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Abstract: The notions of Chatterjea typeF-contraction and Chatterjea type(α −η −AF)-contraction on closed ball are introduced.
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1 Introduction and Preliminaries

Banach Contraction Principle has been extended and
generalized in many directions (see [3,7,8,9,10]). One of
the most interesting generalization was given by
Wardowski [24]. Recently, Abbas et al.[1] further
generalized the concept of F-contraction and proved
certain fixed point results. Hussain and Salimi [14]
introduced anα-GF contraction with respect to a general
family of functions G and established Wardowski type
fixed point results in ordered metric spaces.
Matthews [22] introduced the concept of partial metric
spaces and proved an analogue of Banach’s fixed point
theorem in partial metric spaces. This remarkable
contribution leads many authors to focus on partial metric
spaces and its topological properties, see [16] and
references therein.
Following Arshad et al. [2,4] and Hussain and Salimi
[14], in this article, we shall show existence of fixed
points of Chatterjea type F-contraction on closed ball in
partial metric spaces. In section 2, we introduce the
Chatterjea type F-contraction on closed ball in partial
metric spaces, by combining the ideas of Wardowski [24]
and Chatterjea [15], and obtain a fixed point theorem. We
give an example to illustrate this result. In section 3, we
introduce Chatterjea type(α − η − AF)-contraction on
closed ball, by combining the ideas
(α − η − AF)-contraction and Chatterjea [15], and

present a fixed point theorem and explain its idea through
an example.
Throughout this paper, we denote(0,∞) by R+, [0,∞) by
R+

0 , (−∞,+∞) byR and set of natural numbers byN.
Following concepts and results will be required for the
proofs of main results

Definition 1.[22] Let X be a nonempty set and p: X×X →
R+

0 satisfies following properties

(P1)x= y⇔ p(x,x) = p(x,y) = p(y,y) ,
(P2)p(x,x) ≤ p(x,y) ,
(P3)p(x,y) = p(y,x) ,
(P4)p(x,y)≤ p(x,z)+ p(z,y)− p(z,z) ,

for all x,y,z∈ X. Then p is called a partial metric on X
and the pair(X, p) is known as partial metric space.

Matthews [22], proved that every partial metricp onX
induces a metricdp : X×X →R+

0 defined by

dp(x,y) = 2p(x,y)− p(x,x)− p(y,y) , (1)

for all x,y∈ X.
Notice that a metric on a setX is a partial metricp such

that p(x,x) = 0 for all x∈ X.
Matthews [22] established that each partial metricp

on X generates aT0 topology τ(p) on X. The base of
topology τ(p) is the family of open p-balls
{

Bp (x,ε) : x∈ X, ε > 0
}

, where
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Bp(x,ε) = {y∈ X : p(x,y)< p(x,x)+ ε} for all x ∈ X
andε > 0. Corresponding closed ball is defined by

Bp(x,ε) = {y∈ X : p(x,y)≤ p(x,x)+ ε} .

A sequence{xn}n∈N in (X, p) converges to a pointx ∈ X
if and only if p(x,x) = limn→∞ p(x,xn).

Definition 2.[22] Let (X, p) be a partial metric space, then

(1)A sequence{xn}n∈N in (X, p) is called a Cauchy
sequence if
limn,m→∞ p(xn,xm) exists and is finite.

(2)A partial metric space(X, p) is said to be complete if
every Cauchy sequence{xn}n∈N in X converges, with
respect toτ(p), to a point x∈ X such that p(x,x) =
limn,m→∞ p(xn,xm).

Following lemma will be helpful in the sequel.

Lemma 1.[22]

(1)A partial metric space(X, p) is complete if and only if
the metric space(X,dp) is complete.

(2)A sequence{xn}n∈N in X converges to a pointx∈ X,
with respect toτ(dp) if and only if limn→∞ p(x,xn) =
p(x,x) = limn,m→∞ p(xn,xm).

(3)If limn→∞ xn = υ such that p(υ ,υ) = 0 then
limn→∞ p(xn,y) = p(υ ,y) for everyy∈ X.

Remark.Being
(

Bp(x0, r), p
)

⊆ (X, p), Lemma1 holds for
(

Bp(x0, r), p
)

.

Definition 3.[15] Let (X, p) be a partial metric space. A
mapping T: X → X is said to be Chatterjea contraction if
it satisfies the following condition

p(T (x) ,T (y))≤
k
2
[p(x,T (y))+ p(y,T (x))] ,

for all x,y∈ X and some k∈ [0,1[.

Definition 4.[23] Let T be a self map defined on X and
α : X×X →R+

0 be nonnegative function. The mapping T
is said to beα-admissible if for all x,y ∈ X, α(x,y) ≥ 1
implies thatα(T(x),T(y))≥ 1.

Definition 5.[21] Let T : X → X be a self mapping and
α,η : X ×X → R+

0 be two functions. The mapping T is
said to beα-admissible mapping with respect toη if for
all x,y∈X, α(x,y)≥ η(x,y) implies thatα(T(x),T(y))≥
η(T(x),T(y)).

If η(x,y) = 1, then above definition reduces to definition
4. For the sake of completeness, we recall the concept of
F-contraction, which was introduced by Wardowski [24],
later we will mention his result.
A mappingT : X → X, is said to be F-contraction if it
satisfies following condition

(d(T(x),T(y))> 0⇒ t +F(d(T(x),T(y))≤ F(d(x,y))),
(2)

for all x,y∈ M and for somet > 0. WhereF : R+ → R is
a mapping satisfying following properties

(F1): F is strictly increasing.
(F2): For each sequence{an} of positive numbers

limn→∞ an = 0 if and only if limn→∞ F(an) =−∞.
(F3): There exists θ ∈ (0,1) such that

limα→0+(α)θ F(α) = 0.

We denote by∆F , the set of all functions satisfying the
conditions (F1) − (F3). Wardowski established the
following result using F-contraction.

Theorem 1.[24] Let (X,d) be a complete metric space and
letT : X →X be a F-contraction. ThenT has a unique fixed
pointυ ∈ X and for everyx0 ∈ X a sequence{Tn(x0)}n ∈
N converges toυ .

Remark.From(F1) and (2) it is easy to conclude that every
F-contraction is necessarily continuous.

In the following example, we shall show that there are
mappings which are notF-contractions in metric spaces,
nevertheless, such mappings follow the conditions of
F-contraction in partial metric spaces.

Example 1.Let M = [0,1] and define partial metric by
p(r1, r2) = max{r1, r2} for all r1, r2 ∈ M. The metricd
induced by partial metric p is given by
d(r1, r2) = |r1− r2| for all r1, r2 ∈ M. Define the
mappingsF : R+ → R by F(r) = ln(r) andT by

T (r) =











r
5

if r ∈ [0,1);

0 if r = 1

ThenT is not aF- contraction in a metric space(M,d).
Indeed, forr1 = 1 andr2 =

5
6, d(T(r1),T(r2))> 0 and we

have

τ +F (d(T(r1),T(r2))) ≤ F (d(r1, r2)) ,

τ +F

(

d(T(1),T(
5
6
))

)

≤ F

(

d(1,
5
6
)

)

,

τ +F

(

d(0,
1
6
)

)

≤ F

(

1
6

)

,

1
6
<

1
6
,

which is a contradiction for all possible values ofτ. Now
if we work in partial metric space(M, p), we get a positive
answer that is

τ +F (p(T(r1),T(r2))) ≤ F (p(r1, r2)) implies

τ +F

(

1
6

)

≤ F (1) ,

which is true. Similarly, for all other points inM our claim
proves true.

The following result play a vital role regarding the
existence of the fixed point of the mapping satisfying a
contractive condition on the closed ball.
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Theorem 2.[17, Theorem 5.1.4] Let(X,d) be a complete
metric space,T : X → X be a mapping,r > 0 andx0 be an
arbitrary point inX. Suppose there existsk∈ [0,1) with

d(T(x),T(y))≤ kd(x,y), for all x,y∈Y = B(x0, r)

and d(x0,T(x0)) < (1− k)r. Then there exists a unique
pointx∗ in B(x0, r) such thatx∗ = T(x∗).

2 Chatterjea TypeF-Contraction on Closed
Ball

Definition 6.Let (X, p) be a partial metric space. The
mapping T : X → X is called Chatterjea type
F-contraction on closed ball if for all x,y∈ Bp(x0, r)⊆ X,
we have

τ +F(p(T(x),T(y))) ≤ F

(

k
2
[p(x,T(y))+ p(y,T(x))]

)

,

(3)
where0≤ k< 1, F ∈ ∆F andτ > 0.

Theorem 3.Let (X, p) be a complete partial metric space
and T : X → X be a Chatterjea type F-contraction on
closed ballBp(x0, r) in a complete partial metric space.
Moreover,

p(x0,T(x0))≤ (1−λ )[r + p(x0,x0)], whereλ =
k

2− k
.

(4)
Then there exists a point x∗ in Bp(x0, r) such that T(x∗) =
x∗ with p(x∗,x∗) = 0

Proof.Choose a pointx1 in X such thatx1 = T(x0),
x2 = T(x1) = T2(x0). Continuing in this way, we get
xn+1 = T(xn) = Tn(x0), for all n ≥ 0. First we show that
xn ∈ Bp(x0, r) for all n∈N. From (4), we have

p(x0,x1) = p(x0,T(x0))≤ (1−λ )[r + p(x0,x0)]

< r + p(x0,x0), (5)

which shows thatx1 ∈Bp(x0, r). From (3) and(F1), we get

F (p(x1,x2)) = F(p(T(x0),T(x1)))

≤ F

(

k
2
[p(x0,x2)+ p(x1,x1)]

)

− τ,

P4 along withF1 implies

p(x1,x2)<
k
2
[p(x0,x1)+ p(x1,x2)] ,

< λ p(x0,x1)≤ λ [r + p(x0,x0)].

Now,

p(x0,x2) ≤ p(x0,x1)+ p(x1,x2)− p(x1,x1),

< (1−λ )[r + p(x0,x0)]+λ [r + p(x0,x0)]

= r + p(x0,x0).

This shows thatx2 ∈ Bp(x0, r). Repeating this processn
times we obtain thatxn ∈ Bp(x0, r), for all n ∈ N. Now
condition (3) implies,

F (p(xn,xn+1)) ≤ F

(

k
2
[p(xn−1,xn+1)+ p(xn,xn)]

)

− τ.

≤ F

(

k
2
[p(xn−1,xn)+ p(xn,xn+1)]

)

− τ.

≤ F

(

k
2

[

p(xn−1,xn)+
k

2−k
p(xn−1,xn)

])

− τ.

≤ F

(

k
2−k

p(xn−1,xn)

)

− τ.

Rewriting this inequality as

τ +F (p(xn,xn+1))≤ F (λ p(xn−1,xn))< F (p(xn−1,xn)) .
(6)

Similarly, we can have

F (p(xn−1,xn))< F (p(xn−2,xn−1))− τ.

From (6), we obtain

F (p(xn,xn+1))< F (p(xn−2,xn−1))−2τ.

Repeating these steps, we get

F (p(xn,xn+1))< F (p(x0,x1))−nτ. (7)

From (7), we obtain limn→∞ F (p(xn,xn+1)) = −∞. Since
F ∈ ∆F ,

lim
n→∞

p(xn,xn+1) = 0. (8)

From the property(F3) of F-contraction, there existsκ ∈
(0,1) such that

lim
n→∞

(

(p(xn,xn+1))
κ F (p(xn,xn+1))

)

= 0. (9)

Following (7), for all n∈ N, we obtain

(p(xn,xn+1))
κ (F (p(xn,xn+1))−F (p(x0,x1)))

≤−(p(xn,xn+1))
κ nτ ≤ 0. (10)

Considering (8), (9) and lettingn→ ∞, in (10), we have

lim
n→∞

(

n(p(xn,xn+1))
κ)= 0. (11)

Since (11) holds, there existsn1 ∈ N, such that
n(p(xn,xn+1))

κ ≤ 1 for all n≥ n1 or,

p(xn,xn+1)≤
1

n
1
κ

for all n≥ n1. (12)

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


30 M. Nazam et al.: Fixed point theorems for chatterjea...

Using (12), we get form> n≥ n1,

p(xn,xm) ≤ p(xn,xn+1)+ p(xn+1,xn+2)+ p(xn+2,xn+3)

+ ...+ p(xm−1,xm)−
m−1

∑
j=n+1

p(x j ,x j),

≤ p(xn,xn+1)+ p(xn+1,xn+2)

+ p(xn+2,xn+3)+ ...+ p(xm−1,xm),

=
m−1

∑
i=n

p(xi ,xi+1),

≤
∞

∑
i=n

p(xi ,xi+1),

≤
∞

∑
i=n

1

i
1
k

.

The convergence of the series∑∞
i=n

1

i
1
κ

leads to

limn,m→∞ p(xn,xm) = 0. Hence{xn} is a Cauchy sequence

in
(

Bp(x0, r), p
)

, by Lemma 1, {xn} is also Cauchy

sequence in
(

B(x0, r),dp

)

. Moreover, since
(

Bp(x0, r), p
)

is a complete partial metric space, by

Lemma1,
(

B(x0, r),dp

)

is also a complete metric space.

Thus, there existsx∗ ∈ (B(x0, r),dp) such thatxn → x∗ as
n→ ∞ and using Lemma1, we have

lim
n→∞

p(x∗,xn) = p(x∗,x∗) = lim
n,m→∞

p(xn,xm). (13)

Due to limn,m→∞ p(xn,xm) = 0, we infer from (13) that
p(x∗,x∗) = 0 and{xn} converges tox∗ with respect to
τ(p). In order to show thatx∗ is a fixed point ofT, we
assume thatp(xn,T(x∗) > 0, otherwise result is obvious.
Using contractive condition (3), we obtain

F (p(xn,T(x
∗)))≤F

(

k
2
[p(xn−1,T(x

∗))+ p(x∗,xn)]

)

−τ.

Lettingn→ ∞, we get

p(x∗,T(x∗)) <
k
2

p(x∗,T(x∗)),

that is

(

1−
k
2

)

p(x∗,T(x∗)) < 0,

which impliesp(x∗,T(x∗)) = 0.

Thus, by usingP1 and P2, we obtainx∗ = T(x∗) which
completes the proof. To prove the uniqueness ofx∗,
assume, on contrary, thaty ∈ Bp(x0, r) is another fixed
point ofT that isy= T(y), then from (3), we have

τ +F (p(T(x∗),T(y))) ≤ F

(

k
2
[p(x∗,T(y))+ p(y,T(x∗))]

)

,

τ +F (p(x∗,y)) ≤ F

(

k
2
[p(x∗,y)+ p(y,x∗)]

)

,

τ +F (p(x∗,y)) ≤ F (kp(x∗,y)) .

This implies that

p(x∗,y)≤ kp(x∗,y),

which is a contradiction. Hence,x∗ = y. Therefore,T has
a unique fixed point inBp(x0, r).

Following example shows that the contractive condition
(3) holds on closed ballBp(x0, r) whereas it does not hold
true on the whole space.

Example 2.Let X= R+ and p(x,y) = max{x,y} . Then
(X, p) is a complete partial metric space. Define the
mapping T: X → X by,

T (x) =

{ x
14 if x ∈ [0,1],
x− 1

2 if x ∈ (1,∞)

Set k= 2
5, x0 = 1

2, r = 1
2 and p(x0,x0) =

1
2, then

Bp(x0, r) = [0,1]. If F(α) = ln(α), α > 0 andτ > 0, then

p(x0,T(x0))=max

{

1
2
,

1
28

}

=
1
2
< (1−λ )[r+p(x0,x0)].

For x,y∈ Bp(x0, r), the inequality

p(T(x),T(y)) = max
{ x

14
,

y
14

}

=
1
14

max{x,y} ,

<
1
5
[x+y] =

1
5

[

max
{

x,
y

14

}

+max
{

y,
x

14

}]

,

=
k
2
[p(x,T(y))+ p(y,T(x)]

holds. Thus,

p(T(x),T(y))<
k
2
[p(x,T(y))+ p(y,T(x)] ,

which implies

τ + ln(p(T(x),T(y)))≤ ln

(

k
2
[p(x,T(y))+ p(y,T(x)]

)

.

So,

τ +F (p(T(x),T(y)))≤ F

(

k
2
[p(x,T(y))+ p(y,T(x)]

)

.

Now, if x= 100,y= 10∈ (1,∞) , then

p(T(x),T(y)) = max

{

x−
1
2
,y−

1
2

}

,

≥
1
5
[x+ y] =

k
2
[p(x,T(y))+ p(y,T(x)] ,

consequently, contractive condition (3) does not hold on X.
Hence, hypotheses of Theorem3 hold on closed ball and
x= 0 is a fixed point of T .
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3 Chatterjea Type (α −η −AF)-Contraction
on Closed Ball

We begin by introducing the following family of new
functions.
Let ∆A denotes the set of all functionsA : (R+

0 )
4 → R+

satisfying the property, if

p1+ p2+ p3+ p4

4
≤

pi + pi+1

2
, i = 1,2,3,4,

then there existsτ > 0 such thatA(p1, p2, p3, p4) = τ, for
all p1, p2, p3, p4 ∈ R+

0 .

Definition 7.Let (X, p) be a partial metric space and T
be a self mapping on X. Also suppose that
α,η : X × X → R+

0 be two functions. T is said to be
(α − η − AF)-contraction if for x,y ∈ X, with
η(x,T(x)) ≤ α(x,y) and d(T(x),T(y))> 0, we have

A(p(x,T(x)), p(y,T(y)), p(x,T(y)), p(y,T(x)))

+ F (p(T(x),T(y)))≤ F (p(x,y)) ,

where A∈ ∆A and F∈ ∆F .

Definition 8.Let(X, p) be a partial metric space. Let T be
a self map defined on X andα,η : X ×X → R+

0 be two
functions. T is said to be(α,η)-continuous mapping on
(X, p), if for a given x∈ X, and the sequence{xn}n∈N with

xn → x as n→ ∞,α(xn,xn+1)≥ η(xn,xn+1)

implies T(xn)→ T(x).

Definition 9.Let (X, p) be a metric space. Suppose that
α,η : X × X → R+

0 are two functions. The mapping
T : X → X is called Chatterjea type
(α − η − AF)-contraction on closed ball if for all
x,y ∈ Bp(x0, r) ⊆ X with η(x,T(x)) ≤ α(x,y) and
p(T(x),T(y))> 0, we have,

τ(A)+F (p(T(x),T(y)))≤F

(

k
2
[p(x,T(y))+ p(y,T(x)]

)

,

(14)
where
τ(A) = A(p(x,T(x)), p(y,T(y)), p(x,T(y)), p(y,T(x))),
0≤ k< 1, A∈ ∆A and F∈ ∆F .

Theorem 4.Let (X, p) be a complete metric space. Let
T : X → X be a Chatterjea type
(α − η − AF)-contraction mapping on a closed ball
Bp(x0, r) satisfying following assertions:

(1)T is anα-admissible mapping with respect toη ,

(2)there exists x0 ∈ X such that
α(x0,T(x0))≥ η(x0,T(x0)),

(3)p(x0,T(x0)) ≤ (1 − λ )[r + p(x0,x0)], where

λ =
k

2− k
.

Then there exists a point x∗ in Bp(x0, r) such that
T(x∗) = x∗ with p(x0,x0) = 0

Proof.Supposex0 be an initial point of X such that
α(x0,T(x0)) ≥ η(x0,T(x0)). Also, for x0 ∈ X, we can
construct a sequence{xn}

∞
n=1 such that x1 = T(x0),

x2 = T(x1) = T2(x0). Continuing this way,
xn+1 = T(xn) = Tn+1(x0), for all n ∈ N. Now since,T is
an α-admissible mapping with respect toη , then
α(x0,x1) = α(x0,T(x0)) ≥ η(x0,T(x0)) = η(x0,x1). In
general we have,

η(xn−1,T(xn−1))=η(xn−1,xn)≤α(xn−1,xn), for all n∈N.
(15)

If there existsn∈ N such thatp(xn,T(xn)) = 0, thenxn is
a fixed point of T, so we are done. We assume that
p(xn,T(xn)) > 0, for all n ∈ N. First we show that
xn ∈ Bp(x0, r) for all n ∈ N. From hypothesis (3), we
obtain

p(x0,x1)≤ (1−λ )[r + p(x0,x0)]< [r + p(x0,x0)]. (16)

Thus,x1 ∈ Bp(x0, r). From (14) and(F1) we get,

F (p(x1,x2)) = F(p(T(x0),T(x1)))

≤ F

(

k
2
[p(x0,x2)+ p(x1,x1)]

)

− τ(A),

≤ F

(

k
2
[p(x0,x1)+ p(x1,x2)]

)

− τ,

This impliesp(x1,x2) <
k
2
[p(x0,x1)+ p(x1,x2)] ,

< λ p(x0,x1)≤ λ [r + p(x0,x0)].

Where τ(A) = τ, indeed,
τ(A) = A(p(x0,x1), p(x1,x2), p(x0,x2), p(x1,x1)) satisfies

p(x0,x1)+ p(x1,x2)+ p(x0,x2)+ p(x1,x1)

4
≤

p(x0,x1)+ p(x1,x2)

2
,

so, there existsτ > 0 such that

A(p(x0,x1), p(x1,x2), p(x0,x2), p(x1,x1)) = τ.

Now,

p(x0,x2) ≤ p(x0,x1)+ p(x1,x2)− p(x1,x1),

< (1−λ )[r + p(x0,x0)]+λ [r + p(x0,x0)] = r + p(x0,x0).

This shows thatx2 ∈ Bp(x0, r). Repeating this processn
times we obtain thatxn ∈ Bp(x0, r), for all n ∈ N. Now
contractive condition (14) implies,

F (p(xn,xn+1))≤F

(

k
2
[p(xn−1,xn+1)+ p(xn,xn)]

)

−τ(A).

(17)
Since
τ(A)=A(p(xn−1,xn), p(xn,xn+1), p(xn−1,xn+1), p(xn,xn))
satisfies

p(xn−1,xn)+ p(xn,xn+1)+ p(xn−1,xn+1)+ p(xn,xn)

4

≤
p(xn−1,xn)+ p(xn,xn+1)

2
,

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


32 M. Nazam et al.: Fixed point theorems for chatterjea...

so, there existsτ > 0 such that

A(p(xn−1,xn), p(xn,xn+1), p(xn−1,xn+1), p(xn,xn)) = τ.

Therefore, from (17), we get

F (p(xn,xn+1))

≤ F

(

k
2

[

p(xn−1,xn+1)+
k

2− k
p(xn−1,xn)

])

− τ.

≤ F

(

k
2− k

p(xn−1,xn)

)

− τ.

Rewriting this inequality as

τ +F (p(xn,xn+1))≤ F (λ p(xn−1,xn))< F (p(xn−1,xn)) .
(18)

Furthermore,

F (p(xn−1,xn))< F (p(xn−2,xn−1))− τ.

From (18), we obtain

F (p(xn,xn+1))< F (p(xn−2,xn−1))−2τ.

Repeating these steps, we get

F (p(xn,xn+1))< F (p(x0,x1))−nτ. (19)

Now following the proof of the Theorem3. We infer that
there existsx∗ ∈ Bp(x0, r) such thatp(x∗,x∗) = 0 and
{xn} converges tox∗ with respect toτ(p). In order to
show that x∗ is a fixed point of T, we assume that
p(xn,T(x∗) > 0, otherwisex∗ is a fixed point ofT. From
contractive condition (14), we obtain

F (p(xn,T(x
∗)))

≤ F

(

k
2
[p(xn−1,T(x

∗))+ p(x∗,xn)]

)

− τ(A),

whereτ(A) =
A(p(xn−1,xn), p(x∗,T(x∗)), p(xn−1,T(x∗)), p(x∗,xn)).
SinceA∈ ∆A andF is continuous, we can have

F
(

lim
n→∞

p(xn,T(x
∗))

)

≤ F

(

k
2

[

lim
n→∞

p(xn−1,T(x
∗))+ lim

n→∞
p(x∗,xn)

]

)

− τ.

Thus,

p(x∗,T(x∗)) <
k
2

p(x∗,T(x∗)),

that is

(

1−
k
2

)

p(x∗,T(x∗)) < 0.

This impliesp(x∗,T(x∗)) = 0. Consequently,x∗ is a fixed
point of T. To prove the uniqueness ofx∗, assume, on
contrary, thaty∈ Bp(x0, r) is another fixed point ofT that
is y= T(y), then from (14), we have

τ(A)+F (p(T(x∗),T(y)))

≤ F

(

k
2
[p(x∗,T(y))+ p(y,T(x∗))]

)

,

τ(A)+F (p(x∗,y)) ≤ F

(

k
2
[p(x∗,y)+ p(y,x∗)]

)

,

where τ(A) =
A(p(x∗,T(x∗)), p(y,T(y)), p(x∗,T(y)), p(y,T(x∗))) It is
easy to check thatA ∈ ∆A, therefore,τ(A) = τ and we
obtain

p(x∗,y)< kp(x∗,y),

which is a contradiction. Hence,x∗ = y. Therefore,T has
a unique fixed point inBp(x0, r).

Example 3.Let X= R+
0 and p(x,y) = max{x,y} . Then

(X, p) is a complete partial metric space. Define
T : X → X, α : X × X → R+

0 , η : X × X → R+
0 ,

A : (R+
0 )

4 → R+ and F : R+ → R by

T(x) =

{

5x
19 if x ∈ [0,1],
x− 1

3 if x ∈ (1,∞).

α(x,y) =

{

ex+y if x ∈ [0,1],
1
3 otherwise.

η(x,y) = 1
2 for all x,y ∈ X, A(t1, t2, t3, t4) = τ > 0 and

F(t) = ln(t) with t > 0. Set k= 4
5 x0 = 1

2, r = 1
2 and

p(x0,x0) =
1
2, thenB(x0, r) = [0,1]. Now

p

(

1
2
,T

(

1
2

))

= max

{

1
2
,

5
38

}

≤ [r + p(x0,x0)].

For if x,y ∈ B(x0, r), then α(x,y) = ex+y ≥ 1
2 = η(x,y).

On the other hand, T(x) ∈ [0,1] for all x ∈ [0,1] so
α(T(x),T(y)) ≥ η(T(x),T(y)). For x 6= y,

p(T(x),T(y)) = max
{

5x
19,

5y
19

}

> 0. clearly

α(0,T(0))≥ η(0,T(0)). Hence, we have

p(T(x),T(y)) = max

{

5x
19

,
5y
19

}

=
5
19

max{x,y} .

For x,y∈ Bp(x0, r), the inequality

5
19

max{x,y}<
k
2

[

max

{

x,
5y
19

}

+max

{

y,
5x
19

}]

=
k
2
[x+y],

holds. Thus,

p(T(x),T(y))<
k
2
[p(x,T(y))+ p(y,T(x)] .

Consequently,

τ + ln(p(T(x),T(y)))≤ ln

(

k
2
[p(x,T(y))+ p(y,T(x)]

)

,

which implies

τ +F (p(T(x),T(y)))≤ F

(

k
2
[p(x,T(y))+ p(y,T(x)]

)

.

If x /∈Bp(x0, r) or y /∈Bp(x0, r), thenα(x,y) = 1
3 �

1
2 =

η(x,y). Moreover, if x= 100,y= 10∈ (1,∞) , then

p(T(x),T(y)) = max

{

x−
1
3
,y−

1
3

}

,

≥
k
2
[p(x,T(y))+ p(y,T(x)] ,
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and consequently, contractive condition (14) does not hold
on X. Hence, hypotheses of Theorem4 hold on closed ball
and x= 0 is a fixed point of T .

4 Conclusion

In this article, following the approach ofF-contraction
introduced by Wardowski [24], we present some fixed
point theorem forF -contraction in partial metric spaces.
We observe that there are mappings which are not
F-contractions in metric spaces, nevertheless, such
mappings follow the conditions ofF-contraction in
partial metric spaces. This fact makes our results more
general and more interesting than that in metric spaces.
We observe that there exists some mappings which satisfy
given contractive condition only on closed ball. We
establish two fixed point theorems and support them with
concrete examples. Following Hussain and Salimi [14],
we introduce new class of functions∆A and establish a
fixed point theorem for this family of functions. These
new concepts shall lead readers for further investigations
and applications. It will also be interesting to apply these
concepts in a different metric spaces.
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