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Abstract: In this paper, we have defined the new generalized Elzaki ig Teansformation and find out its relations with other
transformations. Furthermore we have derived the invergEiomula, convolution theorem for it. Also as an applicatie have solve
fractional differential equation with non — singular kelcne
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1 Introduction

Fractional differential equations play an important releriodelling the dynamics of complex systems (see for example
Refs. [1,2,3,4,5] and the references therein) The idea of transformatiodshgper geometric function$] is generally
started with the need of converting problems from one fortm another form which is rather simpler to solve and then
by using inversion formula again coming back to the origfioain with the solution.

In recent years many linear boundary value problems, Initldue problems are effectively solved by these
transformations{, 8,9, 10] like Laplace, Fourier, Mellin, wavelet and other transfi@tions with applications increasing
rapidly in daily life and branches of science like bioengrneg, computational fluid dynamics, Abel's integral
equations, biomathematics, capacitor theory, conduetafdiological systemsi[l,12]. The Elzaki-Tarig transform
[13] which is still not widely known in the area of fractional calus

In this paper, we have introduced the generalized Elzaki rigTaansformations with its relation to other
transformations in general way. Moreover, as an applinati@ have solved fractional differential equation with
non-local and non-singular kernél][by using Tarig transformatiorlp] as a part of generalized definition.

The paper mainly divided into three parts, in the first pardeéine the generalized Elzaki—Tarig transform and some
of its properties, in the second part we have derive theioglaif it with other transformations. In the third part, wevha
provided an application of it to solve fractional differetequations with non-local and non-singular kernel alwsiit
the discussion of the obtained result conclusion part endsnanuscript.

In the following we present some basic definitions neededaripg the main results.
Definition 1: Atangana — Baleanu Riemann fractional derivative. Comsidanctionf cH* (a,b),b > a, a< [0, 1] which
is of exponential order then the new ABR fractional derwaf{i] of f(t) is defined as ,

ABRDA (f (1)) = B 41 (x)Eq (—a “{_Xf )]b > a,a€[0,1] and B(a) is normalization function obeying
B(0)=B(1) =1. (1)

Definition 2: Atangana — Baleanu Caputo fractional derivative. ConsidanctionfcH* (a,b) b > a, a € [0, 1] which is
of exponential order then the new ABC fractional derivafivieof f(t) is defined as,

t a
ABCDE (f (1)) = % Mf’(x) = (—C((t_x) )dx} b > aa € [0,1] and B(a) is normalization function obeying

1-a

B(0) =B(1) = 1. )
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Definition 3: Laplace type Integral Transform
Consider a function f(x) which is piecewise continuous ah@xponential order then the Laplace — type integ8hl [
transform is defined as follows

ZeAf(X);p} = Ze’ (x) e~ PPIEN £ (x) dx. (3)

where® (p) is invertible function withe (x) = [ e 2¥dxan exponential function are(x) as invertible function.
Definition 4: Elzaki — Tarig Transform

It _
Let S ={f(t): Ik, ko > 0,|f (t)| < Me"i ;te (—1)! X[0,00) AM > 0} then for the given function which satisfies the
condition of the set S, the Elzaki — Tarig transformatiorf @) is defined as10]

T(f():p)=pJy f(t)e /Pdt ps0. (4)
Definition 5: Tarig Transform

It .
Let S ={f(t): Iky, ko > O,|f (t)| < Me"i ,te (—1)! X[0,00) AM > 0} then for the given function which satisfies the
condition of the set S, the Tarig transformationfdt) is defined as13]

;t
T(f(t);p) = Jo 3f(t)e dt, p0. ()
Definition 6: Mellin Transform
The Mellin transform of the functioff (t) is the integral transform defined & [

M (f(t);p) =[5 tP1f (t)dt. (6)

2 Main Result

Definition: We consider the definition of Generalized Elzaki — Tarig Bfarmation by using the definition (3), (5) and
(6)as,

Oe {F(x); p} = Zqo (1) @1(p)e' (e PPt (xdx  pro. (2.1)
X

Here f(x)e S = {f (x) : Tk, ka > 0,]f (X)| < Me" ,xe (—1)' X[0,00) AM > 0} and cp(%) ,®,(p) are invertible

functions ofp with £ (x) = [e ¥ dx an exponential function ana(x) as invertible function, thus from the definitions
above it can be seen that it is the generalization of ElzaldrigTransformation.

2.1 Relation with Other Transformations
2.1.1 Elzaki — Tarig Transform

The Elzaki - Tarig Transformations 10,13] of a function f(x) can be obtained by taking
@ (p) = A @1(p) = Lwithe (x) = xin equation (2.1)

Ok { f (x):p} = Jg~ pe® f(x)dx, p£Oi.e.

2.1.2 Tarig Transform

The Tarig Transformatiorl0] of a function f (x) can be obtained by takin@ (p) = 512 APy (p) = Elgwithe (x) =xin
equation (2.1)
O {F (X): P} = J5* P2e F(x)dx, p0,
= De{f(x); P} = J§ 2e¥ f(x)dx, p0.

2.1.3 Laplace Transformation

The Laplace TransformatioB] of a functionf (x) can be obtained by taking (p) = pA @ (p) = pwithe (x) = xiin
equation (2.1) with Rep)> 0
Oc{f (x); P} = Jo 5 pe*Pf(x)dx Re(p) > O,
= O {f (X); p} = Jo e *Pf(x)dx, Re (p) > 0.
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2.1.4 Mellin Transform

The Mellin Transformationd] of a functionf (x) can be obtained by taking (p) = — pA @1 (p) = — pwithe (X) = In(x)
in equation (2.1) wittp > 0
O {F 001 P} = J5 () (=) 3" f (x)dx, p> 0
= Dinpg £ (0); P} = Jo 16"V f(x)dx p> 0,
= On {f (X):p} = Jo' 3xPf(x)dx p>0,
= O {T (9P} = Jo xP~H(x)dx, p > 0.

2.1.5L, Transform

As a particular case df;— transform; the_, transform B, 14] of a functionf (x) at a pointp can be obtained from (2.1)
by substitution of® (p) = p? A @y (p) = p?withe (x) = x?

O {f (00} = J5 & p2e P f(x)dx, Re(p?) >0,

which is nothing but.,- transform off (x) [8].

2.2 Properties of Generalized Elzaki — Tarig Transform
2.2.1 Inversion Formula

The definition of generalized Elzaki — Tarig transformatielts us that

F(p)=0:{f(x);p} = 2(:0 (%) @y (p) € (x)e®PIEX f (x)dx p£0 which satisfies the given conditions in (2.1) then
the inverse transformation to be defined as,
1 fetic

- -1 -1 P(p)e(X)
oo . F(@H(p) @y} (p)e” P Mdp

O:*(F (p)

Proof: By definition of generalized Elzaki — Tarig transfation (2.1) with defining
o (l) =Land®(p)=r.=F (@1 (L) o) =[5 (x) e 50 f (x)dx

Pute (x) :rt in the above equation r
=SF(o (L) ortn) = J5ef (e71(t)dt=0 { f (e72(t));r},

-
whenever® ([—1)) A @1 (p) are inverses of each other so that by complex inversion flarfiou the Laplace transform

with €71 (t) = xAr = p.

1 C+ico

= f(x) F (o (p) @, (p) € Mdp.

o ﬁ C—ioo

2.2.2 Generalized Elzaki — Tarig Transform of Derivative

Let f (x) satisfies all the conditions in equation (2.1) witx) has piecewise continuous derivative theff’(x); p} =

PP f(9; P} — @ (1) Bu(P)F(0F).
Proof: By definition of generalized Elzaki — Tarig transformati@il(), we have

O {f'(x);p} = /qua (—;) @y (p) €' (x)e PPEXf/(x)dx, p£0 = @ (%) ®1(p) /Oms/(x)e—d’<P>€<X>f’(x)d><,

applying integration by part to the above we get
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+o(p) / g (x) & PPEX £ (x)dx)
=q><p>{mg{f<x>:p}—q>(%) @1 (p) 1(0").

As f (x) is of exponential order

2.2.3 Convolution Theorem

If F (p) andG(p) are the generalized Elzaki — Tarig transformations of twecfionsf (x) andg(x) respectively then the
generalized convolution theorem for definition (2.1) iscoédted as follows,

F(P)G(p) =0 {fxgp}=

(/qJ (%) @y (p) € (y)e PPEVf (y)dy)(/q) (?1)) @1 (p)e’ (tH)e ?PEUg(t)dt) =
0

0

1
[[o(5) mme e e P <t gt ayat
0
Substitutee (y) + € (t) = €(x) and changing the order of integration [4] in the double irdége get,

F(PIG(P) = 0 (%) (P& (e P (g0 (7 (209 —2(1) it -

0

1:{ (Jo (5 ) e1me a1 (e e -n)at) o).

3 Application

We present some basic relations needed for giving an apiplicaf Generalized Elzaki — Tarig transformation,

3.1 Laplace Transform of ABR Fractional Derivative

Given a functionf (x) then the Laplace transform of ABR fractional derivativetagigiven by B,14],
L{QBRDta (f(1);p} = % PaL{f(t);P}*Pale(@’ acl0,1).

Pty

3.1.1 Relation Between Laplace and Tarig Transform

Given a functionf(x) then the relation between Laplace and Tarig transform isrgly using the definition of
generalized Elzaki — Tarig transform{ f (x); p} = Ok{f (X); p} with @ (p) = pA ®1(p) = p ande (x) = X.
Hence from (3.1.1), (2.1.3) and the definition (5) we get

L{Q‘BCD{J (f(t);p} = % pan{fS‘yE};‘_So”lF(O) _ % pO’L{f(tp)(;XF_)F}i—E_PO:”lF(O), GE[O, 1).
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3.1.2 Applications to Fractional Differential Equation

We consider the following fractional differential equatim the ABC sense7], namely

y? (t) = y(t),ae(0,1) with initial conditiony (0) = 1.

To solve the above ABC fractional differential equation vpplg the Laplace transform on both sides of the above
equation and use the relation (3.1.2), namely

L{y" (1)} =L{y(t)} 1)
which implies
L{A%D{ (y(1)); p} = L{y (1)}, 2)
or
Bla) p*Od{y®);p} _ .
Ta) oty — DO ©
After some calculations we get
[B(a) p* —[(1—a)p” +al]Y (p) = B(a) p* * 4)
and we conclude that w1
Y(p) = Bla)p )

[B(a)p” —[(1-a)p”+a]]’
Now by applying the convolution property and taking the mseeTarig transform we get the desired solution.

4 Conclusion

The paper gives some new ideas in the field of integral trameftions as well as in fractional calculus as an application
Also with the help of generalized Elzaki — Tarig transforioas we have found relation between other transformations.

We can conclude that by making proper choicefufp) , @1 (p) ande (x) the ABC and ABR fractional differential
equation which is still not very well known in the field of fittanal calculus can be solved using Generalized Elzaki —
Tarig transformation.

Thus from generalized Elzaki — Tarig transformation vasit)ansform can be obtained by putting different condition
on it which will be helpful to find the solutions of fractiongdifferential equations and boundary value problems andhimig
be extend to solve partial fractional differential equatity extending the definition to the higher dimensions.
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