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Abstract: In this article, a new generalization of the Generalized Linear Exponential distribution called the odd generalized exponential
generalized linear exponential distribution is proposed.The mathematical properties, including moments and order statistics, have been
derived. An application of the model to real data sets revealed that the new model can be used to provide a better fit than itssub-models.
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1 Introduction

Statistical distributions play an important role in modeling real world phenomenon. Because of this, umpteen of
statistical distributions have been used in different branches of applied sciences (medicine, engineering and finance,
amongst others) to model and analyze lifetime data. However, there still remain many vital problems where most of the
existing distributions do not provide a good fit to these datasets. This creates room for researchers to continue to develop
new distributions to model lifetime data. For instance, [12] developed another weighted Weibull from the Azzalinis
family and [6] developed the Weibull Rayleigh distribution.

The Linear Exponential (LE) distribution, having exponential and Rayleigh distributions as sub-models, is a
well-known distribution for modeling lifetime data and formodeling phenomenon with linearly increasing failure rates.
A random variableX is said to have LE distribution with two parametersa > 0 and b > 0, if it has the Cumulative
Distribution Function (CDF):

F (x; a, b) = 1 − e
−
*.,ax+

bx2

2
+/-, x > 0, (1)

and the corresponding Probability Density Function (PDF) given by:

f (x; a, b) = (a + bx) e
−
*.,ax+

bx2

2
+/-. (2)

However, the LE distribution does not provide a good fit for modeling phenomena with decreasing, non-linear
increasing, or non-monotonic failure rates such as the bathtub shape, which usually occurs in firmware reliability
modeling and biological studies; see for example [4]. Several different parametric families of distributionssuitable for
modeling non-monotonic failure rates have been proposed instatistical literature. Among these are; the generalized
linear exponential distribution, which was proposed by [10] and the exponentiated generalized linear exponential
distribution which was proposed by [2]. Also, [3] proposed another generalized linear failure rate distribution and [14]
developed a new generalized linear exponential distribution.

Recently, [7]developed an odd family of univariate continuous distributions called the Odd Generalized Exponential
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(OGE) family and studied the OGE-Weibull (OGE-W) distribution, the OGE-Frchet (OGE-Fr) distribution and the
OGE-Normal (OGE-N) distribution. According to [7], the CDF of the OGE family of distribution is defined by:

F
(

x; α, λ, ξ
)

=

(

1 − e
−λ

G(x,ξ)
Ḡ(x,ξ)

)α

(3)

whereα > 0 andλ > 0 are two additional parameters. The Probability Density Function (PDF) corresponding to (3)
is given by:

f
(

x; α, λ, ξ
)

=

λαg
(

x, ξ
)

Ḡ
(

x, ξ
)2

e
−λ

G(x,ξ)
Ḡ (x,ξ)

(

1 − e
−λ

G(x,ξ)
Ḡ(x,ξ)

)α−1

(4)

whereg(x, ξ ) is the baseline PDF and̄G(x, ξ ) = 1 − G(x, ξ ) is the baseline survival function. These models are flexible
in nature because of the behavior of their hazard function: increasing, decreasing, bathtub and upside down bathtub
shapes. Using the CDF defined in (3), [1] developed the OGE-Rayleigh (OGE-R) distribution and studied its statistical
properties. In addition, [8] developed the OGE-Log Logistic (OGE-LL) distribution while [9] developed and studied
the OGE-Gompertz (OGE-G) distribution. In this paper, a newgeneralization of the Generalized Linear Exponential
(GLE) distribution, called the Odd Generalized Exponential Generalized Linear Exponential (OGE-GLE) distribution is
proposed, and its properties studied.

The rest of the paper is organized as follows: In section2, we define the OGE-GLE distribution, discuss some special
sub-models and provide its CDF, PDF and hazard function. A formula for generating OGE-GLE random samples from the
OGE-GLE distribution is given in section2. Section3 discusses some statistical properties of the OGE-GLE distribution
such as the quantile, median, moments, and moment generating function. The distribution of its order statistic are derived
in section4. The maximum likelihood estimators of the parameters are established in section5 and the application of the
new distribution to real data sets, demonstrated in section6.

2 The Odd Generalized Exponential Generalized Linear Exponential Distribution

Using the definition of [7], the CDF of of a non-negative random variableX having OGE-GLE distribution denoted as
OGE-GLE(α, a, b, c, λ) is given by:

FOGE−GLE (x; α, a, b, c, λ) =


1 − e

−λ
*.,e

(

a+ bx2

2

)c

−1
+/-


α

, x > 0 (5)

The parametersλ > 0, a > 0 andb > 0 are scale parameters whileα > 0 andc > 0 are shape parameters. The
corresponding PDF of the OGE-GLE(α, a, b, c, λ) distribution is given by:

fOGE−GLE (x; α, a, b, c, λ) = αλc (a + bx)

(

ax +
bx2

2

)c−1

e

(

ax+ bx2

2

)c

e
−λ

*.,e
(

a+ bx2

2

)c

−1
+/-

1 − e

−λ
*.,e

(

a+ bx2

2

)c

−1
+/-


α−1

, x > 0

(6)
One advantage of the OGE-GLE distribution is that, it has a closed form CDF, which enables us to generate random

numbers from it by using the relation:

X =

−a +

√
√

√

a2
+ 2b

ln
*,
λ−ln

(

1−u
1
α

)

λ
+-


1
c

b
, (7)

whereU is a uniformly distributed random variable on the (0, 1) interval. The relation can be used to generate random
samples from a wide set of sub-models of the OGE-GLE distribution, such as the OGE-Exponential (OGE-E), OGE-
Rayleigh (OGE-R), OGE-LE, and OGE-Weibull (OGE-W). Table 1displays the sub-models of the OGE-GLE distribution.

The PDF of the OGE-GLE(α, a, b, c, λ) can be written in terms of the cumulative hazard and the hazard functions of
LE(a, b) as:

fOGE−GLE (x; α, a, b, c, λ) = αλchLE (x) [HLE (x)]c−1 eHLE (x)c e−λ
(

e[HLE ]c −1
) [

1 − e−λ
(

e[HLE (x)]c −1
) ]α−1

, x > 0 (8)
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Table 1: Sub-models of OGE-GLE
Model α a b c λ

OGE-E - - 0 1 -
OGE-R - 0 - 1 -
OGE-LE - - - 1 -
OGE-W - - 0 - -

wherehLE (x) = hLE (x; a, b) = a + bx, andHLE (x) = ax + bx2

2
, are the hazard and the cumulative hazard functions of

the LE distribution respectively. Using both binomial and Taylor series expansion, the PDF of the OGE-GLE distribution
can be written as:

fOGE−GLE (x; α, a, b, c, λ) = αλc (a + bx)

(

ax +
bx2

2

)c−1 i=0
∑

j,k=0

(−1)i+j+KΓ(α)Γ( j + 1)[λ(k + 1)]j

i!J!K!Γ(α − k)Γ( j − i + 1)
e
−(i−j−1)

(

ax+ bx2

2

)c

, x > 0

(9)
The hazard function of the OGE-GLE(α, a, b, c, λ) is given by:

hOGE−GLE (x; α, a, b, c, λ) =

αλc (a + bx)
(

ax + bx2

2

)c−1
e

(

ax+ bx2

2

)c

e
−λ

*.,e
(

a+ bx2

2

)c

−1
+/-

1 − e

−λ
*.,e

(

a+ bx2

2

)c

−1
+/-


α−1

1 −


1 − e

−λ
*.,e

(

a+ bx2

2

)c

−1
+/-


α , x > 0

(10)
The PDF and hazard function of the OGE-GLE distribution, fordifferent parameter values, are displayed in Figure1 and
Figure2 respectively. From the figures, it is clear that the PDF can bedecreasing or unimodal and the hazard function
can be increasing or bathtubed in nature.

Fig. 1: PDF plot of the OGE-GLE distribution
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Fig. 2: Hazard plot of the OGE-GLE distribution

3 Statistical Properties

3.1 Quantile and Median

The OGE-GLE(α, a, b, c, λ) quantile function, sayQ(u) = F−1(u), is straight forward and is computed by inverting (5);
we have

Q(u) =

−a +

√
√

√

a2
+ 2b

ln
*,
λ−ln

(

1−u
1
α

)

λ
+-


1
c

b
, (11)

where U is a uniformly distributed random variable on the (0, 1) interval. Using (11), the median of the
OGE-GLE(α, a, b, c, λ) can be obtained as

Q(0.5) =

−a +

√
√

√

a2
+ 2b

ln
*,
λ−ln

(

1−0.5
1
α

)

λ
+-


1
c

b
, (12)

3.2 Moment

It is customary to derive the moments when a new distributionis proposed. Moments play an important role in any
statistical analysis, especially in applications. They are used for finding measures of central tendency, dispersion,skewness
and kurtosis among others. Using (9), thert h non-central moment of the OGE-GLE distribution is:

µ
′

r =

∫ ∞

0

fOGE−GLE (x; α, a, b, c, λ) = ωijk

∫ ∞

0

xrαλc (a + bx)

(

ax +
bx2

2

)c−1

e
−(i−j−1)

(

ax+ bx2

2

)c

dx (13)

where

ωijk =

i=0
∑

j,k=0

(−1)i+j+KΓ(α)Γ( j + 1)[λ(k + 1)]j

i!J!K!Γ(α − k)Γ( j − i + 1)

Now, if we define the substitution:

y = (i − j − 1)

(

ax +
bx2

2

)c

⇒ c(a + bx)

(

ax +
bx2

2

)c−1

dx =
dy

(i − j − 1)
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Clearly,

x =
−a +

√

a2
+ 2b

[
y

(i−j−1)

] 1
c

b
Thus, expanding binomially, this yields:

µ
′

r = ωijkαλ

∫ ∞

0


−a +

√

a2
+ 2b

[
y

(i−j−1)

] 1
c

b



r

e−y
dy

(i − j − 1)

= ωijkαλ

∫ ∞

0

r
∑

s=0

(

r
s

)

(−1)s(a)s

b
r+s

2 (i − j − 1)
r−s+2c

2c


1 +

a2

2b
(

y

i−j−1

)
1
c



r−s
2

2
r−s

2 y
r−s
2c e−ydy

It is easy to verify that| a
2 (i−j−1)

1
c

2by
1
c

| < 1 wheny > 0; again expanding binomially results in:

µ
′

r = ωijkαλ

∫ ∞

0

∞
∑

m=0

r
∑

s=0

(

r
s

) (

r−s
2

m

)

(−1)s2
r−s−2m

2 a2m+s

b
r+s+2m

2 (i − j − 1)
r−s+2c (1−m)

2c

y
r−s−2m

2c e−ydy

= ωijkαλ

∞
∑

m=0

r
∑

s=0

(

r
s

) (

r−s
2

m

)

(−1)s2
r−s−2m

2 a2m+s

b
r+s+2m

2 (i − j − 1)
r−s+2c (1−m)

2c

Γ

(

1 +
r − s − 2m

2c

)

This implies:

µ
′

r = ̟ijkms

2
r−s−2m

2 a2m+sa2m+s
Γ

(

1 + r−s−2m
2c

)

b
r+s+2m

2 (i − j − 1)
r−s+2c (1−m)

2c

(14)

where;

̟ijkms =

∞
∑

j,k,m=0

r
∑

s=0

j
∑

i=0

(−1)i+j+k+sΓ(α + 1)Γ( j + 1)λ j+1(k + 1) j

i! j!K!Γ(α − k)Γ( j − i + 1)

for r = 1, 2, ..., whereΓ(.) is the gamma function.

3.3 Moment Generating Function

The moment generating function denoted byMX (t) is obtained by using the definition:

MX (t) = E
(

etx
)

=

∫ ∞

0

etx fOGE−GLE (x; α, a, b, c, λ)dx (15)

Using the Taylor series expansion ofetx , (15) can be written as

MX (t) =
∞
∑

r=0

tr

r!

∫ ∞

0

xr fOGE−GLE (x; α, a, b, c, λ)dx (16)

=

∞
∑

r=0

tr

r!
µ
′

r

= ̟∗ijkmsr

2
r−s−2m

2 a2m+sa2m+s
Γ

(

1 + r−s−2m
2c

)

b
r+s+2m

2 (i − j − 1)
r−s+2c (1−m)

2c

where;

̟∗ijkmsr =

∞
∑

j,k,m,r=0

r
∑

s=0

j
∑

i=0

(−1)i+j+k+sΓ(α + 1)Γ( j + 1)λ j+1(k + 1) j

i! j!k!Γ(α − k)Γ( j − i + 1)
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4 Distribution of Order Statistics

In this section, the PDF of therth order statistic is derived. LetX1, X2, ..., Xn be a random sample from an OGE-GLE
distribution andX1:n ≤ X2:n ≤ ... ≤ Xn:n denote the corresponding order statistics obtained from the sample. Then the
PDF, fr :n, of therth order statisticXr :n is given by

fr :n (x) =
1

B(r, n − r + 1
[F (x)][1 − F (x)]n−r f (x)

whereF (x) and f (x) are the CDF and PDF given by (5) and (6) respectively, andB(., .) is the Beta function. since
0 < F (x) < 1 for x > 0, by using the binomial series expansion of[1 − F (x)]n−r , which is given by

[1 − F (x)]n−r =
n−r
∑

ℓ=0

(−1)ℓ
(

n − r
ℓ

)

[F (x)]ℓ

we have

fr :n(x) =
1

B(r, n − r + 1

n−r
∑

ℓ=0

(−1)ℓ
(

n − r
ℓ

)

[F (x)]r+ℓ−1 f (x) (17)

Therefore, substituting (5) and (6) into (17) one gets

fr :n (x) =
n−r
∑

ℓ=0

(−1)ℓn!

ℓ!(r − 1)!(n − r − ℓ)!(r + ℓ)
fOGE−GLE (x; αr+ℓ, a, b, c, λ) (18)

where fOGE−GLE (x; αr+ℓ, a, b, c, λ) is the PDF of the OGE-GLE distribution with parametersαr+ℓ = α(r + ℓ), a, b, c
andλ. Relation (18) revealed thatfr :n(x) is the weighted average of the OGE-GLE distribution with different shape
parameters. Using (18), thepth moment of therth order statisticsXr :n is

µ
′ (r :n)
p = ̟∗∗ijkmsr

2
p−s−2m

2 a2m+s
Γ(1 + p−s−2m

2c
)

b
p+s+2m

2 (i − j − 1)
p−s+2c (1−m)

2c

(19)

where;

̟∗∗ijkmsr =

∞
∑

j,k,m=0

p
∑

s=0

j
∑

i=0

n−r
∑

ℓ=0

(−1)i+j+k+s+ℓΓ(n + 1)Γ(αr+ℓ + 1)Γ( j + 1)λ j+1(k + 1) j

ℓ!i! j!k!(r − 1)!(n − r − ℓ)!(r + ℓ)Γ(αr+ℓ − k)Γ( j − i + 1)

5 Estimation and Inference

In this section, the maximum likelihood estimation approach was employed to estimate the parameters of the OGE-GLE
distribution. Given a random sample, denoted asX1, X2, ..., Xn, with sizen, upon using (6) the log-likelihood function for
the vector of parametersΘ = (α, a, b, c, λ)

′

can be written as:

ℓ = n lnα + n ln λ + n ln c +
n

∑

i=1

ln(a + bxi ) + (c − 1)
n

∑

i=1

ln *,axi +
bx2

i

2
+- +

n
∑

i=1

*,axi +
bx2

i

2
+-
c

− λ

n
∑

i=1

e
(

axi+
ax2

i
2

)c

− 1

 + (α − 1)
n

∑

i=1

ln


1 − e

−λ

*....,
e

*.,axi+
ax2

i
2

+/-
c

−1

+////-


(20)

Differentiating (20) with respect toα, a, b, c andλ, respectively and equating to zero gives

n
α
+

n
∑

i=1

ln

[
1 − e−λ

(

e[H (xi )]c −1
) ]
= 0 (21)
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Table 2: Parameter estimates of first data set
Model Parameter Estimates ℓ ΛH0

P-value
OGE-E â = 0.022(0.002) −845.96 1431.580 0.000

α̂ = 2.555(1.274)
λ̂ = 1.078(0.105)

OGE-R b̂ = 1.919 × 10−4 (9.50 × 10−6) −944.31 1628.280 0.000

α̂ = 2.016(4.935 × 10−10)
λ̂ = 8.989 × 10−1(6.628 × 10−10)

OGE-LE â = 5.207 × 10−3 (7.687−4) −768.870 1277.400 0.000

b̂ = 2.040 × 10−4(1.751 × 10−5)
α̂ = 1.989(4.218 × 10−6)

λ̂ = 6.992 × 10−1(7.649 × 10−7)

OGE-W â = 0.0014(0.001) −571.00 881.660 0.000

ĉ = 1.162(0.018)
α̂ = 1.144(0.290)
λ̂ = 0.954(0.064)

OGE-GLE â = 2.028−2 (6.500−3) −130.170 - -
b̂ = 2.724 × 10−5 (9.032−5)
ĉ = 1.014(4.754 × 10−2)

α̂ = 9.067 × 10−2(1.393 × 10−1)
λ̂ = 1.003 × 10−1 (7.776−3)

n
∑

i=1

1

h(xi)
+ (c − 1)

n
∑

i=1

xi
H (xi)

+ c
n

∑

i=1

xi[H (xi)]c−1 − λc
n

∑

i=1

xi[H (xi)]c−1e[H (xi )]c

+ λc(α − 1)
n

∑

i=1

xi[H (xi)]c−1e−λ
(

e[H (xi )]c −1
)

e[H (xi )]c

1 − e−λ(e[H (xi )]c −1)
= 0 (22)

n
∑

i=1

xi
h(xi)

+ (c − 1)
n

∑

i=1

x2
i

2H (xi)
+

c
2

n
∑

i=1

x2
i [H (xi)]

c−1
−
λc
2

n
∑

i=1

x2
i [H (xi)]

c−1e[H (xi )]c

+ λc(α − 1)
n

∑

i=1

x2
i
[H (xi)]c−1e−λ

(

e[H (xi )]c −1
)

e[H (xi )]c

2[1 − e−λ(e[H (xi )]c −1)]
= 0 (23)

n
c
+

n
∑

i=1

ln[H (xi)] +
n

∑

i=1

[H (xi)]
c ln[H (xi)] − λ

n
∑

i=1

[H (xi)]
ce[H (xi )]c ln[H (xi)]

+ λc(α − 1)
n

∑

i=1

[H (xi)]ce−λ
(

e[H (xi )]c −1
)

e[H (xi )]c ln[H (xi)]

1 − e−λ(e[H (xi )]c −1)
= 0 (24)

n
λ
+ (α − 1)

n
∑

i=1

e−λ
(

e[H (xi )]c −1
)

(

e[H (xi )]c − 1
)

1 − e−λ(e[H (xi )]c −1)
+

n
∑

i=1

(

e[H (xi )]c
− 1

)

= 0 (25)

where;

h(xi) = a + bxi, andH (xi) = axi +
bx2

i

2
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The maximum likelihood estimates ofΘ = (α, a, b, c, λ)
′

sayΘ̂ = (α̂, â, b̂, ĉ, λ̂)
′

, can be obtained by solving the non-
linear equations (21), (22), (23), (24) and (25). The system of these five non-linear equations cannot be solved analytically
and statistical is applied to get numerical solutions via iterative techniques. The Likelihood Ratio (LR) test can be used to
compare the fit of the OGE-GLE distribution with its sub-models by computing the maximized unrestricted and restricted
log-likelihood for a given data set. The LR test statistic is

ΛH0
= 2[LHa

− LH0
]

The test statisticΛH0
is asymptotically (n→ ∞) distributed asχ2

d
, where d is the degrees of freedom. The LR rejects

the null hypothesis ifΛH0
> χ2

d,γ
, whereχ2

d,γ
denotes the upper100γ

Table 3: Parameter estimates of second data set
Model Parameter Estimates ℓ ΛH0

P-value
OGE-E â = 0.171(0.074) −118.150 115.780 0.000

α̂ = 8.915(5.594)
λ̂ = 9.657(1.255)

OGE-R b̂ = 0.106(0.082) −105.210 89.900 0.000

α̂ = 2.733(13.475)
λ̂ = 4.953(12.173)

OGE-LE â = 0.214(0.072) −79.740 38.960 0.000

b̂ = 0.004(0.013)
α̂ = 4.924(0.608)
λ̂ = 4.806(0.972)

OGE-W â = 4.450(0.586) −96.190 71.860 0.000

ĉ = 0.019(0.005)
α̂ = 1.381(0.118)
λ̂ = 3.384(0.888)

OGE-GLE â = 0.818(0.424) −60.260 - -
b̂ = 0.381(0.749)
ĉ = 0.245(0.185)
α̂ = 0.662(0.274)
λ̂ = 0.66742(0.301)

6 Applications

In this section, two real data sets were used to demonstrate the importance of the OGE-GLE distribution. The first data
set represents the survival times of121 patients with breast cancer obtained from a large hospital in a period from1929 to
1938 [5]. The data examined by [11] are: 0.3, 0.3, 4.0, 5.0, 5.6, 6.2, 6.3, 6.6, 6.8, 7.4, 7.5, 8.4, 8.4, 10.3, 11.0, 11.8, 12.2,
12.3, 13.5, 14.4, 14.4, 14.8, 15.5, 15.7, 16.2, 16.3, 16.5, 16.8, 17.2, 17.3, 17.5, 17.9, 19.8, 20.4, 20.9, 21.0, 21.0, 21.1,
23.0, 23.4, 23.6, 24.0, 24.0, 27.9, 28.2, 29.1, 30.0, 31.0, 31.0, 32.0, 35.0, 35.0, 37.0, 37.0, 37.0, 38.0, 38.0, 38.0, 39.0,
39.0, 40.0, 40.0, 40.0, 41.0, 41.0, 41.0, 42.0, 43.0, 43.0, 43.0, 44.0, 45.0, 45.0, 46.0, 46.0, 47.0, 48.0, 49.0, 51.0, 51.0,
51.0, 52.0, 54.0, 55.0, 56.0, 57.0, 58.0, 59.0, 60.0, 60.0, 60.0, 61.0, 62.0, 65.0, 65.0, 67.0, 67.0, 68.0, 69.0, 78.0, 80.0,
83.0, 88.0, 89.0, 90.0, 93.0, 96.0, 103.0, 105.0, 109.0, 109.0, 111.0, 115.0, 117.0, 125.0, 126.0, 127.0, 129.0, 129.0,139.0,
154.0. The second data set is the data studied by [13], which gives the times of failure and running times for a sample
of devices from an eld-tracking study of a larger system. At acertain point in time,30 units were installed in normal
service conditions. Two causes of failure were observed foreach unit that failed: the failure caused by an accumulation
of randomly occurring damage from power-line voltage spikes during electric storms, and the failure caused by normal
product wear. The times are: 2.75, 0.13, 1.47, 0.23, 1.81, 0.30, 0.65, 0.10, 3.00, 1.73, 1.06, 3.00, 3.00, 2.12, 3.00, 3.00,
3.00, 0.02, 2.61, 2.93, 0.88, 2.47, 0.28, 1.43, 3.00, 0.23, 3.00, 0.80, 2.45, 2.66. Table2 and Table3 display the maximum
likelihood estimates for the first and second data sets respectively, with their corresponding standard errors in brackets,
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and the log-likelihood (ℓ) values for each model. The LR test in Table2 and Table3 also revealed that the OGE-GLE
distribution provides a good fit than its sub-models as it hasthe least value for all the information criteria.

In order to compare the OGE-GLE distribution with its sub-models, the Akaike Information Criterion (AIC), the
Corrected Akaike Information Criterion (AICC) and the−2ℓ criterion were used. The better distribution corresponds to
the smaller AIC, AICC and−2ℓ values. Clearly, the results as indicated in Table4 for the first data, and Table5 for the
second data, reveal that the OGE-GLE distribution providesa good fit than its sub-models.

Table 4: Criteria for Comparison for first data set
Model −2ℓ AIC AICC
OGE-E 1691.911 1697.911 1698.116
OGE-R 1888.627 1894.627 1894.832

OGE-LE 1537.744 1545.744 1546.089
OGE-W 1142.199 1150.199 1150.544

OGE-GLE 260.324 270.342 270.864

Table 5: Criteria for Comparison for second data set
Model −2ℓ AIC AICC
OGE-E 236.304 242.304 243.227
OGE-R 210.418 216.418 217.341

OGE-LE 159.484 167.484 169.084
OGE-W 192.383 200.383 201.983

OGE-GLE 120.520 130.520 133.020

7 Conclusion

In this article, a new model has been proposed, the so called Odd Generalized Exponential Generalized Linear Exponential
(OGE-GLE) distribution which extends the Generalized Linear Exponential distribution in the analysis of data with real
support. Various statistical properties of the new distribution such as quantile, moments and moment generating function
have been derived. The estimation of parameters of this new distribution was approached by the method of maximum
likelihood. An application of the OGE-GLE distribution to real data set revealed that the new distribution can be used
quite effectively to provide better fits than its sub-models.
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