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Abstract: In this paper we studied the existence and uniqueness properties of solution of a fractional order differential equation subject
to nonlocal boundary constrains in the form of multi-point boundary conditions. The problems are highly nonlinear fractional order
system of differential equations. The system under consideration is a more general form and many systems of the aforesaid area are a
special cases. By using the classical fixed point theorems and contraction mappings, we develop sufficient conditions which guarantees
existence unique solutions of the system. Finally, we demonstrate our main results by providing two examples.
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1 Introduction

In the last few decades the fractional calculus attracted the attentions of many researchers of various disciplines such
as mathematics, physics computer science as well as engineering. The reason behind this popularity is the wide range
of applications in many real world problems. The studies of fractional calculus devoted to the analysis of fractional
differential equations (FDEs) is of special importance dueto its applications in many scientific and engineering disciplines.
For detail studied we refer the reader to study [1,2,3,4,5] and the references there in. In last few years many authors have
studied the existence of unique of solutions of initial and terminal value problem for FDEs, see for example [6,7,8,9,
10]. FDEs subject to nonlocal conditions are recently being investigated by many authors, for example Shah et al.[11],
investigated the existence property of solutions nonlocalFDEs. Mathematical model of FDEs plays important rolls in
modeling system having hereditary properties. FDEs related to modeling Memory characteristic of various materials and
genetical problem in biological studies are more reliable as compare to integer order differential equations, for detail see
[12,13,14,15,16] and the reference there in. It has been investigated that system of boundary value problems for FDEs are
involved in numerous phenomena and models of physics, biology and psychology. Due to these reasons, researchers are
taking interest in the study of FDEs especially there coupled systems. For example, when we mobilized human behavior
and nature in the form of mathematical model will led us to a coupled system of FDEs. For such type of application see
[17,18,19,20,21].
The above applications motivated our interest to the study of FDEs and we consider coupled system FDEs subject to of
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m-points boundary conditions of the form






















































Dα
0+u(t) = f (t,v(t),Dpv(t)),

Dβ
0+v(t) = g(t,u(t),Dqu(t)),

u(0) = u
′
(0) = · · ·= u(n−2)(0) = 0, Dδ u(1) =

m−2

∑
i=1

λiD
δ u(ηi),

v(0) = v
′
(0) = · · ·= v(n−2)(0) = 0, Dγv(1) =

m−2

∑
i=1

δiD
γv(ξi),

where 0< η1 < η2 < · · ·< ηm−2 < 1, 0< ξ1 < ξ2 < · · ·< ξm−2 < 1,

(1)

whereα,β ∈ (n−1,n], γ,δ ∈ (0,1] andDα
0+, Dβ

0+ represents the Riemann-Liouville fractional derivative of orderα, β .

λi , δi ∈ (0,∞) and are defined such that
m−2
∑

i=1
λiηα−δ−1

i < 1,
m−2
∑

i=1
δiξ β−γ−1

i < 1. Furtherf , g : I ×R×R→Rare assumed non

linear functions. Existence and uniqueness of solutions are established by using classical theorems like Leray-Schauder
and Banach contraction mapping.

The rest of the article is organized as follows; In Section 2,some basic notations and definitions are presented which
are necessary for our further investigation. In Section 3, the main finding of the research is presented. In Section 4, some
test problems are investigated, and the last Section is devoted to a short conclusion.

2 Preliminaries

In this section we recall some basic definitions and results from fractional calculus and fixed point theory and functional
analysis [1].

Definition 1.The Riemann-Liouville fractional integral of orderα ∈ R+ of a function y∈ c((0,∞),R) , is defined as

Iα
0+y(t) =

1
Γ (α)

t
∫

0

(t − s)α−1y(s)ds,

whereα > 0 andΓ is Gamma function.

Definition 2.The fractional derivative of a continuous function y: (0,∞)→ R in Riemann-Liouville is defined as

Dα
0+y(t) =

1
Γ (n−α)

(

d
dt

)n t
∫

0

(t − s)n−α−1y(s)ds,

where n= [α]+1 and[α] represents the integer part ofα.

Lemma 1.The FDE of orderα > 0
Dαy(t) = 0, n−1≤ α < n,

have a unique solution of the form y(t) = ∑n
i=1citα−n, where ci ∈ R, i = 1,2,3, · · · ,n,n= [α]+1.

Lemma 2.The following relation holds true for FDEs

IαDαy(t) = y(t)+
n

∑
i=1

cit
α−n

,

for arbitrary ci ∈ R, i= 1,2, ...,n,n= [α]+1.

Let us introduce the spacesE1 = {u(t) : u(t), Dqu(t) ∈ Cn([0,1]),0 < q < 1} and
E2 = {v(t) : v(t), Dpv(t) ∈ Cn([0,1]),0 < p < 1} whose norm are defined by
‖u‖ = maxt∈[0,1] |u(t)|+ maxt∈[0,1] |D

qu(t)|, ‖v‖ = maxt∈[0,1] |v(t)|+ maxt∈[0,1] |D
pv(t)| respectively. Then obviously

(E1,‖u‖) and(E2,‖v‖) are Banach spaces. Also the product space(E1 ×E2,‖(u,v)‖) is Banach space, whose norm is
defined by‖(u,v)‖= max{‖u‖,‖v‖}.
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3 Main Results

In this section our aim is to establish the existence criteria of a unique solution of the coupled system (1). We start our
analysis by establishing various important concepts.

Lemma 3.Let Φ(t) ∈C([0,1],R), then the unique solution of the problem










Dαu(t) = f (t,v(t),Dpv(t)) = Φ(t),0< t < 1,n−1< α ≤ n,

u(0) = u
′
(0) = · · ·= u(n−2)(0) = 0, Dδ u(1) =

m−2

∑
i=1

λiD
δ u(ηi),0< δ < 1,

(2)

where 0 < η1 < η2 < · · · < ηm−2 < 1 and 0 < λi < 1, i = 1,2. . .m − 2,
m−2
∑

i=1
λiηα−δ−1

i < 1 is given by

u(t) =
1
∫

0
Gα(t,s)Φ(s)ds, where Gα(t,s) is defined as

Gα(t,s) =











































(t − s)α−1

Γ α
+

tα−1

Γ (α +1)(α − s)∆1

[

m−2

∑
i=1

λi(ηi − s)α−δ−1− (1− s)α−δ−1

]

,

s≤ t, ηi < s< ηi+1, i = 1,2...m−2,

tα−1

Γ (α +1)(α − δ )∆1

[

m−2

∑
i=1

λi(ηi − s)α−δ−1− (1− s)α−δ−1

]

,

t ≤ s, ηi < s< ηi+1, i = 1,2, . . . ,m−2.

(3)

Proof.From Lemma 2.4 and from (2), we conclude that

u(t) = c1t
α−1+ c2t

α−2+ · · ·+ cnt
α−n+ IαΦ(t), (4)

usingu(0) = u
′
(0) = · · · = u(n−2)(0) = 0, we getc2 = c3 = · · · = cn = 0. Then equation (4) may have the following

form
u(t) = c1t

α−1+ IαΦ(t), (5)

from which we can write

Dδ u(t) = c1
Γ α

Γ (α − δ )
tα−δ−1+ Iα−δ Φ(t),

Dδ u(1) =
m−2

∑
i=1

λi

[

c1
Γ (α)

Γ (α − δ )
ηα−δ−1

i + Iα−δ φ(ηi)

]

c1
Γ (α)

Γ (α − δ )
+ Iα−δ Φ(1) = c1

m−2

∑
i=1

λiη
αδ−1
i +

m−2

∑
i=1

λi I
α−δ φ(ηi)

c1 =
1

(α − δ )Γ (α)∆1





m−2

∑
i=1

λi

ηi
∫

0

(ηi − s)α−δ−1Φ(s)−

1
∫

0

(1− s)α−δ−1Φ(s)ds



 ,

where∆1 = 1−
m−2

∑
i=1

λiηα−δ−1
i .

Thus (5) becomes

u(t) =
1

Γ (α)

t
∫

0

(t − s)α−1Φ(s)ds+
tα−1

(α − δ )Γ (α)∆1





m−2

∑
i=1

λi

ηi
∫

0

(ηi − s)α−δ−1Φ(s)ds





=

1
∫

0

Gα(t,s)Φ(s)ds.

(6)

This completes the proof.
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In view of Lemma3, our considered coupled system (1) is written as a coupled system of Fredholm integral equations as































u(t) =

1
∫

0

Gα(t,s) f (s,v(s),Dpv(s))ds,

v(t) =

1
∫

0

Gβ (t,s)g(s,u(s),D
qu(s)).

(7)

Further, we use these notations

G∗
α = supt∈[0,1]

1
∫

0
|Gα(t,s)|ds, G∗

β = supt∈[0,1]
1
∫

0
|Gβ (t,s)|ds.

Lemma 4.Assume that f,g : [0,1]×R2 → R are continuous functions. Then(u,v) ∈ E1×E2 is a solution of BVP(1) if
(u,v) ∈ E1×E2 is a solution of system(7).

Proof.If (u,v) ∈ E1 ×E2 is a solution of BVP (1), then in view of Lemma3 (u,v) it is also a solution of the integral
equations (7). Conversely let(u,v) satisfies (7), usingDα tα−k = 0,k= 1,2, ...,N, N is integer part ofα as in[8], we have

Dαu(t) = Dα
[ 1

Γ (α)

t
∫

0

(t − s)α−1 f (s,v(s),Dpv(s))ds
]

+Dα
[ tα−1

(α − δ )Γ (α +1)∆1

(m−2

∑
i=1

λi

ηi
∫

0

(ηi − s)α−δ−1 f (s,v(s),Dpv(s))ds

−

1
∫

0

(1− s)α−δ−1 f (s,v(s),Dpv(s))ds
)]

⇒ Dαu(t) = Dα
[

Iα Φ(t)+
tα−1

(α − δ )Γ (α +1)∆1

(m−2

∑
i=1

λi

ηi
∫

0

(ηi − s)α−δ−1 f (s,v(s),Dpv(s))ds

−

1
∫

0

(1− s)α−δ−1 f (s,v(s),Dpv(s))ds
)]

⇒ Dαu(t) = f (t,v(t),Dpv(t)),

and similarlyDβ v(t) = g(t,u(t),Dqu(t)).

Further it is easy to verify thatu(0) = 0,u′(0) = 0, . . . ,un−2(0) = 0,Dδ u(1) =
m−2
∑

i=1
λiDδ u(ηi),

v(0) = 0,v′(0) = 0, . . . ,vn−2(0) = 0,Dγv(1) =
m−2
∑

i=1
δiDγv(ξi).

DefineT : E1×E2 → E1×E2 by T(u(t),v(t)) = (T1v(t),T2u(t)), where















T2v(t) = u(t) =
1
∫

0
Gα(t,s) f (s,v(s),Dpv(s))ds,

T1u(t) = v(t) =
1
∫

0
Gβ (t,s)g(s,u(s),D

qu(s))ds.
(8)

Then by Lemma3 solution of the BVP (1) are the fixed points of the coupled system (8) of operator equations.
Let one of the following hypothesis holds:

(A1)There existai ,bi ∈ R+∪{0} and 0≤ θi ,νi < 1, i = 0,1,2 such that
| f (t,u,v)| ≤ a0(t)+a1|u|θ1 +a2|v|θ2 and|g(t,u,v)| ≤ b0(t)+b1|u|ν1 +b2|v|ν2.
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(A2)There existci ,di ∈ R+∪{0} andθi ,νi > 1(i = 1,2) such that

| f (t,u,v)| ≤ c1|u|
θ1 + c2|v|

θ2, |g(t,u,v)| ≤ d1|u|
ν1 +d2|v|

ν2.

For convenience we use the following notations:

K1 =

1
∫

0

|Gα(t,s)a0(s)|ds+
1

Γ (α −q)

1
∫

0

(1− s)α−q−1a0(s)ds+
m−2

∑
i=1

λi

ηi
∫

0

(ηi − s)α−δ−1a0(s)ds
∆1α(α − δ )Γ (α −q)

+

1
∫

0

(1− s)α−δ−1a0(s)ds
α(α − δ )Γ (α −q)∆1

,

K2 =

1
∫

0

|Gβ (t,s)a0(s)|ds+
1

Γ (β − p)

1
∫

0

(1− s)β−p−1b0(s)ds+
m−2

∑
i=1

δi

ξi
∫

0

(ξi − s)β−γ−1b0(s)ds
∆2β (β − γ)

+

1
∫

0

(1− s)β−γ−1a0(s)ds
β (β − γ)Γ (β − p)∆2

,

A =
1

Γ (α +1)
+

1
Γ (α)(α − δ )2∆1

+
1

α −q+1
+

2
∆1α(α − δ )2Γ (α −q)

,

B =
1

Γ (β +1)
+

1
Γ (β )(β − γ)2∆2

+
1

β − p+1
+

2
∆2β (β − γ)2Γ (β − p)

.

(A3)|Gα(t,s)−Gα(τ,s)| ≤ Gα ,c,d,e(t,τ), where

Gα ,c,d,e(s) =
(α −1)(c− s)α−2

Γ (α)
− (α −1)dα−2









m−2
∑

i=1
λi(ηi − s)α−δ−1− (1− s)α−δ−1

Γ (α)(α − δ )∆1









+
(α −1)eα−2

(α − δ )Γ (α)∆1

(

m−2

∑
i=1

λi(ηi − s)α−δ−1− (1− s)α−δ−1

)

and|Gβ (t,s)−Gβ (τ,s)| ≤ Gβ ,c,d,e(t,τ), where

Gβ ,c,d,e(s) =
(β −1)(c− s)β−2

Γ (β )
− (β −1)dβ−2









m−2
∑

i=1
δi(ηi − s)β−γ−1− (1− s)β−γ−1

Γ (β )(β − δ )∆1









+
(β −1)eβ−2

(β − δ )Γ (β )∆1

(

m−2

∑
i=1

δi(ηi − s)β−γ−1− (1− s)β−γ−1

)

.

Theorem 1Assume that f,g : I ×R×R→ R are continuous and the assumption(A1) holds. Then BVP(1) has at least one
solution.

Proof.Assume thatf ,g : [0,1]×R×R→ Rare continuous and defined

B= {(u,v)|(u,v) ∈ E1×E2,‖ (u,v) ‖≤ R, t ∈ [0,1]},

where

max

{

(3Aa1)
1

1−θ1 ,(3Aa2)
1

1−θ2 ,(3Bb1)
1

1−ν1 ,(3Bb2)
1

1−ν2 ,3K1,3K2

}

≤ R.
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ObviouslyB is the ball in Banach spaceE1×E2. Now we will prove thatT : B→ B, for this we consider

|T1v(t)|=

∣

∣

∣

∣

∣

∣

1
∫

0

Gα(t,s) f (s,v(s),Dpv(s))ds

∣

∣

∣

∣

∣

∣

≤

1
∫

0

|Gα(t,s)|| f (s,v(s),D
pv(s))|ds

≤

1
∫

0

|Gα(t,s)|[a0(s)+a1R
θ1 +a2R

θ2]ds

=

1
∫

0

|Gα(t,s)a0(s)|ds+(a1R
θ1 +a2R

θ2)

1
∫

0

|Gα(t,s)|ds

≤

1
∫

0

|Gα(t,s)a0(s)|ds+(a1R
θ1 +a2R

θ
2 )

(

1
Γ (α +1)

+
1

Γ (α +1)(α − δ )2∆1

)

.

Also, we have

Dqu(t) = Dq
[

Iα f (t,v(t),Dpv(t))
]

+Dq
[ tα−1

(α − δ )Γ (α +1)∆1

]

×

(m−2

∑
i=1

λi

ηi
∫

0

(ηi − s)α−δ−1 f (s,v(s),Dpv(s))ds−

1
∫

0

(1− s)α−δ−1 f (s,v(s),Dpv(s))ds
)

= Iα−q f (t,v(t),Dpv(t))+
Γ (α)tα−q−1

Γ (α −q)(α − δ )α(Γ )α∆1
×

(m−2

∑
i=1

λi

ηi
∫

0

(ηi − s)α−δ−1 f (s,v(s),Dpv(s))ds−

1
∫

0

(1− s)α−δ−1 f (s,v(s),Dpv(s))ds
)

.

Thus, one can get

T1(D
qv(t)) =

1
Γ (α −q)

t
∫

0

(t − s)α−q−1 f (s,v(s),Dpv(s))ds+
tα−q−1

αΓ (α −q)(α − δ )∆1
×





m−2

∑
i=1

λi

ηi
∫

0

(ηi − s)α−δ−1 f (s,v(s),Dpv(s))ds−

1
∫

0

(1− s)α−δ−1 f (s,v(s),Dpv(s))ds



 .

c© 2017 NSP
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Which implies

|DqT1v(t)| =
∣

∣

∣

1
Γ (α −q)

t
∫

0

(t − s)α−q−1 f (s,v(s),Dpv(s))ds

+
tα−q−1

αΓ (α −q)(α − δ )∆1

[m−2

∑
i=1

λi

ηi
∫

0

(ηi − s)α−δ−1 f (s,v(s),Dpv(s))ds

−

1
∫

0

(1− s)α−δ−1 f (s,v(s),Dpv(s))ds
]∣

∣

∣

≤
1

Γ (α −q)

t
∫

0

(t − s)α−q−1(a0(s)+a1R
θ1 +a2R

θ2)

+
1

αΓ (α −q)(α − δ )∆1

[m−2

∑
i=1

λi

ηi
∫

0

(ηi − s)α−δ−1(a0(s)+a1R
θ1 +a2R

θ2)ds

+

1
∫

0

(1− s)α−δ−1(a0(s)+a1R
θ1 +a2R

θ2)ds
]

⇒ |DqT1v(t)| ≤
1

Γ (α −q)

1
∫

0

(1− s)α−q−1a0(s)ds+
1

αΓ (α −q)(α − δ )∆1

[m−2

∑
i=1

λi

ηi
∫

0

(ηi − s)α−δ−1a0(s)ds

+

1
∫

0

(1− s)α−δ−1a0(s)ds
]

+
(a1R

θ1 +a2R
θ2)

Γ (α −q+1)
+

(a1R
θ1 +a2R

θ2)(2)
αΓ (α −q)(α − δ )2∆1

⇒ |DqT1v(t)| ≤
1

Γ (α −q)

1
∫

0

(1− s)α−q−1a0(s)ds+
1

αΓ (α −q)(α − δ )∆1

[m−2

∑
i=1

λi

ηi
∫

0

(ηi − s)α−δ−1a0(s)ds

+

1
∫

0

(1− s)α−δ−1a0(s)ds
]

+(a1R
θ1 +a2R

θ2)

[

1
Γ (α −q+1)

+
2

αΓ (α −q)(α − δ )2∆1

]

.

Thus, we have

‖ T1v ‖≤ K1+(a1R
θ1 +a2R

θ2)A≤
R

3
+

R

3
+

R

3
= R. (9)

Similarly, one can get
‖T2u‖ ≤ R. (10)

Therefore‖T(u,v)‖ ≤ R. SinceT1v(t),T2u(t),T1Dqv(t),T2Dpu(t) are continuous on[0,1]. Thus, we haveT : B → B is
also continuous asf ,g Gα(t,s), Gβ (t,s) are continuous.
Now for any(u,v) ∈ B, let t,τ be such thatt ≤ τ and let us takes,d ∈ (t,τ) whent < sande∈ (t,τ) whens≤ t. Then in
view of Mean value theorem, we have

|T1v(t)−T1v(τ)| =

∣

∣

∣

∣

∣

∣

1
∫

0

|Gα(t,s)−Gα(τ,s)|| f (s,v(s),Dpv(s))|ds

∣

∣

∣

∣

∣

∣

≤

1
∫

0

|Gα(t,s)−Gα(τ,s)|| f (s,v(s),Dpv(s))|ds

≤

1
∫

0

Gα ,c,d,e(t − τ)(a0(s)+a1R
θ1 +a2R

θ2)ds,
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whereGα ,c,d,e(s) is already defined in(A3). So, we have

|T1v(t)−T1v(τ)| ≤ (t − τ)
1
∫

0

Gα ,c,d,e(a0(s)+a1R
θ1 +a2R

θ2)ds

|DqT1v(t)−DqT1v(τ)| ≤
1

Γ (α −q)





t
∫

0

(1− s)α−q−1a0(s)ds−

τ
∫

0

(τ − s)α−q−1a0(s)ds





+
(a1R

θ1 +a2R
θ2)

α −q+1
(tα−q− τα−q)+

(tα−q−1− τα−q−1)

αΓ (α −q)(α − δ )∆1
×

[m−2

∑
i=1

λi

ηi
∫

0

(ηi − s)α−δ−1a0(s)ds−

1
∫

0

(1− s)α−δ−1a0(s)ds
]

.

Similarly

|T2u(t)−T2u(τ)| ≤ (t − τ)
1
∫

0

Gβ ,c,d,e(b0(s)+b1R
v1+b2R

v2)ds

and

|DpT2u(t)−DpT2u(τ)| ≤
1

Γ (β − p)





t
∫

0

(t − s)β−p−1b0(s)ds−

τ
∫

0

(τ − s)α−q−1b0(s)ds





+
(b1Rv1 +b2Rv2)

α −q+1
(tβ−p− τβ−p)+

(tβ−p−1− τβ−p−1)

βΓ (β − p)(β − γ)∆1
×

[m−2

∑
i=1

δi

ξi
∫

0

(ξi − s)β−γ−1b0(s)ds−

1
∫

0

(1− s)β−γ−1b0(s)ds
]

.

Clearly when t → τ then |T1v(t) − T1v(τ)| → 0, |DqT1v(t) − DqT1v(τ)| → 0 and
|T2u(t)− T2u(τ)|, |DpT2u(t)−DpT2u(τ)| → 0. By Arzelá Ascoli’s theorem, it follows thatT : E1 ×E2 → E1 ×E2 is
completely continuous operator. Thus by Schauder fixed point theoremT has at least one fixed point inB which is the
corresponding solution of Coupled system (1).

Theorem 2Assume that f,g : I ×R×R→ R are continuous and if(A2) holds. Then BVP(1) has at least one solution.

Proof.Proof is similar to Theorem1, so we omit it.

Theorem 3Under the continuity of f,g and if the following assumptions hold:

(A4)There exist constant K,L such that for each t∈ [0,1] and for all u, ū,v, v̄∈ R

| f (t,u,v)− f (t, ū, v̄| ≤ K[|u− ū|+ |v− v̄|]

and
|g(t,u,v)−g(t, ū, v̄| ≤ L[|u− ū|+ |v− v̄|];

(A5)If max{ρ1,ρ2}< 1, where

ρ1 = max{2G∗
αK,(

1
Γ (α −q+1)

+
1

Γ (α −q)α(α − δ )(α − δ −1)
)2K}

ρ2 = max{2G∗
β L,(

1
Γ (β − p+1)

+
2L

Γ (β − p)β (β − γ)(β − γ −1)
)}.

Then BVP(1) has unique solution.
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Proof.Assume that(A4),(A5) hold and let us consider

|T1v(t)−T1v̄(t)| ≤

1
∫

0

|Gα(t,s)|| f (s,v(s),D
pv(s))−

1
∫

0

f (s, v̄(s),Dpv̄(s))|ds

≤ sup
t∈J

K

1
∫

0

|Gα(t,s)|[|v− v̄|+ |Dpv−Dpv̄|]ds

≤ 2KG∗
α ‖ v− v̄‖ .

|DqT1v(t)−DqT1v̄(t)| ≤
1

Γ (α −q)

t
∫

0

(t − s)α−q−1| f (s,v(s),Dpv(s))− f (s, v̄(s),Dpv̄(s))|ds

+
1

∆1αΓ (α −q)(α − δ )





m−2

∑
i=1

λi

ηi
∫

0

(ηi − s)α−δ−1| f (s,v(s),Dpv(s))− f (s, v̄(s),Dpv̄(s))|ds





≤
2K

Γ (α −q+1)
‖ v− v̄‖+

2K ‖ v− v̄‖
∆1αΓ (α −q)(α − δ )2

⇒ |DqT1v(t)−DqT1v̄(t)| ≤

(

1
Γ (α −q+1)

+
1

∆1αΓ (α −q)(α − δ )2

)

2K ‖ v− v̄‖ .

Now

‖ T1v−T1v̄ ‖ = max{‖ T1v−T1v̄ ‖,‖ DqT1v(t)−DqT1v̄(t) ‖}

≤ max{2G∗
αK,

(

1
Γ (α −q+1)

+
1

Γ (α −q)α(α − δ )(α − δ −1)

)

2K} ‖ v− v̄ ‖

⇒‖ T1v−T1v̄ ‖ ≤ ρ1 ‖ v− v̄ ‖

and similarly

‖ T2u−T2ū ‖ ≤ ρ2 ‖ u− ū‖ .

Now
‖ T(u,v)−T(ū, v̄) ‖≤ ρ ‖ (u,v)− (ū, v̄) ‖

whereρ = max{ρ1,ρ2}< 1
ThusT is contraction. Hence by Banach Contraction principleT has a unique fixed point which is the unique solution of
BVP (1).

4 Illustrative Example

Example 1.Consider the problem



























































D
3
2 u(t) =

( t
4

)4
[

√

v(t)+
3
√

D
1
2 v(t)

]

, 0< t < 1,

D
3
2 v(t) =

( t
4

)4
[

3
√

u(t)+
4
√

D
1
2 u(t)

]

, 0< t < 1,

u(0) = 0, D
1
2 u(1) =

5

∑
i=1

1
2i D

1
2 u

(

1
2i

)

,

v(0) = 0, D
1
2 v(1) =

5

∑
i=1

1
2i D

1
2

(

1
2i

)

.

Now

a0(t) = b0(t) = 0, a1(t) = a2(t) = b1(t) = b2(t) =
t4

256
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now by Theorem1, the existence of solution forθ1 =
1
2,θ2 =

1
3 andν1 =

1
4,ν2 =

1
4 is obvious.

Also K = 1
256,L = 1

256,α = 3
2,β = 3

2,δ = γ = 1
2

G∗
α = sup

t∈[0,1]

∣

∣

∣

∣

∣

∣

1
∫

0

Gα(t,s)ds

∣

∣

∣

∣

∣

∣

= 0.28199, G∗
β = 0.28199

ρ1 = max{.0022,0.0156}= 0.0156< 1, ρ2 = 0.0156< 1.

Hence by Theorem3, BVP(1) has a unique solutions.

Example 2.Consider the problem



























































D
9
2 u(t) =

(

t +1
4

)6

[(v(t))2+(D
1
2 v(t))2], 0< t < 1,

D
9
2 v(t) =

( t
8

)2
[(u(t))2+(D

1
2 u(t))2], 0< t < 1,

u(0) = u′(0) = u
′′
(0) = 0, D

1
2 u(1) =

5

∑
i=1

1
2i D

1
2 u

(

1
2i

)

,

v(0) = v′(0) = v
′′
(0) = 0, D

1
2 v(1) =

5

∑
i=1

1
2i D

1
2

(

1
2i

)

.

Now θ1 = θ2 = ν1 = ν2 = 2> 1. By simple calculation, we can obtain thata1 <
1

2A,b1 <
1

2B . Thus by the use of Theorem
2, one can easily show that BVP (2), has a solution.

Conclusion

Fixed point theory plays a vital role in investigation of FDEs. With the help of the some fixed point theorems, we
successfully developed some conditions which guarantees the existence of solutions and uniqueness of solution of the
problem under consideration. The main result is demonstrated by various test problems. Application of these theorems
and investigations of high order fractional order differential equations subjected to more complicated type boundary
constrains specially nonlinear boundary conditions are still an open problem and lies in the domain of our future work.
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