Characterization of Some Lacunary $\chi_{A_{u v}}^{2}-$ Convergence of Order α with p - Metric Defined by $m n$ Sequence of Moduli Musielak

Deepmala Rai ${ }^{1}$, Lakshmi Narayan Mishra ${ }^{2, *}$ and N. Subramanian ${ }^{3}$
${ }^{1}$ SQC and OR Unit, Indian Statistical Institute, 203 B. T. Road, Kolkata, 700 108,, India
${ }^{2}$ Department of Mathematics, National Institute of Technology, Silchar 788 010, District Cachar, Assam, India
${ }^{3}$ Department of Mathematics, SASTRA University, Thanjavur-613 401, India

Received: 28 Jan. 2016, Revised: 8 Mar. 2016, Accepted: 10 Mar. 2016
Published online: 1 Sep. 2016

Abstract

We study some connections between lacunary strong $\chi_{A_{u v}}^{2}$-convergence with respect to a $m n$ sequence of moduli Musielak and lacunary $\chi_{A_{u v}}^{2}$ - statistical convergence, where A is a sequence of four dimensional matrices $A(u v)=\left(a_{k_{1} \cdots k_{r} \ell_{1} \cdots \ell_{s}}^{m_{1} \cdots m_{r} n_{1} \cdots n_{s}}(u v)\right)$ of complex numbers.

Keywords: analytic sequence, χ^{2} space, difference sequence space,Musielak - modulus function, $p-$ metric space, $m n-$ sequences. Mathematics Subject Classification. 40A05,40C05,40D05.

1 Introduction

Throughout w, χ and Λ denote the classes of all, gai and analytic scalar valued single sequences, respectively.
We write w^{2} for the set of all complex sequences $\left(x_{m n}\right)$, where $m, n \in \mathbb{N}$, the set of positive integers. The notion of single sequence spaces properties are investigated by [6, $7,8,17]$. Then, w^{2} is a linear space under the coordinate wise addition and scalar multiplication.

Some initial works on double sequence spaces is found in Bromwich [4] and Robison [27]. Later on, they were investigated by Hardy [15], Moricz [20], Moricz and Rhoades [21], Basarir and Solankan [2], Tripathy [30]-[39], W.H.Ruckle [28] Turkmenoglu [40], V.N. Mishra et al. [44]-[49] and many others.

We procure the following sets of double sequences:

$$
\begin{gathered}
\mathscr{M}_{u}(t):=\left\{\left(x_{m n}\right) \in w^{2}: \sup _{m, n \in N}\left|x_{m n}\right|^{t_{m n}}<\infty\right\}, \\
\left\{\left(x_{m n}\right) \in w^{2}: p-\lim _{m, n \rightarrow \infty}(t):=\right. \\
\mathscr{C}_{0 p}(t):=\left\{\left.\left(x_{m n}\right) \in\right|^{t_{m n}}=1 \text { for some } l \in \mathbb{C}\right\}, \\
\left.2-\lim _{m, n \rightarrow \infty}\left|x_{m n}\right|^{t_{m n}}=1\right\},
\end{gathered}
$$

$$
\begin{gathered}
\mathscr{L}_{u}(t):=\left\{\left(x_{m n}\right) \in w^{2}: \sum_{m=1}^{\infty} \sum_{n=1}^{\infty}\left|x_{m n}\right|^{t_{m n}}<\infty\right\}, \\
\mathscr{C}_{b p}(t):=\mathscr{C}_{p}(t) \bigcap \mathscr{M}_{u}(t) \text { and } \mathscr{C}_{0 b p}(t)=\mathscr{C}_{0 p}(t) \bigcap \mathscr{M}_{u}(t) ;
\end{gathered}
$$ where $t=\left(t_{m n}\right)$ is the sequence of strictly positive reals $t_{m n}$ for all $m, n \in \mathbb{N}$ and $p-\lim _{m, n \rightarrow \infty}$ denotes the limit in the Pringsheim's sense . In the case $t_{m n}=1$ for all $m, n \in \mathbb{N} ; \mathscr{M}_{u}(t), \mathscr{C}_{p}(t), \mathscr{C}_{0 p}(t), \mathscr{L}_{u}(t), \mathscr{C}_{b p}(t) \quad$ and $\mathscr{C}_{0 b p}(t)$ reduce to the sets $\mathscr{M}_{u}, \mathscr{C}_{p}, \mathscr{C}_{0 p}, \mathscr{L}_{u}, \mathscr{C}_{b p}$ and $\mathscr{C}_{0 b p}$ respectively. Now, we may summarize the knowledge given in some document related to the double sequence spaces. Gökhan and Colak $[9,10]$ have proved that $\mathscr{M}_{u}(t)$ and $\mathscr{C}_{p}(t), \mathscr{C}_{b p}(t)$ are complete paranormed spaces of double sequences and gave the $\alpha-, \beta-, \gamma-$ duals of the spaces $\mathscr{M}_{u}(t)$ and $\mathscr{C}_{b p}(t)$. Quite recently, in her PhD thesis, Zelter [43] has essentially studied both the theory of topological double sequence spaces and the theory of summability of double sequences. Mursaleen [23], Mursaleen and Edely [22,24] and Tripathy [30] have independently introduced the statistical convergence and Cauchy for double sequences and given the relation between statistical convergent and strongly Cesàro summable double sequences. Altay and Basar [1] have defined the spaces $\mathscr{B} \mathscr{S}, \mathscr{B} \mathscr{S}(t), \mathscr{C} \mathscr{S}_{p}, \mathscr{C}_{b p}, \mathscr{C} \mathscr{S}_{r}$ and $\mathscr{B} \mathscr{V}$ of double sequences consisting of all double

[^0]series whose sequence of partial sums are in the spaces $\mathscr{M}_{u}, \mathscr{M}_{u}(t), \mathscr{C}_{p}, \mathscr{C}_{b p}, \mathscr{C}_{r}$ and \mathscr{L}_{u}, respectively, and also examined some properties of those sequence spaces and determined the α - duals of the spaces $\mathscr{B S}, \mathscr{B} \mathscr{V}, \mathscr{C} \mathscr{S}_{b p}$ and the $\beta(\vartheta)$ - duals of the spaces $\mathscr{C} \mathscr{S}_{b p}$ and $\mathscr{C} \mathscr{S}_{r}$ of double series. Basar and Sever [3] have introduced the Banach space \mathscr{L}_{q} of double sequences corresponding to the well-known space ℓ_{q} of single sequences and examined some properties of the space \mathscr{L}_{q}. Quite recently Subramanian and Misra [29] have studied the space $\chi_{M}^{2}(p, q, u)$ of double sequences and gave some inclusion relations.

The class of sequences which are strongly Cesàro summable with respect to a modulus was introduced by Maddox [19] as an extension of the definition of strongly Cesàro summable sequences. Connor [5] further extended this definition to a definition of strong $A-$ summability with respect to a modulus where $A=\left(a_{n, k}\right)$ is a nonnegative regular matrix and established some connections between strong $A-$ summability, strong $A-$ summability with respect to a modulus, and A - statistical convergence. In [26] the notion of convergence of double sequences was presented by A. Pringsheim. Also, in [12]-[13], and [14] the four dimensional matrix transformation $(A x)_{k, \ell}=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} a_{k \ell}^{m n} x_{m n}$ was studied extensively by Robison and Hamilton.

We need the following inequality in the sequel of the paper. For $a, b, \geq 0$ and $0<p<1$, we have

$$
\begin{equation*}
(a+b)^{p} \leq a^{p}+b^{p} \tag{1.1}
\end{equation*}
$$

The double series $\sum_{m, n=1}^{\infty} x_{m n}$ is called convergent if and only if the double sequence $\left(s_{m n}\right)$ is convergent, where $s_{m n}=\sum_{i, j=1}^{m, n} x_{i j}(m, n \in \mathbb{N})$.

A sequence $x=\left(x_{m n}\right)$ is said to be double analytic if $\sup _{m n}\left|x_{m n}\right|^{1 / m+n}<\infty$. The vector space of all double analytic sequences will be denoted by Λ^{2}. A sequence $x=\left(x_{m n}\right)$ is called double gai sequence if $\left((m+n)!\left|x_{m n}\right|\right)^{1 / m+n} \rightarrow 0$ as $m, n \rightarrow \infty$. The double gai sequences will be denoted by χ^{2}. Let $\phi=\{$ all finite sequences $\}$.

Consider a double sequence $x=\left(x_{i j}\right)$. The $(m, n)^{t h}$ section $x^{[m, n]}$ of the sequence is defined by $x^{[m, n]}=\sum_{i, j=0}^{m, n} x_{i j} \mathfrak{I}_{i j}$ for all $m, n \in \mathbb{N}$; where $\mathfrak{I}_{i j}$ denotes the double sequence whose only non zero term is a $\frac{1}{(i+j)!}$ in the $(i, j)^{t h}$ place for each $i, j \in \mathbb{N}$.

An FK-space(or a metric space) X is said to have AK property if $\left(\mathfrak{I}_{m n}\right)$ is a Schauder basis for X. Or equivalently $x^{[m, n]} \rightarrow x$.

An FDK-space is a double sequence space endowed with a complete metrizable; locally convex topology under which the coordinate mappings
$x=\left(x_{k}\right) \rightarrow\left(x_{m n}\right)(m, n \in \mathbb{N})$ are also continuous.
Let M and Φ are mutually complementary modulus functions. Then, we have:
(i) For all $u, y \geq 0$,

$$
\begin{equation*}
u y \leq M(u)+\Phi(y),(\text { Young's inequality })[\text { See }[16]] \tag{1.2}
\end{equation*}
$$

(ii) For all $u \geq 0$,

$$
\begin{equation*}
u \eta(u)=M(u)+\Phi(\eta(u)) . \tag{1.3}
\end{equation*}
$$

(iii) For all $u \geq 0$, and $0<\lambda<1$,

$$
\begin{equation*}
M(\lambda u) \leq \lambda M(u) \tag{1.4}
\end{equation*}
$$

Lindenstrauss and Tzafriri [18] used the idea of Orlicz function to construct Orlicz sequence space

$$
\ell_{M}=\left\{x \in w: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right)<\infty, \text { for some } \rho>0\right\}
$$

The space ℓ_{M} with the norm

$$
\|x\|=\inf \left\{\rho>0: \sum_{k=1}^{\infty} M\left(\frac{\left|x_{k}\right|}{\rho}\right) \leq 1\right\}
$$

becomes a Banach space which is called an Orlicz sequence space. For $M(t)=t^{p}(1 \leq p<\infty)$, the spaces ℓ_{M} coincide with the classical sequence space ℓ_{p}.

A sequence $f=\left(f_{m n}\right)$ of modulus function is called a Musielak-modulus function. A sequence $g=\left(g_{m n}\right)$ defined by

$$
g_{m n}(v)=\sup \left\{|v| u-\left(f_{m n}\right)(u): u \geq 0\right\}, m, n=1,2, \cdots
$$

is called the complementary function of a Musielak-modulus function f. For a given Musielak modulus function f, the Musielak-modulus sequence space t_{f} is defined as follows

$$
t_{f}=\left\{x \in w^{2}: I_{f}\left(\left|x_{m n}\right|\right)^{1 / m+n} \rightarrow 0 \text { as } m, n \rightarrow \infty\right\}
$$

where I_{f} is a convex modular [see $[25,42,11]$] defined by

$$
I_{f}(x)=\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{m n}\left(\left|x_{m n}\right|\right)^{1 / m+n}, x=\left(x_{m n}\right) \in t_{f}
$$

We consider t_{f} equipped with the Luxemburg metric

$$
\begin{gathered}
d(x, y)= \\
\sup _{m n}\left\{\inf \left(\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} f_{m n}\left(\frac{\left|x_{m n}\right|^{1 / m+n}}{m n}\right)\right) \leq 1\right\}
\end{gathered}
$$

If X is a sequence space, we give the following definitions:[see [41]]
(i) $X^{\prime}=$ the continuous dual of X;
(ii) $X^{\alpha}=$ $\left\{a=\left(a_{m n}\right): \sum_{m, n=1}^{\infty}\left|a_{m n} x_{m n}\right|<\infty\right.$, for each $\left.x \in X\right\} ;$
(iii) X^{β}
$\left\{a=\left(a_{m n}\right): \sum_{m, n=1}^{\infty} a_{m n} x_{m n}\right.$ is convegent, foreach $\left.x \in X\right\}$;
(iv) X^{γ}
$=$
$\left\{a=\left(a_{m n}\right): \sup _{m n} \geq 1\left|\sum_{m, n=1}^{M, N} a_{m n} x_{m n}\right|<\infty\right.$, foreach $\left.x \in X\right\}$;
(v)let X beanFK - space $\supset \phi$;then $X^{f}=$ $\left\{f\left(\mathfrak{I}_{m n}\right): f \in X^{\prime}\right\} ;$
(vi) X^{δ}
$=$
$\left\{a=\left(a_{m n}\right): \sup _{m n}\left|a_{m n} x_{m n}\right|^{1 / m+n}<\infty\right.$, foreach $\left.x \in X\right\}$;
$X^{\alpha} . X^{\beta}, X^{\gamma}$ are called $\alpha-($ orKöthe - Toeplitz $)$ dual of $X, \beta-($ or generalized - Köthe - Toeplitz $)$ dual of $X, \gamma-$ dual of $X, \delta-$ dual of X respectively. X^{α} is defined by Gupta and Kamptan [16]. It is clear that $X^{\alpha} \subset X^{\beta}$ and $X^{\alpha} \subset X^{\gamma}$, but $X^{\beta} \subset X^{\gamma}$ does not hold, since the sequence of partial sums of a double convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was introduced by Kizmaz as follows

$$
Z(\Delta)=\left\{x=\left(x_{k}\right) \in w:\left(\Delta x_{k}\right) \in Z\right\}
$$

for $Z=c, c_{0}$ and ℓ_{∞}, where $\Delta x_{k}=x_{k}-x_{k+1}$ for all $k \in \mathbb{N}$. Here c, c_{0} and ℓ_{∞} denote the classes of convergent, null and bounded sclar valued single sequences respectively. The difference sequence space $b v_{p}$ of the classical space ℓ_{p} is introduced and studied in the case $1 \leq p \leq \infty$ by Başar and Altay and in the case $0<p<1$ by Altay and Başar in [1]. The spaces $c(\Delta), c_{0}(\Delta), \ell_{\infty}(\Delta)$ and $b v_{p}$ are Banach spaces normed by

$$
\begin{gathered}
\|x\|=\left|x_{1}\right|+\sup _{k \geq 1}\left|\Delta x_{k}\right| \text { and } \\
\|x\|_{b v_{p}}=\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p},(1 \leq p<\infty) .
\end{gathered}
$$

Later on the notion was further investigated by many others. We now introduce the following difference double sequence spaces defined by

$$
Z(\Delta)=\left\{x=\left(x_{m n}\right) \in w^{2}:\left(\Delta x_{m n}\right) \in Z\right\}
$$

where $Z \quad=\quad \Lambda^{2}, \chi^{2} \quad$ and $\Delta x_{m n}=\left(x_{m n}-x_{m n+1}\right)-\left(x_{m+1 n}-x_{m+1 n+1}\right)=$ $x_{m n}-x_{m n+1}-x_{m+1 n}+x_{m+1 n+1}$ for all $m, n \in \mathbb{N}$.

2 Definition and Preliminaries

Let $m n(\geq 2)$ be an integer. A function $x:(M \times N) \times(M \times N) \times \cdots \times(M \times N)$.
$(M \times N)(m \times n-$ factors $) \rightarrow \mathbb{R}(\mathbb{C})$ is called a real complex $m n-$ sequence, where \mathbb{N}, \mathbb{R} and \mathbb{C} denote the sets of natural numbers and complex numbers respectively. Let $m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s} \in \mathbb{N}$ and X be a real vector space of dimension w, where $m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s} \leq w$. A real valued function $d_{p}\left(x_{11}, \ldots, x_{\left.m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}\right)}\right)$
$\left\|\left(d_{1}\left(x_{11}, 0\right), \ldots, d_{n}\left(x_{m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}}, 0\right)\right)\right\|_{p} \quad$ on $\quad X$ satisfying the following four conditions:
(i) $\left\|\left(d_{1}\left(x_{11}, 0\right), \ldots, d_{n}\left(x_{m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}}, 0\right)\right)\right\|_{p}=0$ if and and only if
$d_{1}\left(x_{11}, 0\right), \ldots, d_{m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}}\left(x_{m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}}, 0\right)$
are linearly dependent,
(ii) $\|\left(d_{1}\left(x_{11}, 0\right), \ldots, d_{m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}}\left(x_{\left.m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}, 0\right)}\right) \|_{p}\right.$ is invariant under permutation,
(iii) $\left\|\left(\alpha d_{1}\left(x_{11}, 0\right), \ldots, d_{m_{1}, m_{2}, \cdots m_{p}, n_{1}, n_{2}, \cdots, n_{q}}\left(x_{m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}}, 0\right)\right)\right\|_{p}=$
$|\alpha| \|\left(d_{1}\left(x_{11}, 0\right), \ldots, d_{n}\left(x_{\left.\left.m_{1}, m_{2}, \cdots m_{p}, n_{1}, n_{2}, \cdots, n_{q}, 0\right)\right) \|_{p}, \alpha \in \mathbb{R}, ~}^{n}\right.\right.$
(iv) $d_{p}\left(\left(x_{11}, y_{11}\right),\left(x_{12}, y_{12}\right) \cdots\left(x_{m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}, y_{m_{1}}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}}\right)\right)=$
$\left(d_{X}\left(x_{11}, x_{12}, \cdots x_{m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{q}}\right)^{p}+d_{Y}\left(y_{11}, y_{12}, \cdots y_{m_{1}, m_{2}, \cdots m_{p}, n_{1}, n_{2}, \cdots, n_{s}}\right)^{p}\right)^{1 / p}$ for $1 \leq p<\infty$; (or)
(v) $d\left(\left(x_{11}, y_{11}\right),\left(x_{12}, y_{12}\right), \cdots\left(x_{\left.m_{1}, m_{2}, \cdots m m_{r}, n_{1}, n_{2}, \cdots, n_{s}, y_{m_{1}, m_{2}}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}\right)}\right):=\right.$ $\sup \left\{d_{X}\left(x_{11}, x_{12}, \cdots x_{m_{1}, m_{2}}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}\right), d_{Y}\left(y_{11}, y_{12}, \cdots y_{m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}}\right)\right\}$,
for $\quad x_{11}, x_{12}, \cdots x_{m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}} \in$ $X, y_{11}, y_{12}, \cdots y_{m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s} \in Y \text { is called the } p-}$ product metric of the Cartesian product of $m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}$ metric spaces is the $p-$ norm of the $m \times n$-vector of the norms of the $m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}$ subspaces.

A trivial example of p product metric of $m_{1}, m_{2}, \cdots m_{r}, n_{1}, n_{2}, \cdots, n_{s}$ metric space is the p norm space is $X=\mathbb{R}$ equipped with the following Euclidean metric in the product space is the p norm:

where $\quad x_{i}=\left(x_{i 1}, \cdots x_{i, n_{1}, n_{2}, \cdots, n_{s}}\right) \in \mathbb{R}^{n} \quad$ for \quad each $i=1,2, \cdots m_{1}, m_{2} \cdots m_{r}$.
If every Cauchy sequence in X converges to some $L \in X$, then X is said to be complete with respect to the $p-$ metric. Any complete $p-$ metric space is said to be $p-$ Banach metric space.

By a lacunary sequence $\theta=\left(m_{r} n_{s}\right)$, where $m_{0} n_{0}=0$, we shall mean an increasing sequence of non-negative integers with $h_{r s}=m_{r} n_{s}-m_{r-1} n_{s-1} \rightarrow \infty$ as $r, s \rightarrow \infty$. The intervals determined by θ will be denoted by $I_{r s}=\left(m_{r-1} n_{s-1}, m_{r} n_{s}\right]$.

Let $F=\left(f_{m n}\right)$ be a $m n-$ sequence of moduli musielak such that $\lim _{u \rightarrow 0^{+}} \sup _{m n} f_{m n}(u)=0$. Throughout this paper $\chi_{A_{u v}}^{2}-$ convergence of $p-$ metric of $m n-$ sequence of musielak modulus function determinated by F will be denoted by $f_{m n} \in F$ for every $m, n \in \mathbb{N}$.

The purpose of this paper is to introduce and study a concept of lacunary strong $\chi_{A_{u v}}^{2}-$ convergence of $p-$ metric with respect to a $m n-$ sequence of moduli musielak. We now introduce the generalizations of lacunary strongly $\chi_{A_{u v}}^{2}$ - convergence of p - metric with respect a $m n-$ sequence of musielak modulus function and investigate some inclusion relations.

Let A denote a sequence of the matrices $A^{u v}=\left(a_{k_{1} \cdots k_{r} \ell_{1} \cdots \ell_{s}}^{m_{1} \cdots m_{s} n_{1} \cdots n_{s}}(u v)\right)$ of complex numbers. We write for any sequence $x=\left(x_{m n}\right), y_{i j}(u v)=A_{i j}^{u v}(x)=$
 it exits for each i and $u v$. We $A^{u v}(x)=\left(A_{i j}^{u v}(x)\right)_{i j}, A x=\left(A^{u v}(x)\right)_{u v}$.

2.1 Definition

Let $F=\left(f_{m_{1} \cdots m_{r} n_{1} \cdots n_{s}}^{i j}\right)$ be a $m n-$ sequence of moduli musielak, A denote the sequence of four dimensional infinte matrices of complex numbers and X be locally convex Hausdorff topological linear space whose topology is determined by a set of continuous semi norms η and
$\left(X,\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right)$ be a p-metric space, $q=\left(q_{i j}\right)$ be double analytic sequence of strictly positive real numbers. By $w^{2}(p-X)$ we denote the space of all sequences defined over $\left(X,\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right)$. In the present paper we define the following sequence spaces:

${ }^{\lim n_{r s}}\left\{\left[\int_{f_{i j}}\left(\| \|_{\theta}^{\alpha}(x),,\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \ldots, d\left(x_{\left.\left.m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}, 0\right)\right)}\right) \|_{p}\right)\right]^{q_{i j}}=0\right\}\right.$
where $N_{\theta}^{\alpha}(x)=$
$\frac{1}{n_{s}^{m}} \sum_{i \in I_{r s}} \Sigma_{j \in l_{r s} s}\left(\eta\left(A_{i j}^{m v}\left(\left(\left(m_{1} \cdots m_{r}+n_{1} \cdots n_{s}\right)!\mid x_{m_{1}} \cdots m_{r} n_{1} \cdots n_{s}\right)^{1 / m_{1} \cdots m_{r}+n_{1} \cdots n_{s}}\right)\right)\right)$,
uniformly in $u v$
$\left[\Lambda_{A f N_{\theta}^{\alpha}}^{2 q \eta} \|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{\left.m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}, 0\right)}\right) \|_{p}\right]=\right.$
${ }_{s u p_{r s}}\left\{\left[f_{w_{u} v}\left(\| \|_{\theta}^{\alpha}(x),\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \ldots, d\left(x_{\left.\left.m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}, 0\right)\right)}\right) \|_{p}\right)\right]^{q_{i j}}<\infty\right\}\right.$
where $e=\left(\begin{array}{llll}1 & 1 & \ldots & 1 \\ 1 & 1 & \ldots & 1 \\ \cdot & & \\ \cdot & & \\ \vdots & & \\ 1 & 1 & \ldots\end{array}\right)$.

3 Main Results

3.1 Proposition

$$
\begin{aligned}
& {\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right] \quad \text { and }} \\
& {\left[\Lambda_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right] \text { are }}
\end{aligned}
$$

linear spaces.
Proof: It is routine verification. Therefore the proof is omitted.

$$
\begin{gathered}
\text { The inclusion relation between } \\
{\left[\chi_{A f N^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}^{2,0}\right)\right)\right\|_{p}\right] \text { and }} \\
{\left[\Lambda_{A f N_{\theta}^{N}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right] .}
\end{gathered}
$$

3.2 Theorem

Let A be a $m n$ - sequence the four dimensional infinite matrices $A^{u v}=\left(a_{k_{1} \cdots k_{r} \ell_{1} \cdots \ell_{s}}^{m_{1} \cdots m_{r} n_{1} \cdots n_{s}}(u v)\right)$ of complex numbers and $F=\left(f_{m n}^{i j}\right)$ be a $m n-$ sequence of moduli musielak.

If $x=\left(x_{m n}\right)$ lacunary strong $A_{u v}-$ convergent of orer α to zero then $x=\left(x_{m n}\right)$ lacunary strong $A_{u v}$ - convergent of order α to zero with respect to $m n-$ sequence of moduli musielak, (i.e)
$\left[\chi_{A N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]$
$\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]$
Proof: Let $F=\left(f_{m n}^{i j}\right)$ be a $m n-$ sequence of moduli musielak and put $\operatorname{supf}_{m n}^{i j}(1)=T$. Let $x=\left(x_{m n}\right) \in$ $\left[\chi_{A N_{\theta}^{\alpha}}^{2 q \eta}\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]$ and $\varepsilon>0$. We choose $0<\delta<1$ such that $f_{m n}^{i j}(u)<\varepsilon$ for every u with $0 \leq u \leq \delta(i, j \in \mathbb{N})$. We can write
$\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]=$
$\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]+$
$\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]$
where the first part is over $\leq \delta$ and second part is over $>\delta$. By definition of Musielak modulus $f_{m n}^{i j}$ for every $i j$,

$$
\begin{aligned}
& \text { we have } \\
& {\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right] \leq \varepsilon^{H_{2}}+} \\
& \left(2 T \delta^{-1}\right)^{H_{2}}\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right] \\
& \begin{array}{ccc}
\text { Therefore } x & = & \left(x_{m n}\right) \quad \in
\end{array} \\
& {\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta^{\alpha}},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right] \text {. }}
\end{aligned}
$$

3.3 Theorem

Let A be a $m n$ - sequence of the four dimensional infinite matrices $A^{u v}=\left(a_{k_{1} \cdots k_{r} \ell_{1} \cdots \ell_{s}}^{m_{1} \cdots m_{r} n_{1} \cdots n_{s}}(u v)\right)$ of complex numbers, $q=\left(q_{i j}\right)$ be a $m n-$ sequence of positive real numbers with $0<\inf q_{i j}=H_{1} \leq s u p q_{i j}=H_{2}>\infty$ and $F=\left(f_{m n}^{i j}\right)$ be a mn- sequence of moduli Musielak. If $\lim _{u, v \rightarrow \infty} \inf _{i j} \frac{f_{i j}(u v)}{u v} \quad>\quad 0, \quad$ then $\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]=$ $\left[\chi_{A N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]$.
Proof: If $\lim _{u, v \rightarrow \infty} i n f_{i j} \frac{f_{i j}(u v)}{u v}>0$, then there exists a number $\beta>0$ such that $f_{i j}(u v) \geq \beta u$ for all $u \geq 0$ and $i, j \in \mathbb{N}$. Let $x=\left(x_{m_{1}} \cdots m_{r} n_{1} \cdots n_{s}\right) \in$
$\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]$.
Clearly
$\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right] \geq$
$\beta\left[\chi_{A N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]$.
Therefore
$\begin{array}{ll}x & \left(x_{m_{1}} \cdots m_{r} n_{1} \cdots n_{s}\right)\end{array} \in$,
By using Theorem 3.2, the proof is complete.
We now give an example to show that
$\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right] \neq$
$\left[\chi_{A N ⿱ 亠 ⿻ ⿰ 丨 丨 八 日}^{2 q}, \|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}, 0}^{2 q}\right) \|_{p}\right]\right.$ in the case when $\beta=0$ ．Consider $A=I$ ，unit matrix，$\eta(x)=$ $\left(\left(m_{1} \cdots m_{r}+n_{1} \cdots n_{s}\right)!\left|x_{m_{1} \cdots m_{r} n_{1} \cdots n_{s}}\right|\right)^{1 / m_{1} \cdots m_{r}+n_{1} \cdots n_{s}}$ ， $q_{i j}=1 \quad$ for every $i, j \in \mathbb{N}$ and $f_{m n}^{i j}(x)=$ $\frac{\left|x_{m_{1} \cdots m_{r} n_{1} \cdots n_{s}}\right|^{1 /\left(\left(m_{1} \cdots m_{r}+n_{1} \cdots n_{S}\right)(i+1)(j+1)\right)}}{\left(\left(m_{1} \cdots m_{r}+n_{1} \cdots n_{s}\right)!\right)^{1 / m_{1} \cdots m_{r}+n_{1} \cdots n_{S}}}(i, j \geq 1, x>0)$ in the case $\beta>0$ ．Now we define $x_{i j}=h_{r s}^{\alpha}$ if $i, j=m_{r} n_{s}$ for some $r, s \geq 1$ and $x_{i j}=0$ otherwise．Then we have，

$$
\left[\begin{array}{c}
\left.\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right] \rightarrow 1 \text { as } \\
r, s \rightarrow \infty
\end{array}\right.
$$

and so $x=\left(x_{m_{1} \cdots m r n_{1} \cdots n_{s}}\right) \quad \notin$

$$
\begin{gathered}
\text { The inclusion Relation between } \\
{\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right] \text { and }} \\
{\left[\chi_{A S_{\theta}^{\alpha}}^{2 \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right] .}
\end{gathered}
$$

In this section we introduce natural relationship between lacunary $A^{u v}$－statistical convergence of order α and lacunary strong $A^{u v}$－convergence of order α with respect to $m n-$ sequence of moduli Musielak．

3．4 Definition

Let θ be a lacunary $m n-$ sequence．Then a $m n-$ sequence $x=\left(x_{m_{1} \cdots m_{r} n_{1} \cdots n_{s}}\right)$ is said to be lacunary statistically convergent of order α to a number zero if for every $\varepsilon>0, \lim _{r s \rightarrow \infty} h_{r s}^{-\alpha}\left|K_{\theta}(\varepsilon)\right|=0$ ，where $\left|K_{\theta}(\varepsilon)\right|$ denotes the number of elements in $K_{\theta}(\varepsilon)=$ $\left\{i, j \in I_{r s}:\left(\left(m_{1} \cdots m_{r}+n_{1} \cdots n_{s}\right)!\left|x_{m_{1} \cdots m_{r} n_{1} \cdots n_{s}}-0\right|\right)^{1 / m_{1} \cdots n_{r}+n_{1} \cdots n_{s}} \geq \varepsilon\right\}$ ．The set of all lacunary statistical convergent of order α of $m n-$ sequences is denoted by S_{θ}^{α} ．

Let $A^{u v}=\left(a_{k_{1} \cdots k_{r} \ell_{1} \cdots \ell_{s}}^{m_{1} \cdots m_{r} n_{1} \cdots n_{s}}(u v)\right)$ be an four dimensional infinite matrix of complex numbers．Then a $m n-$ sequence $x=\left(x_{m_{1} \cdots m_{r} n_{1} \cdots n_{s}}\right)$ is said to be lacunary $A-$ statistically convergent of order α to a number zero if for every $\varepsilon>0$, lim $_{r s \rightarrow \infty} h_{r s}^{-\alpha}\left|K A_{\theta}(\varepsilon)\right|=0$ ，where $\left|K A_{\theta}(\varepsilon)\right|$ denotes the number of elements in $K A_{\theta}(\varepsilon)$
$\left\{i, j \in I_{r s}:\left(\left(m_{1} \cdots m_{r}+n_{1} \cdots n_{s}\right)!\left|x_{m_{1} \cdots m r n_{1} \cdots n_{s}}-0\right|\right)^{1 / m_{1} \cdots m_{r}+n_{1} \cdots n_{s}} \geq \varepsilon\right\}$ ．The
set of all lacunary A－statistical convergent of order α of $m n-$ sequences is denoted by $S_{\theta}^{\alpha}(A)$ ．

3．5 Definition

Let A be a $m n$－sequence of the four dimensional infinite matrices $A^{u v}=\left(a_{k_{1} \cdots k_{r} \ell_{1} \cdots \ell_{s}}^{m_{1} \cdots m_{r} n_{1} \cdots n_{s}}(u v)\right)$ of complex numbers and let $q=\left(q_{i j}\right)$ be a $m n-$ sequence of positive real numbers with $0<\inf q_{i j}=H_{1} \leq s u p q_{i j}=H_{2}<\infty$ ．Then a $m n$－sequence $x=\left(x_{m_{1} \cdots m_{r} n_{1} \cdots n_{s}}\right)$ is said to be lacunary $A^{u v}$－statistically convergent of order α to a number zero
if for every $\varepsilon>0, \lim _{r s \rightarrow \infty} h_{r s}^{-\alpha}\left|K A_{\theta \eta}(\varepsilon)\right|=0$ ，where $\left|K A_{\theta \eta}(\varepsilon)\right|$ denotes the number of elements in
$K A_{\theta \eta}(\varepsilon)$
$\left\{i, j \in I_{r s}:\left(\left(m_{1} \cdots m_{r}+n_{1} \cdots n_{s}\right)!\left|x_{m_{1} \cdots m_{r} n_{1} \cdots n_{s}}-0\right|\right)^{1 / m_{1} \cdots m_{r}+n_{1} \cdots n_{s}} \geq \varepsilon\right\}$ ．The set of all lacunary A_{η}－statistical convergent of order α of $m n-$ sequences is denoted by $S_{\theta}^{\alpha}(A, \eta)$ ．

The following theorems give the relations between lacunary $A^{u v}$－statistical convergence of order α and lacunary strong $A^{u v}$－convergence of order α with respect to a $m n-$ sequence of moduli Musielak．

3．6 Theorem

Let $F=\left(f_{i j}\right)$ be a $m n-$ sequence of moduli Musielak． Then
$\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta^{\alpha}},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right] \subseteq$
$\left[\chi_{A S_{\theta}^{\alpha}}^{2 \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]$
if and only if $\lim _{i j \rightarrow \infty} f_{i j}(u)>0,(u>0)$ ．
Proof：Let $\varepsilon>0$ and $x=\left(x_{m_{1} \cdots m_{r} n_{1} \cdots n_{s}}\right) \in$
$\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]$ ．
If $\lim _{i j \rightarrow \infty} f_{i j}(u)>0,(u>0)$ ，then there exists a number $d>0$ such that $f_{i j}(\varepsilon)>d$ for $u>\varepsilon$ and $i, j \in \mathbb{N}$ ．Let
$\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right] \geq$
$h_{r s}^{-\alpha} d^{H_{1}} K A_{\theta \eta}(\varepsilon)$ It follows that
$\left[\chi_{A f S_{\theta}^{\alpha}}^{2 \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]$ ．
Conversely，suppose that $\lim _{i j \rightarrow \infty} f_{i j}(u)>0$ does not hold，then there is a number $t>0$ such that $\lim _{i j \rightarrow \infty} f_{i j}(t)=0$ ．We can select a lacunary $m n-$ sequence $\theta=\left(m_{1} \cdots m_{r} n_{1} \cdots n_{s}\right)$ such that $f_{i j}(t)<2^{-r s}$ for any $i>m_{1} \cdots m_{r}, j>n_{1} \cdots n_{s}$ ．Let $A=I$ ，unit matrix， define the $m n-$ sequence x by putting
$x_{i j}=t$ if $m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}<i, j<$ $\frac{m_{1}, m_{2}, \cdots m_{r} n_{1}, n_{2}, \cdots n_{s}+m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}{2}$ and $x_{i j}=0$ if $\frac{m_{1}, m_{2}, \cdots m_{r} n_{1}, n_{2}, \cdots n_{s}+m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}{2} \leq i, j \leq$ $m_{1}, m_{2}, \cdots m_{r} n_{1}, n_{2}, \cdots n_{s}$ ．We have $x=\left(x_{m_{1} \cdots m_{r} n_{1} \cdots n_{s}}\right) \in$ $\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]$
but
$\left[\chi_{A S_{\theta}^{\alpha}}^{2 \eta}, \|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{\left.m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}, 0\right)}\right) \|_{p}\right]\right.$.

3．7 Theorem

Let $F=\left(f_{i j}\right)$ be a $m n-$ sequence of moduli Musielak．
Then
$\left.\begin{array}{l}\text { Then } \\ {\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta^{\alpha}},\right.}\end{array}\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right] \supseteq$
$\left[\chi_{A S_{\theta}^{\alpha}}^{2 \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]$ if and only if $\sup _{u} \sup p_{i j} f_{i j}(u)<\infty$ ．
$\left\{\begin{array}{lc}\text { Proof：} & \text { Let } \\ {\left[\chi_{A S_{\theta}^{\alpha}}^{2 \eta},\right.}\end{array} \|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{\left.\left.m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}, 0\right)\right)}^{\|_{p}}\right]\right.\right.$.
Suppose that $h(u)=\sup _{i j} f_{i j}(u)$ and $h=\sup _{u} h(u)$ ．Since $f_{i j}(u) \leq h$ for all i, j and $u>0$ ，we have for all u, v ，
$\left[\chi_{A S_{\theta}^{\alpha}}^{2 \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]$
$h^{H_{2}} h_{r s}^{-\alpha}\left|K A_{\theta \eta}(\varepsilon)\right|+|h(\varepsilon)|^{H_{2}}$. It follows from $\varepsilon \rightarrow 0$ that
$x \in\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \pi},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]$
Conversely, suppose that $\sup _{u} s u p_{i j} f_{i j}(u)=\infty$. Then we have
$0<u_{11}<\cdots<u_{r-1 s-1}<u_{r s}<\cdots$, such that $f_{m_{r} n_{s}}\left(u_{r s}\right) \geq h_{r s}^{\alpha}$ for $r, s \geq 1$. Let $A=I$, unit matrix, define the $m n-$ sequence x by putting $x_{i j}=u_{r s}$ if $i, j=m_{1} m_{2} \cdots m_{r} n_{1} n_{2} \cdots n_{s}$ for some $r, s=1,2, \cdots$ and $x_{i j}=0$ otherwise. Then we have $x \in$ $\left[\chi_{A S_{\theta}^{\alpha}}^{2 \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]$ but $x \notin\left[\chi_{A f N_{\theta}^{\alpha}}^{2 q \eta},\left\|\left(d\left(x_{11}, 0\right), d\left(x_{12}, 0\right), \cdots, d\left(x_{m_{1}, m_{2}, \cdots m_{r-1} n_{1}, n_{2}, \cdots n_{s-1}}, 0\right)\right)\right\|_{p}\right]$.

4 Conclusion

We study characterization of certain lacunary strong $\chi_{A_{u v}}^{2}$-convergence with respect to a $m n$ sequence of moduli Musielak and lacunary $\chi_{A_{u v}}^{2}-$ statistical convergence, where A is a sequence of four dimensional matrices $A(u v)=\left(a_{k_{1} \cdots k_{r} \ell_{1} \cdots \ell_{s}}^{m_{1} \cdots m_{r} n_{1} \cdots n_{s}}(u v)\right)$ and also inclusion results are discuss about in above sequence spaces.

Competing Interests: The authors declare that there is no conflict of interests regarding the publication of this research paper.

Acknowledgement

The first author Deepmala is thankful to carried out this research work under the project on Optimization and Reliability Modelling of Indian Statistical Institute. The second author LNM is thankful to the Ministry of Human Resource Development, New Delhi, India and Department of Mathematics, National Institute of Technology, Silchar, India for supporting this research article.

References

[1] B.Altay and F.Başar, Some new spaces of double sequences, J. Math. Anal. Appl., 309(1), (2005), 70-90.
[2] M.Basarir and O.Solancan, On some double sequence spaces, J. Indian Acad. Math., 21(2) (1999), 193-200.
[3] F.Başar and Y.Sever, The space \mathscr{L}_{p} of double sequences, Math. J. Okayama Univ, 51, (2009), 149-157.
[4] T.J.I'A.Bromwich, An introduction to the theory of infinite series Macmillan and Co.Ltd. ,New York, (1965).
[5] J.Cannor, On strong matrix summability with respect to a modulus and statistical convergence, Canad. Math. Bull., 32(2), (1989), 194-198.
[6] P.Chandra and B.C.Tripathy, On generalized Kothe-Toeplitz duals of some sequence spaces, Indian Journal of Pure and Applied Mathematics, 33(8) (2002), 1301-1306.
[7] G.Goes and S.Goes. Sequences of bounded variation and sequences of Fourier coefficients, Math. Z., 118, (1970), 93102.
[8] A.Esi, Lacunary strong A_{q} - convergence sequence spaces defined by a sequence of moduli, Kuwait J. Sci. , Vol. 40(1) (2013), 57-65.
[9] A.Gökhan and R.Çolak, The double sequence spaces $c_{2}^{P}(p)$ and $c_{2}^{P B}(p)$, Appl. Math. Comput., 157(2), (2004), 491-501.
[10] A.Gökhan and R.Çolak, Double sequence spaces ℓ_{2}^{∞}, ibid., 160(1), (2005), 147-153.
[11] M.Gupta and S.Pradhan, On Certain Type of Modular Sequence space, Turk J. Math., 32, (2008), 293-303.
[12] H.J.Hamilton, Transformations of multiple sequences, Duke Math. J., 2, (1936), 29-60.
[13] H. J. Hamilton, A Generalization of multiple sequences transformation, Duke Math. J., 4, (1938), 343-358.
[14] H. J. Hamilton, Preservation of partial Limits in Multiple sequence transformations, Duke Math. J., 4, (1939), 293297.
[15] G.H.Hardy, On the convergence of certain multiple series, Proc. Camb. Phil. Soc., 19 (1917), 86-95.
[16] P.K.Kamthan and M.Gupta, Sequence spaces and series, Lecture notes, Pure and Applied Mathematics, 65 Marcel Dekker, In c., New York, 1981.
[17] M.A.Krasnoselskii and Y.B.Rutickii, Convex functions and Orlicz spaces, Gorningen, Netherlands, 1961.
[18] J.Lindenstrauss and L.Tzafriri, On Orlicz sequence spaces, Israel J. Math., 10 (1971), 379-390.
[19] I.J.Maddox, Sequence spaces defined by a modulus, Math. Proc. Cambridge Philos. Soc, 100(1) (1986), 161-166.
[20] F.Moricz, Extentions of the spaces c and c_{0} from single to double sequences, Acta. Math. Hung., 57(1-2), (1991), 129136.
[21] F.Moricz and B.E.Rhoades, Almost convergence of double sequences and strong regularity of summability matrices, Math. Proc. Camb. Phil. Soc., 104, (1988), 283-294.
[22] M.Mursaleen and O.H.H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288(1), (2003), 223-231.
[23] M.Mursaleen, Almost strongly regular matrices and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 523-531.
[24] M.Mursaleen and O.H.H. Edely,Almost convergence and a core theorem for double sequences, J. Math. Anal. Appl., 293(2), (2004), 532-540.
[25] H.Nakano, Concave modulars, J. Math. Soc. Japan, 5(1953), 29-49.
[26] A.Pringsheim, Zurtheorie derzweifach unendlichen zahlenfolgen, Math. Ann., 53, (1900), 289-321.
[27] G.M.Robison, Divergent double sequences and series, Amer. Math. Soc. Trans., 28, (1926), 50-73.
[28] W.H.Ruckle, FK spaces in which the sequence of coordinate vectors is bounded, Canad. J. Math., 25(1973), 973-978.
[29] N.Subramanian and U.K.Misra, The semi normed space defined by a double gai sequence of modulus function, Fasciculi Math., 46, (2010).
[30] B.C.Tripathy, On statistically convergent double sequences, Tamkang J. Math., 34(3), (2003), 231-237.
[31] B.C.Tripathy and S. Mahanta, On a class of vector valued sequences associated with multiplier sequences,Acta Math. Applicata Sinica (Eng. Ser.), 20(3) (2004), 487-494.
[32] B.C.Tripathy and M.Sen, Characterization of some matrix classes involving paranormed sequence spaces, Tamkang Journal of Mathematics, 37(2) (2006), 155-162.
[33] B.C.Tripathy and A.J.Dutta, On fuzzy real-valued double sequence spaces $2_{2} \ell_{F}^{p}$, Mathematical and Computer Modelling, 46 (9-10) (2007), 1294-1299.
[34] B.C.Tripathy and B.Sarma, Statistically convergent difference double sequence spaces, Acta Mathematica Sinica, 24(5) (2008), 737-742.
[35] B.C.Tripathy and B.Sarma, Vector valued double sequence spaces defined by Orlicz function, Mathematica Slovaca, 59(6) (2009), 767-776.
[36] B.C.Tripathy and A.J.Dutta, Bounded variation double sequence space of fuzzy real numbers, Computers and Mathematics with Applications, 59(2) (2010), 1031-1037.
[37] B.C.Tripathy and B.Sarma, Double sequence spaces of fuzzy numbers defined by Orlicz function, Acta Mathematica Scientia, 31 B(1) (2011), 134-140.
[38] B.C.Tripathy and P.Chandra, On some generalized difference paranormed sequence spaces associated with multiplier sequences defined by modulus function, Anal. Theory Appl., 27(1) (2011), 21-27.
[39] B.C.Tripathy and A.J.Dutta, Lacunary bounded variation sequence of fuzzy real numbers, Journal in Intelligent and Fuzzy Systems, 24(1) (2013), 185-189.
[40] A.Turkmenoglu, Matrix transformation between some classes of double sequences, J. Inst. Math. Comp. Sci. Math. Ser., 12(1), (1999), 23-31.
[41] A.Wilansky, Summability through Functional Analysis, North-Holland Mathematical Studies, North-Holland Publishing, Amsterdam, Vol.85(1984).
[42] J.Y.T. Woo, On Modular Sequence spaces, Studia Math., 48, (1973), 271-289.
[43] M.Zeltser, Investigation of Double Sequence Spaces by Soft and Hard Analitical Methods, Dissertationes Mathematicae Universitatis Tartuensis 25, Tartu University Press, Univ. of Tartu, Faculty of Mathematics and Computer Science, Tartu, 2001.
[44] V.N. Mishra, Some Problems on Approximations of Functions in Banach Spaces, Ph.D. Thesis. Indian Institute of Technology, Roorkee 247 667, Uttarakhand, India,(2007).
[45] V.N. Mishra and L.N. Mishra, Trigonometric Approximation of Signals (Functions)in $L_{p}(p \geq 1)-$ norm , International Journal of Contemporary Space Mathematical Sciences, Vol. 7, no. 19 (2012), 909-918.
[46] V.N. Mishra, K. Khatri and L.N. Mishra, Using Linear Operators to Approximate Signals of $\operatorname{Lip}(\alpha, p),(p \geq 1)$-class, Filomat, 27:2(2013),353-363, DOI 10.2298/FIL1302353M(2013), 353-363.
[47] V.N. Mishra, K. Khatri and L.N. Mishra, Statistical approximation by Kantorovich type Discrete q - Beta operators. Advances in Difference Equations, 2013, 2013:345, DOI:10.1186/10.1186/1687-1847-2013-345.
[48] V.N. Mishra, P. Sharma and L.N. Mishra, On statistical approximation properties of q-Baskakov-Szá sz-Stancu operators, Journal of Egyptian Mathematical Society. (2015), pp. 1-6, doi: 10.1016/j.joems.2015.07.005.
[49] V.N. Mishra, H.H. Khan and K. Khatri, Degree of Approximation of Conjugate of Signals (Functions) by Lower Triangular Matrix Operator, Applied

Mathematics, Vol. 2, No. 12, pp. 1448-1452, 2011. DOI: 10.4236/am.2011.212206.

Deepmala Rai is Visiting Scientist at SQC \& OR Unit at Indian Statistical Institute, Kolkata, West Bengal, India. Her research interests are in the areas of pure and applied mathematics including Optimization, Mathematical Programming, Fixed Point Theory and Applications, Integral equations, Operator theory, Approximation Theory, Summability analysis etc. She is member of several scientific committees, advisory boards as well as member of editorial board of a number of scientific journals, like as Maejo International Journal of Science and Technology and Facta Universitatis, Series: Mathematics and Informatics etc. Dr. Deepmala has more than 50 research papers to her credit published in several journals of repute as well as key note speaker in International conferences. Citations of her research contributions can be found in many books and monographs, PhD thesis, and scientific journal articles, much too numerous to be recorded here.

$\begin{array}{lrr}\text { Lakshmi } & \text { Narayan } \\ \text { Mishra is active } & \text { researcher } \\ \text { at } \quad \text { National } & \text { Institute } \\ \text { of } & \text { Technology, } & \text { Silchar, }\end{array}$ Assam, India. His research interests are in the areas of pure and applied mathematics including Non-linear analysis, Fractional Integral and differential equations, Measure of noncompactness, Local \& Global attractivity, Approximation Theory, Fixed Point Theory and applications, q-series and q-polynomials, signal analysis and Image processing etc. He has published research articles in reputed international journals of mathematical and engineering sciences. He is referee and editor of several international journals in frame of pure and applied Mathematics \& applied economics. He has presented research papers at several international and National conferences in India. Citations of his research contributions can be found in many books and monographs, PhD thesis, and scientific journal articles, much too numerous to be recorded here.

Nagarajan

Subramanian
received the PhD degree in Mathematics for Alagappa University at Karaikudi,Tamil Nadu,India and also getting Doctor of Science (D.Sc.) degree in Mathematics for Berhampur University, Berhampur,Odissa,India. His research interests are in the areas of summability through functional analysis of applied mathematics and pure mathematics. He has published research articles more than 175 in reputed international journals of mathematical and engineering sciences.

[^0]: * Corresponding author e-mail: lakshminarayanmishra04@gmail.com

