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Abstract: In product life testing experiments, accelerated lifeitgsts widely used since it provides significant reductiortime

and cost of experiment. A constant-partially accelerafedést based on progressively censored Burr Type-XIl datansidered in
the present article. Approximate confidence intervals tbasethe normal approximation to the asymptotic distributd Maximum

Likelihood Equation, Bootstrap Confidence Interval, an&ample Bayes prediction bound lengths are obtained. ffdlgsas of the
present discussion has carried out by a real life example.
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1 Introduction

The Burr system of distributions includes twelve types ahalative distribution functions that yield a variety of céy
shapes, and were listed ifi] It has applied in business, chemical engineering, quatintrol, medical, and reliability
studies. The probability density function and cumulatieesity function of Burr Type-XII distribution are given as

f(x;a,B):Baxp’l(l—kxﬁ)_a_l;a>O,B>O,x20 1)

and i,
F(x;a,B):l—(1+xﬁ) ;a>0,8>0x>0. 2)

Failure rate function and the reliability function of Buryde-XIl distribution are given as

xB-1
p(x):BaH—XB,a>O,B>O,XZO 3)
and
—a
R(x):(1+xﬁ) ;a>0,8>0,x>0. (4)

Here, the parameter does not affect the shape of failure rate functm(ix) given in Eq. 8). The parametear and 3

both are the shape parameter of Burr Type-XIl distributiélso, p(x) has a unimodal curve whe® > 1 and it has
decreasing failure rate function whé@n< 1. The parameteB plays an important role for the distribution. It covers a
variety of curve shapes and provides a wide range of valuskafiness and kurtosis that can used to model for any
general lifetime data (biological, clinical, or other exipeental data).

The present distribution is useful in failure time modeliggality control, and reliability studies. Few importamida
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resent references on the topic are including here. The @apBayes estimators of reliability performances based on
LINEX loss function under progressively Type-Il censorathples was study b&]. Lee et al. B] assessing the lifetime
performance index of products from progressively Typéaght censored data based on Burr Type-XIl model. Based on
exponentiated Burr Type-XlIl populatiod][ provided a number of references on the applications of Buodel in
different fields of applied statistics.

Soliman et alf] obtained some Bayes estimation from Burr Type-XIl disitibn by using progressive first-failure
censored data#f] discussed about the problem of estimating the parameterrsaiability function of the Burr Type-IlI
distribution based on Type-Il Doubly censored sample. Aile@&reen model of random censorship for estimating the
Bayes estimator of unknown parameters was discussed % pnulticomponent stress strength reliability by assugnin
Burr Type-XlI distribution was studied byg] recently.

The focus of the paper is to study about different confidenegtd for the Burr Type-XIl distribution under
constant-partially accelerated life test. Based on thenabapproximation to the asymptotic distribution of MLEgth
approximate confidence intervals (ACI), Percentile Baafstconfidence intervals (PBCI), and One-Sample Bayes
prediction bound lengths are obtained in different sestidrhe analysis of the present discussion has carried out by a
real life example in last section with conclusion.

2 Constant-Partially Accelerated Life Tests

The Type-l and Type-Il censoring do not allow the units to emoved from the test at points other than the terminal
point of the experiment when a compromise between reduosal ¢f experimentation and the observations of at least
some extreme lifetimes are sought. This makes the lifetesatirty under normal conditions very costly and takes a long
time. For this reason, accelerated life tests (ALT) aregréd be used in manufacturing industries to obtain enough
failure data, in a short period. In ALT, the test units are atihigher than the usual stress levels to induce early &slur

In ALT, the units are tested only at accelerated conditibtmavever, in PALT, the units are tested at both acceleratdd an
normal conditions. When the acceleration factor cannobsyme as a known value, PALT will be a good choice to
perform the life test. The focus of this paper is based on tmstant-stress PALT, in which runs each item at either use
or in accelerated condition only. Several references hatreALT, including [9], [10], [11], [12] and [13].

Now, the lifetime of an item tested at use condition follow#dwing probability density function, distribution fution
and failure rate

—a-1
fl(xl;a,B):Baxf_l(1+xf) ;a>0,8>0,x >0,
B —a
Fl(xl;a,B):l—(H-xl) ;a>06>0x>0

and
xf’l
1+x‘f

p1(x1) = Ba ;a>0,8>0,x>0.

If failure rate functionp, (x2) is denoted for an item tested at accelerated condition witkelaration factoA (> 1), then
it is defined as

P2(X2) = Ap1(xa).
Under accelerated condition, the failure rate, probakdénsity function, and distribution function are obtairsed

B-1
X5

1+%

pP2(X2) = BaAi ;a>0,8>0A>0,x>0,

B —aA
Fo (X0, B A) = 1— (1+x2) a>0,8>0A>1x%>0

—aA-1
fo(xo;0,B,A) = Bor/\xg_1 (1+x§) ;a>0,8>0A>1x>0.
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3 Approximate Confidence Intervals

Let n; items are randomly chosen amongest items which are allocated to use condition apd= n —n; remaining
items are subjected to an accelerated condition. The PsigeeType-Il censoring is applied as usual (Se8)[ Based
on progressively Type-ll censoring scheme the joint prdlgb density function of order statistics

RiL.Ri2Rim) « (Ri1;Rj25-Rim Ri1.Rj2,-Rjm) . . . i
l(ji'l';jinjjz J )’Xz(ji'ﬁjinljz J )""’ng‘ﬁjr%‘iifj‘jz J ); j=12is defined as
- . . Ry
L(a,B,A[x) 0 I_lfl (Xaiy;a,B) (1—Fr(xay:a,B))
=
il f . . Roi
: I_l 2 (X2 0,B8,2) (1—F2 (X):a,B,A)) 5)
=
m B-1 B —a-1 B —aRyj
L(a,B,Alx) O iI:lBaxli (1+X1i) (1+Xli)
m —aA—1 —aARy;
-1 21
.{iElBa/\xgi (1+xgi) (1+x§i) }
= L(a,B,Alx) 0B MegM+me ) MeB-1To-T(B)g-aTi(B)g=arT2(p) (6)
where Tj(B) = Einll(l—f' Rji)log (1+xﬁ) o= L2, To = yMlog xi + Y?log X and

T(B)=3"log (1+x’13i) + 3™ log (1+x§i) .
Taking logarithm on Eq.g), we get
LogL (a,B,A[x) = Im (say) = (mg +mg)log B + (my + mp)log o + mplog A
~TB)+(B-1)To—aTi(B)—aAT2(B). (7

The ML (maximum likelihood) estimator corresponding tograetera is

My + Np

e B AT (B @
Similarly the ML estimators corresponding to param@emndA are given as
BuL = 5 M+ M 5 )
S™ (1+a(1+Ry)) (%;‘g”) +3™ (1+aA (1+Ra)) (%;‘g”) ~To
and AL = %(m (10)

Further simplifications of ML estimators are not possiblem® suitable numerically method is applied here for
obtaining the numerical values of the ML estimates.

The common method for obtaining the confidence bounds fopéinameters is based on asymptotic normal distribution
of ML estimators. The observed information matrix is now defi and obtained as

9%y 9%y 9%y
“9a2 T dadf ~ dadx
| = | —9%u _ Py _ %y (11)
- apda @ apox |-
e %y 9%u

dAda  JAdP 0A2
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The second order derivatives for the observed Informatiatrimwith respect to parametess 3 andA are given as

%l _ mt+mp

da2 a2
dle_ m +mp m1(1+a(1+R)) Xﬁlog(Xli) ?
B A A
™2 xE10g (X ?
—21(1+a)\ (1+Ry)) <72' g(,f')>
i= 1+X5
v __me
0A2 A2

dle B 02|M __ml . |og X1| |Og(X2|)
soop ~amss — 2.0 () g (2

o2y, 02y me (xgilog (X2i)>

apor ~arop 02, (1R 1

and 2 2 m
Py 2y | ;
daox ~ arda ;(“RZ')'OQ(”XE)

Using above values the observed information mdtifsom Eq. (L1) is obtained. Now, the variance covariance matfix
(say) is approximated as
V=11 (12)

The expressiony involves three unknown parameteaxs 3 and A. Hence, an estimate of (: \7) (say) is obtained
by substituting its ML estimators respectively. Hence, {00 €)% ACI for the parameters,3 andA are obtained
respectively as

0 T Zgov/Va1 (13)

BFZe Va2 (14)
and -

AFZej2\/ Va3 (15)

HereV11,V,, andVs3 are the main diagonal elements of the variance-covariaatexiy andZ, /2 is the percentile of the
standard normal distribution with right-tail probability 2.

4 Bootstrap Confidence Intervals

In statistical inference, the bootstrap is a re-samplindhoe for estimating biases, variance of an estimator and
confidence intervals {f)]). In the present section, the confidence limits based oarpatric bootstrap methodi]) are
obtained for the parametess 8 andA respectively.

Based on following steps, the bootstrap samples are oldotaine

(@© 2017 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro6, No. 2, 295-303 (2017)www.naturalspublishing.com/Journals.asp NS = 299

The ML estimateay of the parametea from Eq. @), is obtained by using original progressive Type-Il ceesodata

fj’?,"]ﬂl,j’i"jz""’R"m), éjﬁ%’i"iz""’ij),..., (?jé}?r%jz""’ij) : j = 1,2. Similarly, the ML Estimatey. of parametep from Eq.

(9), and ML Estimatedy of A from Eq. (L0), are also obtained respectively from original progres3iype-Il censored
Rj1,Rj2,...,Rj Rj1,Rj2,...,Rj L

dataXl(j:gj:an Jm)’XZ(j:rJnj:an Jm)’""X""'J*""'j:nj ) =12

Again, generate two independent progressive samples e$ iz and m, from Burr Type-XII distribution based on
considered censoring scheRg (i =1,2,...,mj, j = 1,2). Based on generated samples, compute the bootstrap sample

estimates of ML estimatoi@y,, BML andAmL sayérML, BML andAmL respectively.

Repeat the above step up M(= 1000 times to obtainN(= 1000 different bootstrap samples. Arrange all these
samples(erL,BML and;\ML) in ascending order to obtain final bootstrap sample of tha for

1 2 N A
;<15<..<71, for am.

ré < Tﬁ <. < TB‘ for BuL

and

1

N
[5)

T for )\ML~

IN

2

IN

If G(y) = P(1;; <y) be the cumulative density function of. Where,7;;; vk = a,,A be the final bootstrap samples.
Then the 1001 — €)% approximate bootstrap confidence limits is given by

2_
e (5) 1w (57| 4o

wherer;(B> = G 1(y) for giveny. Here, the Eq16) represent the Percentile Bootstrap Confidence Limits.

5 One-Sample Bayes Prediction Limit

The Bayes predicative density of future observatiaa denoted byhg (y|x) and obtained by simplifying
ho (v O [ f(vicr,B) 0. an

where,15; (O = a,8,A) be the posterior density corresponding to param@tet a, 3,1 ) respectively.

Let us assume the prior densities corresponding to paras@et andA are given respectively as

m Dat

;a >0,
mOp >0

and
mOA LA >0.

Here, the considered prior are vague priors, so that thespdim not have any significant roles in the analyses thatvollo
One may use conjugate priors for the analysis. The joint|sithus obtained as

1
Map)) = GBr
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Hence, the joint posterior density is thus defined as

T _ Tapa) L0, B,A[X)
GBA) TTT Ja apar) - L(a, B AX) dadAdB

Now, the marginal posterior density for parametas defined and obtained as

JpJx Tapr)-L(a,B,Alx)dAdB

oy = — P
@ I I3 Ja Tapa)-L(a,B,Alx)dadAdB
— my+mp—1
o B (mamt [ BT (1T T(B) g aTu(B) g 18
o =BT (™ | gy ’ as)

m1+m2 1a(B 1T0 -1

where = {I"(mu)r" (o) Jg BTt 0B}

Similarly, the marginal posterior densities correspogdmparameterg andA are obtained as

M) = B (my)I" (mp) ™™ 1elP=YTo=T(B) (T, ()™ (T, (B)) ™ (19)

and
pmt+m—1

7Ty, = BI (my +mp)A™ / elF-UTo-T(B)gp, (20)

B (TL(B)+AT2(B)™ ™
Using Eq. () and Eq. 18) in Eq. (17), the Bayes predictive density of future variable for thegpaetera is obtained as

hg (y]x) O

B-1 my M+ —1a(B-1)To—T(B) g~ T1(B)
By ) / a / B € € dBda. 1)
[

(1_|_yB alog(l+yﬁ) (TZ(B))mz

Similarly, the Bayes predictive density of future variafiethe parameteg is obtained by using Eqlf and Eqg. {9) in
Eq. (17) as

B—1(1 B L gm+m,
hg (ylx) D a / YO B s i Tegp, (22)

s (Tu(B)™(T2(B))™

The Bayes predictive density corresponding to the paramefier future variable is obtained as by using Etj. &nd Eq.
(20)in Eq. (17)

A1 Bm1+m2 1a(B=1)To—T(B)
9 D L R e 23

If 1, andl, be the lower and upper Bayes prediction limits of the futurgssvation andl — €) be the confidence prediction
coefficient, then the one-sided Bayes prediction bounddiarie obtain by solving following equality
£

Pry<l) =~

5=Pr(Y=l). (24)

Using Eq. 1) & Eq. (24), the Bayes predictive bound limits for the parameateare obtained by solving following
equations

€ log l+IB m eB-1To-T(B)g—aTi(B)

Z = 1+Mp—1 dBdadz 25

> /z 0 / /B ey P (29)
and ( B)

2_¢ log( 1+15 a™ eB=1To—T(B)g—aT1(B)
_ a_ [ gm+m-1 dBdadz 26

S N mEye P 20
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Table 1: Relief Time (in hours) for 24 Arthritic Patients

0.70| 0.58 | 0.54| 0.59| 0.71| 0.55 | 0.63 | 0.84
0.49| 087 | 0.73| 0.72| 0.62 | 0.82 | 0.84 | 0.29
0.51| 061|057 | 0.29| 0.36 | 0.46 | 0.68 | 0.34

Itis clear that, the nice close form of EQ5) and Eq. £6) do not exists. Some numerical technique is applied here for
the numerical findings. Based on numerical findingg dfom Eq. 25) andl, from Eq. £6), the Bayes predictive bound
length for the parameter is obtained as

Lg=1lp—11.

Similarly, the Bayes predictive bound limits for the paraen@ are obtained by solving following equations;

e (. g\~ BmutMme-lelf-1To-T(B)
o= (- 0) ) i e o8 0
and o s r —a\ pmutMe-1gB-1To-T(R)

T:/ﬁ<1_(1+ ?) ) mE e ¥ 0

The Bayes predictive bound length for the parampter obtained by numerical findings bf from Eq. 27) andl, from
Eq. 28) as,

Lp=l2—11.

On similar line, the Bayes predictive bound limits and bolemhth for the parameter are obtained by using EQ29)
and Eq. R4) as

£ B N Bm1+mz 1a(B=1)To-T(B)
E_(1- 1+| / A2 dBdA 29
2 ( ) B)+AT,(B))™ ™ B (29)
2_¢ B pmtme—1g(B-1)To-T(B)
e (1o 1+| / A2 l/ dBdA 30
2 ( ) B)+ATo(B))™ ™ B (30)

and
Ly=Il—1I;.

6 Numerical Analysis

For illustrative purposes, the performance of the propgeededures is studied by a real data set on relief time (in
hours) for 24 arthritic patients1[]). Recently, L8], presents some analysis based on present data under Baa+XlIy
distribution. The data are given in the Table 1.

The progressive censoring scheme for the censored sample;sandm, are assume as

Based on above Progressive censoring scheme and data igivahle 1, the ML estimates for the parameterg
andA are obtained, and presented in the Table 3 for selected paiamwealues. It is observed from the table that, the ML
estimate increases as the censored sample size increasédar roperties also have seen when parametric values
increases.

The approximate confidence limits (ACL), percentile Ba@istconfidence limits (PBCL) and Bayes predictive bound
lengths (BPBL) are obtained for the parameter@ andA respectively and presented in Table 4-6, with confidence
valuese = 90% 95%, 99% and selected parametric values.
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Table 2: Different Progressive Censoring Scheme

mj;j =12 Rji;i=12,..mj;j=12
10 1201010031
15 101302103100311
20 10204102302100101021

Table 3: Different ML Estimates

n=24A =2.00 ML Estimators
(m,mp) | | (a,B)4 amL BuL AML
(10,10) | (0.25,1.00)| 0.6781| 1.7556 | 1.3152
(15, 20) | (0.50, 3.00)| 0.6918| 1.7666 | 1.3655
(20, 20) | (1.00,5.00)| 0.6921| 1.7679 | 1.3855

Table 4: ACL, PBCL & BPBL for the Parametem

n=24,A =200 —a—
el | (m,mp) ] (a,B) 4 ACL PBCL | BPBL
(10, 10) | (0.25,1.00)| 0.8756 | 0.8654 | 0.8689
90% | (15,20) | (0.50,3.00)| 0.9368| 0.9219| 0.9296
(20, 20) | (1.00,5.00)| 1.0303| 1.0191 | 1.0302
(10,10) | (0.25,1.00)| 0.8816 | 0.8754 | 0.8789
95% | (15,20) | (0.50,3.00)| 0.9432| 0.9316| 0.9411
(20, 20) | (1.00,5.00)| 1.0381| 1.0218| 1.0348
(10, 10) | (0.25,1.00)| 0.9156 | 0.8881 | 0.8951
99% | (15,20) | (0.50,3.00)| 0.9796 | 0.9576 | 0.8796
(20, 20) | (1.00,5.00)| 1.0676| 1.0436| 1.0531

Table 5: ACL, PBCL & BPBL for the Parametg8

n=24A =200 +—B—
el | (m,mp) ] (a,B)4 ACL PBCL | BPBL
(10, 10) | (0.25,1.00)| 1.2158| 1.2095| 1.2141
90% | (15,20) | (0.50,3.00)| 1.5776| 1.5694 | 1.5754
(20,20) | (1.00,5.00)| 1.6917 | 1.6418| 1.6842
(10, 10) | (0.25,1.00)| 1.4538| 1.4314| 1.4318
95% | (15,20) | (0.50,3.00)| 1.8735| 1.8601| 1.8609
(20,20) | (1.00,5.00)| 2.1009 | 1.8497 | 2.0101
(10, 10) | (0.25,1.00)| 1.7091 | 1.6528| 1.6833
99% | (15,20) | (0.50,3.00)| 2.2260| 2.1768| 2.1977
(20, 20) | (1.00,5.00)| 2.2699 | 2.1921 | 2.0032

It is observed from the Tables (4-6) that, the limits inceease increases. Similar, behavior also has seen when
censoring scheme changed or censored sample size incr&mmsrkable point is that, the percentile Bootstrap
confidence limit (PBCL) has minimum length, whereas the apipnate confidence limit (ACL) shows maximum
lengths for all considered parametric values.
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Table 06 :: ACL, PBCL & BPBL for the Parameter A

n=24A=2.00 — A=
el | (m,mp) | (a,B) 1 ACL | PBCL | BPBL
(10,10) | (0.25,1.00)| 1.1121| 1.1056| 1.1856
90% | (15,20) | (0.50,3.00)| 1.1898| 1.1828| 1.2684
(20,20) | (1.00,5.00)| 1.2967| 1.2891| 1.3824
(10, 10) | (0.25,1.00) 1.1851| 1.1776| 1.2701
95% | (15,20) | (0.50,3.00)| 1.2749| 1.2668| 1.3638
(20, 20) | (1.00,5.00)| 1.3985| 1.3897| 1.4975
(10,10) | (0.25,1.00)| 1.2577| 1.2491| 1.3155
99% | (15,20) | (0.50,3.00)| 1.3605| 1.3512| 1.3647
(20,20) | (1.00,5.00)| 1.4021| 1.3292| 1.5155

7 Conclusions

In the present article, the Burr Type-XIll distribution i&ém here as the underlying model for the study about apprabem
confidence intervals (ACI), percentile Bootstrap Cl, ande€ample Bayes prediction bound lengths. The constant-
partially accelerated life test based on progressive cedsiata is considered here for the discussion. It is obdérom

the numerical findings is that; the Percentile Bootstragdidence limit has minimum length, whereas the approximate
confidence limit shows maximum lengths for all considere@peetric values.
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