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Abstract: Inthis article, a new generalization of the GeneralizecehirExponential distribution called the odd generalizguberntial
generalized linear exponential distribution is propoddt mathematical properties, including moments and otdésscs, have been
derived. An application of the model to real data sets redetiat the new model can be used to provide a better fit thanlitenodels.
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1 Introduction

Statistical distributions play an important role in modeglireal world phenomenon. Because of this, umpteen of
statistical distributions have been used in different bhas of applied sciences (medicine, engineering and finance
amongst others) to model and analyze lifetime data. Howdvere still remain many vital problems where most of the
existing distributions do not provide a good fit to these data. This creates room for researchers to continue toaevel
new distributions to model lifetime data. For instancEZ][developed another weighted Weibull from the Azzalinis
family and [6] developed the Weibull Rayleigh distribution.

The Linear Exponential (LE) distribution, having exporiehtand Rayleigh distributions as sub-models, is a
well-known distribution for modeling lifetime data and forodeling phenomenon with linearly increasing failure sate
A random variableX is said to have LE distribution with two parameters>- 0 andb > 0, if it has the Cumulative
Distribution Function (CDF):

bx?

ax+——

F(x;a,b)zl—e( 2),x>0, (1)
and the corresponding Probability Density Function (PO by:

—(ax+b—X2)
f(x;ab) = (a+bx)e 2, )

However, the LE distribution does not provide a good fit fordeling phenomena with decreasing, non-linear
increasing, or non-monotonic failure rates such as thetlatbhape, which usually occurs in firmware reliability
modeling and biological studies; see for example Several different parametric families of distributiosisitable for
modeling non-monotonic failure rates have been proposestatistical literature. Among these are; the generalized
linear exponential distribution, which was proposed ly][and the exponentiated generalized linear exponential
distribution which was proposed bg][ Also, [3] proposed another generalized linear failure rate distigm and [L4]
developed a new generalized linear exponential distobuti

Recently, F]developed an odd family of univariate continuous disttits called the Odd Generalized Exponential
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(OGE) family and studied the OGE-Weibull (OGE-W) distrilout, the OGE-Frchet (OGE-Fr) distribution and the
OGE-Normal (OGE-N) distribution. According td@] the CDF of the OGE family of distribution is defined by:

F(Xa €)= (1 - e_’lg(ig) )a 3)

wherea > 0 and2 > 0 are two additional parameters. The Probability Densitydfion (PDF) corresponding t&)
is given by:

— e G(x¢) [1-—e "6(x9)
G (x.£)’

whereg(x, &) is the baseline PDF arfd(x, &) = 1 — G(x, &) is the baseline survival function. These models are flexibl

in nature because of the behavior of their hazard functiocreiasing, decreasing, bathtub and upside down bathtub
shapes. Using the CDF defined i) ([1] developed the OGE-Rayleigh (OGE-R) distribution and Etddts statistical
properties. In addition,§] developed the OGE-Log Logistic (OGE-LL) distribution wéi[9] developed and studied
the OGE-Gompertz (OGE-G) distribution. In this paper, a rmmeralization of the Generalized Linear Exponential
(GLE) distribution, called the Odd Generalized Exponér@ianeralized Linear Exponential (OGE-GLE) distributien i
proposed, and its properties studied.

The rest of the paper is organized as follows: In sec?ione define the OGE-GLE distribution, discuss some special
sub-models and provide its CDF, PDF and hazard functionriita for generating OGE-GLE random samples from the
OGE-GLE distribution is given in sectidh Section3 discusses some statistical properties of the OGE-GLElisiton
such as the quantile, median, moments, and moment gergefattiction. The distribution of its order statistic are ded
in section4. The maximum likelihood estimators of the parameters ambéished in sectiof and the application of the
new distribution to real data sets, demonstrated in seétion

f(Xa,A,€) =

G(x. G(xg) @1
Aag (% &) 188 ( —AJ—Q) @

2 The Odd Generalized Exponential Generalized Linear Exponential Distribution

Using the definition of T], the CDF of of a non-negative random variatdehaving OGE-GLE distribution denoted as
OGE-GLE, a, b, c, 1) is given by:

a+Z5—

bx? < @
_4(6( ) _1)
Foge-cLe(X;a,a,bc 1) =|1-e X>0 (5)

The parameterda > 0,a > 0 andb > 0 are scale parameters whike > 0 andc > 0 are shape parameters. The
corresponding PDF of the OGE-GL& (@, b, ¢, 2) distribution is given by:

a+bix2 c ‘HLXZ c a-1
N c-1 (a“b_ﬁ)“ —/l(e( 2 ) —1) —/l(e( 2 ) —1)
foce—cLe(X;a,a,b, ¢, 1) = adc (a+ bx) (ax+ 7) e 2] e 1-e ,X>=0

(6)

One advantage of the OGE-GLE distribution is that, it hasoaed form CDF, which enables us to generate random

numbers from it by using the relation:
1
A—ln(l—ué) ¢
—a+4|a?+2b|ln{ —5—=

b . ()

whereU is a uniformly distributed random variable on th& ¥) interval. The relation can be used to generate random
samples from a wide set of sub-models of the OGE-GLE didiohusuch as the OGE-Exponential (OGE-E), OGE-
Rayleigh (OGE-R), OGE-LE, and OGE-Weibull (OGE-W). Tablidplays the sub-models of the OGE-GLE distribution.

X =

The PDF of the OGE-GLE( & b, ¢, 1) can be written in terms of the cumulative hazard and therddzactions of
LE(a b) as:

a-1

et oo

foce-GLE(X @ a b ¢ 1) = adchpg (X) [Heg (x)]°7! efre()" gl =1y [y

(© 2017 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro6, No. 1, 139-148 (2017)www.naturalspublishing.com/Journals.asp %ms p) 141

Table 1: Sub-models of OGE-GLE

Model a a b ¢ 2
OGE-E - - 0 1 -
OGE-R -0 - 1 -

OGE-LE - - - 1 -
OGE-W - - 0 - -

wherehy g (X) = hpg (X;8,b) = a+ bx, andH g (X) = ax + thz are the hazard and the cumulative hazard functions of
the LE distribution respectively. Using both binomial arayibr series expansion, the PDF of the OGE-GLE distribution
can be written as:

,X=0

b2\ S8 (1) R (@)T(j + DAk + )Y ~G=j-D)(axs s )
for-cLe(X @ abed) =adc(a+by) (a“ T) j;o KT (a — KT —1+ 1)

The hazard function of the OGE-GL&(a, b, ¢, 1) is given by:

aAc(a+bx) (ax + bsz)c_l e(a“bsz) e

hoce-cLe(X;a,a,b,c 1) = . ,X>0

(10)
The PDF and hazard function of the OGE-GLE distribution diffierent parameter values, are displayed in Figuaad
Figure2 respectively. From the figures, it is clear that the PDF caddmeasing or unimodal and the hazard function
can be increasing or bathtubed in nature.

— o=1.5,a=1.0b=1.0,c=08)3=2.0 = o=0.45a=1.0,b=1.0c=2.74=2.0
— o0=0.28,2=1.0,b=0.0,c=2.52=2.0 — o=0.8,a=0.0,b=1.0,c=3.5=2.0
o=2.5,a=1.0b=0.0,c=0.72=2.0

Fig. 1: PDF plot of the OGE-GLE distribution
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—— o=1.5,a=1 0b=1.0,6=0.8)=2.0 = 0=0.28,a=1.0,b=0.0,c=2 5)=2.0 = 0=0.8,a=0.0,b=1.0,c=3 5)=2.0
——— 0=2.5,2=1.0,b=0.0,c=0.74=2.0

hix)

Fig. 2: Hazard plot of the OGE-GLE distribution

3 Statistical Properties

3.1 Quantile and Median
The OGE-GLE, a, b, ¢, 1) quantile function, sa(u) = F~'(u), is straight forward and is computed by invertirfy;(

we have
J [ (A—ln(l—u%))]F
—a+14|a’+2b|In| ——+
QM) = ’ ,

where U is a uniformly distributed random variable on th®, {) interval. Using (1), the median of the

OGE-GLE, a, b, c, 1) can be obtained as
1
A—ln(l—o.sé) ¢
—a++4|a2+2b|ln| ——+

b 9
It is customary to derive the moments when a new distribuisoproposed. Moments play an important role in any
statistical analysis, especially in applications. Theysed for finding measures of central tendency, disperskemness
and kurtosis among others. Usir@) (ther” h non-central moment of the OGE-GLE distribution is:

(11)

Q(0.5) = (12)

3.2 Moment

)

2\ ! —(i—j-1)|ax b2 ¢
x"aAc (a+ bx) (ax+b%) e U 1)( 2 ) dx  (13)

’

W, = f foce-GLE(X; @, 8,b,C, 1) = wjjik f
. 0

where .
S (D)D) + DAk + 1)
1JIKIT(a — K)(j —i + 1)

Wijk =
7.k=0
Now, if we define the substitution:

o bx2\* bx2\ ! dy
y-(l—j—l)(ax+7) =>c(a+bx)(ax+7) dx—m
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Clearly,

—a+\/a2+2b[0_j—._n]%

b

X =

Thus, expanding binomially, this yields:

r

. —a+\/a2+2b[.y. ]
’ (1_4 _1) d
= w,-jka//lf / —y Y
0

= b “a-i-n

o=

r—s

_lSaS a-2 r-s r-s
Y o N T R
5=0 -1 2b(lll)_

. 1
Itis easy to verify that“z(’;;jl)ﬂ < 1 wheny > 0; again expanding binomially results in:
2byT

r—. v2m

r=s 1 Yz a2m+s r-—s—2m _
- wljka/lf ( )( r?] ) ’+.5me ) r=s+2c(l-m) y ZCZ € ydy
m=0 s=0 ( _J ) 2¢
—s ( l)szr s 2m g2m+s r—s—2m
_wl]ka/l ()( ) r+s+2m ,. r—s+2c( m)r 1+7
,;)Zo - - )T 2
This implies:
2”"’2’"’ g2m+s g2m+s (1 + r—s—Zm)
l'lr = wijkms )+v+2m r— _s+2c(l m) (14)
(i-j-1)""2=""
where;
b roJ i+j+k+s i j+1 j
(=)™ T(@+ DI+ DA (k+ 1)/
LYY KT (@ - I —i+ 1)
Jok,m=0 =0 i=0 e J
forr = 1,2,..., whereI'(.) is the gamma function.
3.3 Moment Generating Function
The moment generating function denotedMdy (t) is obtained by using the definition:
Mx (t) =E (e”‘) = f e~ fOGE—GLE (X; a, a, b, C, /l)dX (15)
0
Using the Taylor series expansiongf, (15) can be written as
[e] tr 00
Mx(t) = Z o f X" foce-cLE(X; @, 8, b ¢, A)dx (16)
r=0 Y0

© 4r
=§ﬁ,ur

r— v -2m
2m+s o2m+s r—s—2m
. 2 a a r (1 + =5 )
- wijkmsr r+>+2m r— a+2c(l m)

(i-j-1)"">2> "

where;

(=1)H+H*ST (o + DT + DA (k + 1))
Z ZZ jIKIT(@ =K —i+1)

ljkmsr_
Jok,sm,r=0 s=0 i=0
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4 Distribution of Order Statistics

In this section, the PDF of the;, order statistic is derived. LeXy, Xs, ..., X,, be a random sample from an OGE-GLE
distribution andX;., < X, < ... £ X,., denote the corresponding order statistics obtained frenséimple. Then the
PDF, f,..,, of ther’” order statisticX,., is given by

1
B(r,n—r+1

whereF (x) and f(x) are the CDF and PDF given by) and 6) respectively, andB(.,.) is the Beta function. since
0 < F(x) < 1forx > 0, by using the binomial series expansior bf F(x)]"", which is given by

[1-F oo = Z( (" JiFcor

frn(X) = [FOAI = FOI" ()

we have
1 (R n—r e
9 = gy (T JEeor i a7)

Therefore, substitutingsj and ¢) into (17) one gets

~ (-1)fn! _
frn(Xx) = ;) - DIn-r=0i+0 focE-GLE(X; arie, a0, 2) (18)

wherefoce-cLE(X; @r1e, @ b, C, A) is the PDF of the OGE-GLE distribution with parametefs, = a(r +¢),a, b, c
and 2. Relation (8) revealed thatf,.,(x) is the weighted average of the OGE-GLE distribution witffedent shape
parameters. Usingl 8), the p* moment of the’” order statisticsX,., is

P s

) . 2 a2m+?r(1 + P=5= Zm) (19)
lu ’ = wi 'kmsr +_s+ m D —S+. (‘ m
P ] p 2 (I —J _ l)1 2 (1-m)
where;
R i 2 L (=)D (0 4+ D (apse + DG+ DA (K + 1)
{jkmsr = KN = DI(n=1 = O + OT (e — KO —i + 1)

jok,m=0 s=0 i=0 £=0

5 Estimation and I nference

In this section, the maximum likelihood estimation apptoa@as employed to estimate the parameters of the OGE-GLE
distribution. Given a random sample, dgnoted(a,s)(z, ..., Xu, With sizen, upon using §) the log-likelihood function for
the vector of paramete® = (a, a, b, ¢, 1) can be written as:

" " bx2\ & bx2\°
{=nlna+nlnd+nlnc+ Zln(a+ bx;) + (c— I)ZIn(axi + T’)+Z(ax, + 7)

i=1 i=1 i=1

2\¢

n uxz ¢ n _/I(E(ax +%) _])
—AZ[e(“X”T') —1} + (@ - I)Zln 1-e (20)
i=1

Differentiating 20) with respect tar, a, b, c and 1, respectively and equating to zero gives

ny Zm[ (et -1>] =0 (21)

[0
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Table 2: Parameter estimates of first data set
Model Parameter Estimates ¢ An, P-value
OGE-E 4 =0.022(0.002) —845.96  1431.580  0.000
& = 2.555(1.274)
1 =1.078(0.105)

OGE-R b=1.919 x 1074(9.50 x 1079) -94431  1628.280  0.000
& =2.016(4.935 x 10710)
1 =8.989 x 1071(6.628 x 10710)

OGE-LE a=75.207x1073(7.687°%) ~768.870  1277.400  0.000
b =2.040 x 1074(1.751 x 107?)
& = 1.989(4.218 x 107°)
1=6.992 x 1071(7.649 x 1077)

OGE-W a=0.0014(0.001) —-571.00  881.660  0.000
¢ = 1.162(0.018)
& = 1.144(0.290)
1 =0.954(0.064)
OGE-GLE a=2.028"2(6.500"3) -130.170 - -
b=2.724x1072(9.03279)
¢ =1.014(4.754 x 1072)
& =9.067 x 1072(1.393 x 1071)
A =1.003 x 1071 (7.77673)

Z [H ()1 ‘—Ach,[H(x)” G

x,[H(x) Jo=t g (eI 1) gl e

+ Ac(a - 1)2 T ALy =0 (22)

2

SR Zn X; CxO L c-1_AC Zn 2 e—1 JH (x;)]°
-1 — “[H (X; - — “[H(X; ‘
Z h(x;) v(e=1) £ 2H () "2 P XiH(x)] 2 & XiHOa)Ie

XZ[H(X) c— le_/l( olH(x)I€ _l)e[H(x'

+Ac(a - 1)2 EpSTAL =0 (23)
4 Y InfH ()] + Z[H(x ) In[H (x:)] - AZ[H(X )1°eHCD" InfH (x,)]
i=1
[H (x,)]ce ™ =) dH I 1a1H (x,)]
+ Ac(a - 1) Z TP =0 (24)
( [H ()1 —1) (e[H(Xi)]c _ 1) n
(x:)1¢ _
a2 + (@ -1) Z P Py + > (7 —1) =0 (25)
where; .
h(x;) = a+ bx;, andH (x;) = ax; + b%
@© 2017 NSP
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The maximum likelihood estimates & = (o, a, b, ¢, 1) say® = (&, & b, ¢ A)’, can be obtained by solving the non-
linear equationsl), (22), (23), (24) and @5). The system of these five non-linear equations cannot bedahalytically
and statistical is applied to get numerical solutions \ggaitive techniques. The Likelihood Ratio (LR) test can leus
compare the fit of the OGE-GLE distribution with its sub-misdsy computing the maximized unrestricted and restricted
log-likelihood for a given data set. The LR test statistic is

Ap, = 2[LHa - LH()]

The test statistie\ gy, is asymptotically § — o) distributed as(fi, where d is the degrees of freedom. The LR rejects
the null hypothesis i\ g, > X?I'y’ Where/\/fiy denotes the uppdb0y

Table 3: Parameter estimates of second data set
Model Parameter Estimates ¢ AH, P-value
OGE-E 4=0.171(0.074) —-118.150 115.780 0.000
& = 8.915(5.594)
A =9.657(1.255)

OGE-R b=0.106(0.082)  —105.210  89.900  0.000
& = 2.733(13.475)
A =4.953(12.173)
OGE-LE  a=0.214(0.072) —-79.740  38.960  0.000
b = 0.004(0.013)
& = 4.924(0.608)
A =4.806(0.972)
OGE-W a = 4.450(0.586) -96.190  71.860  0.000
¢ = 0.019(0.005)
& =1.381(0.118)
1 =3.384(0.888)
OGE-GLE & =0.818(0.424) -60.260 - -
b = 0.381(0.749)
¢ = 0.245(0.185)
& = 0.662(0.274)
A =0.66742(0.301)

6 Applications

In this section, two real data sets were used to demonshatienportance of the OGE-GLE distribution. The first data
set represents the survival timeslafl patients with breast cancer obtained from a large hospitakieriod from 929 to
1938 [5]. The data examined byL[] are: 0.3, 0.3, 4.0, 5.0, 5.6, 6.2,6.3, 6.6, 6.8, 7.4, 74,84, 10.3, 11.0, 11.8, 12.2,
12.3,13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 168,17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.4,,21
23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.®M,3B2.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.M,39
39.0, 40.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43M,44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.M,51
51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 6@®M,®1.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0, 78.M,80
83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.001091.0, 115.0, 117.0, 125.0, 126.0, 127.0, 129.0, 12390,
154.0. The second data set is the data studiedLBly Jvhich gives the times of failure and running times for a p&n

of devices from an eld-tracking study of a larger system. A&egain point in time30 units were installed in normal
service conditions. Two causes of failure were observe@#égh unit that failed: the failure caused by an accumulation
of randomly occurring damage from power-line voltage spiétaring electric storms, and the failure caused by normal
product wear. The times are: 2.75, 0.13, 1.47, 0.23, 1.80, ©.65, 0.10, 3.00, 1.73, 1.06, 3.00, 3.00, 2.12, 3.0@,3.0
3.00,0.02,2.61, 2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 0.2®,®.80, 2.45, 2.66. Tablkand Table3 display the maximum
likelihood estimates for the first and second data sets ctigply, with their corresponding standard errors in biegsk

(© 2017 NSP
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and the log-likelihood {) values for each model. The LR test in TalBlend Table3 also revealed that the OGE-GLE
distribution provides a good fit than its sub-models as itthadeast value for all the information criteria.

In order to compare the OGE-GLE distribution with its subeais, the Akaike Information Criterion (AIC), the
Corrected Akaike Information Criterion (AICC) and th&¢ criterion were used. The better distribution corresponds t
the smaller AIC, AICC and-2¢ values. Clearly, the results as indicated in Tabfer the first data, and Tabtefor the
second data, reveal that the OGE-GLE distribution provadgsod fit than its sub-models.

Table 4: Criteria for Comparison for first data set
Model -2¢ AIC AlCC
OGE-E 1691.911 1697.911 1698.116
OGE-R 1888.627 1894.627 1894.832
OGE-LE  1537.744 1545.744 1546.089
OGE-W 1142199 1150.199 1150.544
OGE-GLE 260.324  270.342  270.864

Table5: Criteria for Comparison for second data set
Model -2¢ AIC AICC
OGE-E 236.304 242.304 243.227
OGE-R 210.418 216.418 217.341
OGE-LE 159.484 167.484 169.084
OGE-W 192.383 200.383 201.983
OGE-GLE 120.520 130.520 133.020

7 Conclusion

In this article, a new model has been proposed, the so caldd3@neralized Exponential Generalized Linear Exponkntia
(OGE-GLE) distribution which extends the Generalized BinExponential distribution in the analysis of data withirea
support. Various statistical properties of the new distitn such as quantile, moments and moment generatingidmnct
have been derived. The estimation of parameters of this nigwbdition was approached by the method of maximum
likelihood. An application of the OGE-GLE distribution teal data set revealed that the new distribution can be used
quite effectively to provide better fits than its sub-models
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