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Abstract: The notions of Chatterjea tyge-contraction and Chatterjea type — n — AF)-contraction on closed ball are introduced.
Two fixed point theorems in the framework of complete partietric spaces are obtained. Some comparative examplesraseucted
to illustrate the novelty of these results. Our results gewsubstantial generalizations and improvements of aéweasll known results
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1 Introduction and Preliminaries present a fixed point theorem and explain its idea through
an example.

. N hroughout this paper, we dendi@ «) by R*, [0, ) by
Banach Contraction Principle has been extended an + (o, +-00) by R and set of natural numbers by

generalized in many directions (s€¢7,8,9,10]). One of 0L : ;
the most interesting generalization was given byFoIIo]:/vm? co_nceptsI and results will be required for the
Wardowski P4]. Recently, Abbas et afl] further proofs of main resuilts

generalized the concept of F-contraction and prove
certain fixed point results. Hussain and Salinii4]
introduced arx-GF contraction with respect to a general
family of functions G and established Wardowski type (PL)X=Yy < p(x,x) = p(X,y) = p(V,y),

fixed point results in ordered metric spaces. (P)p(x,x) < p(x,y),

Matthews P2] introduced the concept of partial metric (P3)p(X,y) = p(Y,X),

spaces and proved an analogue of Banach’s fixed poirifs)p(x,y) < p(x,2) + p(z,y) — p(z2),

theorem in partial metric spaces. This remarkablefor all x.v.z € X. Then b is called a partial metric on X
contribution leads many authors to focus on partial metricand the7y:a1'r X : is knop N as art'alr:netr'c space
spaces and its topological properties, se] [and pair(X, p) i W parti IC Space.
references therein.

Following Arshad et al. Z,4] and Hussain and Salimi
[14], in this article, we shall show existence of fixed
points of Chatterjea type F-contraction on closed ball in _ _ _
partial metric spaces. In section 2, we introduce the dp (%) =2P(xY) = P(X) = P(%,Y), (1)
Chatterjea type F-contraction on closed ball in partialfor all x,y € X.

metric spaces, by combining the ideas of Wardow2H] [ Notice that a metric on a s#tis a partial metrigp such
and Chatterjeall5], and obtain a fixed point theorem. We thatp(x,x) =0 for all x € X.

give an example to illustrate this result. In section 3, we  Matthews P2] established that each partial metyc
introduce Chatterjea typéo — n — AF)-contraction on  on X generates dp topology 7(p) on X. The base of
closed ball, by combining the ideas topology 1(p) is the family of open p-balls
(o — n — AF)-contraction and Chatterjealq, and  {Bp(x,€) :x€ X, £ >0}, where

dDefinition 1.[22] Let X be a nonempty setand K x X —
R{ satisfies following properties

Matthews R2], proved that every partial metrigon X
induces a metrid, : X x X — R} defined by
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Bp(x,&) = {yeX:p(xy) <p(x,x)+¢} for all x e X
ande > 0. Corresponding closed ball is defined by

Bp(x,&) ={ye X:p(xy) < p(x,x)+£}.

A sequence xp }ney in (X, p) converges to a poink € X
if and only if p(X,X) = liMnp_e P(X, Xn)-

Definition 2.[22] Let (X, p) be a partial metric space, then

(1A sequence€{xn}tnen in (X,p) is called a Cauchy
sequence if
[iMnm—e P(Xn, Xm) exists and is finite.

(2)A partial metric spacéX, p) is said to be complete if
every Cauchy sequenég, }ncn in X converges, with
respect tor(p), to a point xe X such that px,x) =
[IMnm—co P(Xn, Xm)-

Following lemma will be helpful in the sequel.
Lemma 1][22]

(1)A partial metric spacéX, p) is complete if and only if
the metric spaceX, dp) is complete.

(2)A sequencédxn}ney in X converges to a pointe X,
with respect tar(dp) if and only if limp_e P(X, Xn) =
P(X,X) = liMn m-sco P(Xn, Xm).

(3)If limpyeXy, = v such that p(u,u) = 0 then
limn—eo P(Xn,Y) = p(v,y) for everyy € X.

RemarkBeing (Bp(xo, r, p) C (X, p), Lemmal holds for
(BP(XOa r)a p) .

Definition 3.[15] Let (X, p) be a partial metric space. A
mapping T: X — X is said to be Chatterjea contraction if
it satisfies the following condition

P(T(X),T(y) < Ig[lo(x,T W) +py,TX)],

for all x,y € X and some k [0,1].

Definition 4.[23] Let T be a self map defined on X and
a : X x X — R{ be nonnegative function. The mapping T
is said to bea-admissible if for all xy € X, a(x,y) > 1
implies thata (T (x), T (y)) > 1.

Definition 5.[21] Let T : X — X be a self mapping and
a,n : X x X — Rg be two functions. The mapping T is
said to bea-admissible mapping with respect ipif for
allx,y e X, a(x,y) > n(x,y) implies thata (T (x), T (y)) >
N(Tx),T(y))-

If n(x,y) = 1, then above definition reduces to definition

(Fp): Fis strictly increasing.

(F2): For each sequencda,} of positive numbers
limn_ean = 0if and only if limp_e F () = —co.

(Fs): There exists 6 € (0,1) such
limy_o+ (a)?F(a) =0.

that

We denote byAg, the set of all functions satisfying the
conditions (F;) — (Fs). Wardowski established the
following result using F-contraction.

Theorem 1[24] Let (X, d) be a complete metric space and
letT : X — X be a F-contraction. Thehhas a unique fixed
pointu € X and for every € X a sequencéT"(xo) }n €

N converges tw.

Remarki=rom(F;) and @) it is easy to conclude that every
F-contraction is necessarily continuous.

In the following example, we shall show that there are
mappings which are ndi-contractions in metric spaces,
nevertheless, such mappings follow the conditions of
F-contraction in partial metric spaces.

Example lLet M = [0,1] and define partial metric by
p(r1,r2) = max{ry,ro} for all ry,r, € M. The metricd
induced by partial metric p is given by
d(ri,r2) = |ri—ro| for all ry,rp € M. Define the
mappings : R™ — R by F(r) =In(r) andT by

%ifre[o,l);
T(r)=
0ifr=1

ThenT is not aF- contraction in a metric spadéM,d).
Indeed, fory = 1 andr, = 2, d(T(r1),T(r2)) > 0 and we
have

T+F (d(T(r1),T(r2))) < F(d(r1,r2)),
T+F (d(T(l),T(g))) <F <d(1,g)) ,
T+F (d(O,%)) < <é),
1
6

which is a contradiction for all possible valuesfNow
if we work in partial metric spacéM, p), we get a positive
answer that is

4. For the sake of completeness, we recall the concept of +F (p(T(r1),T(r2))) < F(p(ry,r2)) implies

F-contraction, which was introduced by Wardowsk4]|
later we will mention his result.

A mappingT : X — X, is said to be F-contraction if it
satisfies following condition

(d(T(X), T(y)) > 0= t+F(d(T(x),T(y)) < F(d(x,y)gga)
for all x,y € M and for some > 0. WhereF : R™ — R is
a mapping satisfying following properties

T—|—F<é> <F(1),

which is true. Similarly, for all other points i our claim
proves true.

The following result play a vital role regarding the
existence of the fixed point of the mapping satisfying a
contractive condition on the closed ball.

(@© 2017 NSP
Natural Sciences Publishing Cor.



J. Ana. Num. Theol5, No. 1, 27-34 (2017) www.naturalspublishing.com/Journals.asp

N SS ¥

29

Theorem 2[17, Theorem 5.1.4] LefX,d) be a complete
metric spaceT : X — X be a mapping;, > 0 andxg be an
arbitrary point inX. Suppose there exisitsc [0,1) with

d(T(x),T(y)) <kd(x,y), forall x,y € Y = B(Xp,r)

and d(Xo, T(Xo)) < (1—Kk)r. Then there exists a unique
pointx* in B(xo,r) such that" = T (x*).

2 Chatterjea Type F-Contraction on Closed
Ball

Definition 6.Let (X,p) be a partial metric space. The
mapping T: X — X is called Chatterjea type
F-contraction on closed ball if for all } € Bp(xo,r) C X,
we have

CHRTLT0) <F (5 P0cTO) + pOT()] ).
®

whereO<k< 1, F € Af andt > 0.

Theorem 3Let (X, p) be a complete partial metric space
and T: X — X be a Chatterjea type F-contraction on

closed ballBp(xo,r) in a complete partial metric space.
Moreover,
k
P00, T (40) < (1= A)lr + p(x0,X0)], whered = 5—.
4
Then there exists a point i Bp(Xo, ) such that Tx") =
xX* with p(x*,x*) =0

~

ProofChoose a pointx; in X such thatx; = T(x),
X2 = T(x1) = T?(x0). Continuing in this way, we get
Xn+1 =T (Xn) = T"(xo), for all n > 0. First we show that
Xn € Bp(Xo,r) for all n € N. From @), we have

P(X0,X1) = P(X0, T (X0)) < (1—A)[r + p(X0, X0)]

< I+ Pp(Xo,%o)s (5)

which shows thax; € Bp(xo,r). From @) and(F;), we get
F(p(x1,%2)) = F(p(T (%0), T (x1)))
< F (3 P+ poxu] ) -

P4 along withF; implies

P(X1,%2) < Ig[p(xo,xl) + p(x1,%2)],
< Ap(Xo,X1) < A[r+ p(x0,%0)]-
Now,
P(X0,X2) < P(X0,X1) + P(X1,X2) — P(X1,X1),

< (1=A)[r + p(x0,%0)] + A [r + p(x0,%0)]
=TI+ p(X0,X0)-

This shows thak, € Bp(Xo,r). Repeating this process

times we obtain thak, € Bp(xo,r), for all n € N. Now
condition @) implies,

F (pan2) < F (3 Pl 500) + pltn ] ) =

IN

F (3 [P0-s.50) 4 O] ) -

IN

F (g {p(xn—bxn) + %(p(xn—bxn):D - T

k
<F (ﬂ p(Xn—LXn)) -1

Rewriting this inequality as

T+F (p(n, Xn11)) < F (AP(Xn-1,%0)) <F (p(xnflaxn)(zs-)
Similarly, we can have
F(p(*-1,%)) < F (P(*1-2,Xn-1)) = T.

From (6), we obtain

F (p(Xn,%n+1)) < F (P(Xn—2,Xn-1)) — 2T.

Repeating these steps, we get

F (p(n,Xnt1)) < F (p(X0,X1)) —NT. (7)
From (7), we obtain lim_.e F (P(Xn,Xnt1)) = —c0. Since
F € A,

lim p(%n,Xnt1) = 0.

(8)

From the propertyFs) of F-contraction, there exists €
(0,1) such that

r!'_r;rlo ((p(xn,XnJrl))K F (D(Xn,Xn+1))) =0. 9)
Following (7), for all n € N, we obtain
(P(n, Xn+1))" (F (PO, %n+1)) — F (P(%0,%1)))
< — (p(Xn, %n11))NT < 0. (10)

Considering8), (9) and lettingn — o, in (10), we have

lim (n(p(Xn,Xn+1))) =0. (11)

n—o0

Since (1) holds, there existsn; € N, such that
n(p(Xn,%n+1))* < 1 foralln>ny or,

|~

P(Xn, Xns1) < forall n> n;. (12)

X[

n
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Using (12), we get form > n > ng,

MMWQSpMMMﬂ+MMHJMﬁ+MMHJMQ

Z p(Xj,Xj),

j=n+1

+ o+ p Xm—laXm

< P(Xn; Xnt1) + P(Xn+1,%n42)
+ p(x n+2,Xn+3)+ .+ p(Xm-1,%m),
m—
p Xiy Xi41),
i=n
< > p(Xi,Xir1),
I=n
<3y

Il
=]
s

The convergence of the serie§2, leads to

e

liMnm—e P(Xn,Xm) = 0. Hence{x,} is a Cauchy sequence
in (Bp(xo,r),p), by Lemmal, {x} is also Cauchy

sequence in (B(xo,r),dp). Moreover,  since
(Bp(xo,r),p) is a complete partial metric space, by

Lemmal, (B(xo, r),dp) is also a complete metric space.

Thus, there exists* € (B(Xo,r),dp) such thaix, — x* as
n — oo and using Lemma, we have

im PO ) = PO, X) = lm_plnsm).  (13)

Due to limhm-w P(Xn, Xm) = 0, we infer from (3) that
p(x*,x*) = 0 and {x,} converges tox* with respect to
7(p). In order to show thakx* is a fixed point ofT, we
assume thap(xn, T (x*) > 0, otherwise result is obvious.
Using contractive conditiors], we obtain

F (pln T0)) < F (5 px-1 T6X) + PO 0] ) -
Lettingn — oo, we get
PIX' T(X')) <SP0 T(X)),

that is (1— g) p(x*, T(X")) <O,
which impliesp(x*, T (x*)) = 0.

Thus, by usingP;, and P,, we obtainx® = T(x") which
completes the proof. To prove the uniquenessxgf

assume, on contrary, thgte By(Xo,r) is another fixed
point of T that isy = T (y), then from @), we have

HF (BT0).T)) < F (5 [P0 T+ pOTEO) ).

CHF (p0C) < F (5 1p00.9) + pvc)] ).

T+F (p(x',y)) < F(kp(x",y)).

This implies that

*,y) <kp(x',y),

which is a contradiction. Hence; = y. Therefore,T has
a unique fixed point iBp(xo, ).

p(x

Following example shows that the contractive condition

(3) holds on closed baBp(xo,r) whereas it does not hold
true on the whole space.

Example 2.Let X= R™ and p(x,y) = max{x,y}. Then
(X,p) is a complete partial metric space. Define the
mapping T: X — X by,

% ifxe[0,1],
14
T09= {x—§|fxe( )
Set k= 2, xo = 3, r = 3 and pxo.x0) = 3, then
p(Xo,r) =1[0,1]. If F(a) =In(a), a > 0andt > 0, then

For X,y € Bp(Xo,r), the inequality

BT (0, T(y) = max{ 25 L} = & maxixy}

5 [max{x g+ max{u 7}]

() + Py, T(X)]

< Z[x+y]=

NI X Ol =

[p(x, T
holds. Thus,

T (. T(v)) < 5 [P0 T() + P T(),

which implies

(TR T() < In (5 (PO T0) + POT(X])

So,

T+F(p(T(X0),T(y) <

F (3P0 T + PO T

Now, if x=100y=10€ (1,), then

P(T(0.T() = max{x- 3.y~ .

é X [p(x,T

consequently, contractive conditiod) does not hold on X.
Hence, hypotheses of Theor&rhold on closed ball and
x=0is a fixed point of T.

(X+y] = (¥)+py: T(¥)],

(@© 2017 NSP
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3 Chatterjea Type (a — n — AF)-Contraction Then there exists a point xn Bp(Xo,r) such that
on Closed Ball T(x*) =X with p(Xo,Xo) =0

Proof Supposexy be an initial point of X such that

We begin by introducing the following family of new (%, T (%)) > (%, T (X)) Also, for %, € X, we can

functions. o
Let Ax denotes the set of all functions: (RJ)* — R construct a sequenzc@xn}n:l SU(.:h .that X1 = T(x),
satisfying the property, if ¥ = T(x) = T%(x). Continuing this way,
Xn11 = T (%) = T (x0), for all n € N. Now since,T is
PLtP2+Ps+pa _ Pit P i—1234 an o-admissible mapping with respect tg, then

a(Xo,x1) = (X0, T (X)) > N(Xo, T (X)) = N(Xo,X1). In
general we have,

4 - 2
then there exists > 0 such thaiA(p1, p2, p3, pa) = T, for
all P1,P2,P3, P4 € RS_ n(xnflaT(anl)) = n(xn—laxn) S a(xn—laxn)a forall n eN.

(15)

Definition 7.Let (X, p) be a partial metric space and T If there exists1 € N such thap(xn, T (xa)) = 0, thenx, is
be a self mapping on X Also suppose that a fixed point of T, so we are done. We assume that
a,n : X x X — RS be two functions. T is said to be P(Xn,T(xn)) > 0, for all n € N. First we show that
(a — n — AF)-contraction if for xy € X, with Xn € Bp(xo,r) for all n € N. From hypothesis (3), we
nxT(x) <a(xy) and dT(x),T(y)) >0, we have obtain

AP, T (X)), PV T(Y), (X, T(Y)), P(Y: T (X))) P(Xo0,X1) < (1—A)[r + p(Xo,X0)] < [ + P(X0,%0)]. (16)

+F(p(T(x),T(y))) <F(pxy)), Thus,x; € Bp(Xo,r). From (L4) and(F;) we get,

where A Ax and F € A¢. F (p(xe.X2)) = F(P(T (¥0). T(x1)))
Definition 8.Let (X, p) be a partial metric space. Let T be <F ('_‘ [P(X0,%2) + p(X17X1)]) —T(A),
a self map defined on X ara,n : X x X — R} be two 2

functions. T is said to béa, n)-continuous mapping on

k
(X, p), if for a given xc X, and the sequenc },cyy With =F (5 [P(x0.x0) + p(XLXZ)]) -b

o k
Xn = X @S N— 00, 0f (Xn, Xn41) > 1 (Xn, Xn+1) This implies p(x1, Xz) < 5 [P(X0, %) + P, %),

implies T(X,) — T(X). < Ap(x0,x1) < A[r + p(Xo,%o)]-

Definition 9.Let (X, p) be a metric space. Suppose that Where T(A) = T indeed,
a,n:XxX — ]Raf are two functions. The mapping T(A) = A(p(Xo0,X1), P(X1,X2), P(X0, X2), P(X1,X1)) satisfies
T : X = X is called Chatterjea  type P(x0.X1) + P(X1, %) + (X0, Xe) + (X1, %) _ P(X0.X1) + P(Xa,%e)
(a — n — AF)-contraction on closed ball if for all 4 - 2 ’

Xy € Bp(xo,r) € X with n(x,T(x) < a(xy) and SO there exists > 0 such that
PT (), T(y)) >0, we have, A(P(X0,X1), P(X1,X2), P(X0,X2), P(X1,X1)) = T.

T(A)+F (p(T(x),T(y)) <F (g [P, T(y)) + p(y,T(X)]> , Now,
(14) p(X07X2) < p(X07X]_) + p(X17X2) - p(X17X1)7

where < (1=2)[r+p(x0,%0)] +Ar + p(x0,%0)] = I + P(X0,X0)-
T(A) = APXT(X), Py, T(¥), P T(Y), P, T(X))),  This shows thak, € Bp(X,). Repeating this process

O<k<l AcdpandFedr. times we obtain thak, € By(xo,r), for all n € N. Now
contractive conditionX4) implies,

Theorem 4Let (X,p) be a complete metric space. Let
T : X — X be a Chatterjea type k
(a — n — AF)-contraction mapping on a closed ball F (P(Xn,%.1)) <F (5 [P(Xn-1,%n+1) + D(Xnaxn)]) —T(A).

Bp(xo,r) satisfying following assertions: (17)
. . . . . SinCe

(1)T is ana-admissible mapping with respectio T(A) = A(P(*n_1,%n), PO, Xt 1), P(Xn—1,%n+1), P(Xn, Xn))
(2)there existsxe X such that satisfies

a (%o, T(x0)) = N (%o, T (X)), P(Xn—1,%n) + P(Xn, Xn+1) + P(Xn—1,%n+1) + P(Xn, Xn)
)P0, T(x0)) < (1 = A)[r + p(xo,%)],  where 4

A=— < P(Xn-1,%n) + P(Xn, Xn+1)

2—k’ > 2 )
(@© 2017 NSP
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so, there exists > 0 such that
AP(Xn-1,%n), P(Xn; Xn4-1), P(Xn—1,Xn+1), P(Xn, Xn)) = T.
Therefore, from17), we get
F (p(%n,Xn+1))

k k
<F <§ |:p(xnlaxn+1) + ﬂp(xnlaxn)]> —T.

k
<F <ﬂp(xnl,xn)> —T.

Rewriting this inequality as

T+F (p(Xn,%ns1)) < F (Ap(Xn-1,%)) <F (p(xn—lvxre)) -)
18
Furthermore,

F (pP(X1-1,%)) <F (P(Xn-2,Xn-1)) — T
From (18), we obtain
F (P(Xn,Xn11)) <F (P(Xn-2,Xn-1)) — 2T.
Repeating these steps, we get
F (P(%,%n+1)) < F (p(X0,X1)) —NT. (19)

Now following the proof of the Theorer®. We infer that
there existsx* € Bp(xo,r) such thatp(x*,x*) = 0 and
{Xa} converges t0< with respect tor(p). In order to
show that x*
p(xn, T(X*) > 0, otherwisex* is a fixed point ofT. From
contractive condition(4), we obtain

F (p(XmT(X*)))
< F (51002, T0) + pOX 0] ) - (A
wheret(A) =

A( p(Xn—lvxn)a p(X*vT(X*))a p(xn—lvT(X*))a p(X*,Xn)).
SinceA € Ap andF is continuous, we can have

F (lim p0a.T(<)))

k . % . *
<F (z Jlim P01, T0) + fim p(x ’X'”D o
Thus,

PIX' T(X') < SPOXC.T(X))

that is (1— g) p(x*, T(x")) < 0.

This impliesp(x*, T(x*)) = 0. Consequently,* is a fixed
point of T. To prove the uniqueness af, assume, on
contrary, thay € Bp(Xo,r) is another fixed point of that
isy=T(y), then from (4), we have

T(A) +F (p(T (<), T(3)
< ¥ (31900, T0) +POTOON)

r(A)-+F(p¢.) < F (566 + PO ] )

is a fixed point of T, we assume that

where T(A) =
AP, T(X)), P(Y, T(¥)), (X", T(Y)), (Y, T(x))) It is
easy to check thaf € Ay, therefore,T(A) = T and we
obtain

p(X",y) <Kkp(X',y),
which is a contradiction. Hence&; = y. Therefore,T has
a unique fixed point iBp(xo,r).

Example 3.Let X= Rj and p(x,y) = max{x,y}. Then

(X,p) is a complete partial metric space. Define

T:X =X, a:XxX—=Ri, n:XxX = R{,
A:(R{)*—>RtandF:R" — R by

X ifxe€[0,1],
T = {;g—g if X € (1,00).

u _ [eYifxe0,1],
(xy) = 1 otherwise

n(x,
F(t)
P(Xo,

) = l for all X,y € X, A(tl,tz,t3,t4) =
= )Witht>O t>0. Setk= g xo = 3,
= 3, thenB(xo,r) = [0,1]. Now

In
X0)
1 1 15
p(sz <§)> max{z 38} [r + Pp(Xo0,Xo)]-
For if x,y € B(xo,1), thena(x,y) = & > 3 = n(x,y).
On the other hand, Tx) € [0,1] for all x € [0,1] so

T>0and
r=3and

a(Tx),T(y) = n(TX,T(y). For x # v,
p(TX),T(y) = max{ %l > 0 clearly
a(0,T(0)) > n(0,T(0)). Hence, we have

p(T(9.T) = max 25, = & max{xy).

For x,y € Bp( r), the inequality

i;}%—max{y, XH = g[ery],

& [POCT() + POx T ().

imax{x }<|§ max

19 V<3

holds. Thus,
P(T(x),T(y)) <

Consequently,

I (PT0. T()) < n 3 [P TY) + KT
which implies
CHF(BT00.T) < F (5T

Ifx ¢ Bp(Xo,1) Ory ¢ Bp(Xo,r), thena (x,y) = £ #
n(x,y). Moreover, if x= 100y = 10¢ (1,), then

P(T(0.T() = max{x- 3y~ 3 }.

)+ Py T )
1_
2=

3

>

[P, T(Y) + p(Y, T(X)],

NI X
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