topics. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

c 2016 NSP 

Natural Sciences Publishing Cor. 

 

www.naturalspublishing.com/Journals.asp

