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Abstract: Some light meson bound states’ eigenvalues and eigenfunsctie calculated by applying the new Numerov’s discretiza
method (NDM) of the Hamiltonian. The light quark- antiqugmoblem is solved in the framework of non-relativistic duanodel.
Two types of quark- antiquark potentials were tested andpewed. The results show a good fit with other groups and witere
experimental data. The NDM could be used to give accuratdtsaghen it is applied to light meson candidates.
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1 Introduction used models inspired by QCD rather than the full theory
itself. In this paper, phenomenological potential models
An important part of experimental high energy physics iShave provided extremely satisfactory results in desagibin

R A ; > ordinary hadrons, more specially quark-antiquark bound
to the determination of the intrinsic properties of the basi states (mesons). The quark model is one such attempt,

constituents of matter going under the name elementar)élnol a very successful one. In a quark model of a meson
partlc.:Ies.' The main problem of theoretical high ENer9Yhe wave function is obtained by solving the Schrodinger
ph_y3|cs_ Is to u_nderstand Why the e'em?mary part'CI.eSequation with a Hamiltonian inspired by QCD and it
exist with certain masses, spins and parities _anng W'thdescribes the relative motion of the quark and antiquark.
their characteristic internal quantum numbers like charge s an example of such a model, Godfrey and Isghr [
hyper_charge and isospin. The s.tucjy of th_e fun.dament ave been considered. Their effective potential contains
constituents of matter and their interactions is called

Particle Phvsics. The aim of particle phvsics is to find thethe effects of a Lorentz-vector one gluon exchange
H NYsICS. : particie physics | ' interaction at short distances and a Lorentz scalar linear
basic building blocks of matter and to understand how

they are bound together by the forces of nature Thisinteragtion that models confinement. 'I_'his work : Is

would help us to understand how the universé Wasorg_amzed as foIIows: After the mtrqductmn, the brief

created. Mesons that are built out of the light fIavoursreV'eW .Of the numerlcal methoql which used o solve

(ie., u .d and s) are called light mesons. The constituen chrodinger equation has been introduced. In Sec.3, we

rﬁa;se’s of these quarks, especially thoée of the u and gltroduqed the poten'uals models. In Sec. 4 the resglts and
o ' iscussion are introduced. Finally in Sec. 5, we give the

quarks are so similar that they cannot be expected to b%onclusion

distinguished according to their quark content but must be '

expected to encounter mixed states of all three light

flavours. The masses and quantum numbers of the various ] o

mesons may also be used to make sense of how these Numerov’s Discretization Method (NDM)

particles decay. Because of the difficult of using

perturbative and non-perturbative QCD (quantumThe numerical solution of Schrodinger equation for one

chromodynamics) directly to compute hadronic or more particles is an important problem in the field of

properties, so calculating the properties of hadrons will b Quantum Mechanics and in most cases is the only method
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that could be used to obtain a usable solution. One of
these methods is; Matrix Numerov method. Many authors

have praised the virtues of the Numerov’'s metha @4, Aun = (I—lelo“Lll)
5,6]. Numerov’'s method is a numerical method for ' d
approximating the solution of the second order Brn — (114 10lp+ 1)

differential equation ¢"(x) = f(x,y) with initial 12 ’
conditionsy (xo) = Yo,y (Xo) = Y. In this section a new W =diag(... Vi_1,Mi,Vii1)).
approach to deal with Numerov’s Discretization method
(NDM) as a matrix has been introduced. In numerical
physics the method is used to find solutions of the radial
Schrodinger Equation for arbitrary potential§.[Hence,

Wherel_3,lp and |1 represent sub, main—, and up-
diagonal unit matrices respectively. Equatiéh ¢ould be
transformed into a matrix form as follow:

NDM can be used to solve Schrodinger equation of the —R?
form: WAN,N Wi+ BNV = EiBun . )
, Multiplying by Bk, we get,
—h? ’
Ep(r,0,9) =[5 D +VeaN)]W(r,0,6). (1) R
u o ANNBY N+ Vv = B (8)

Wherefz—ﬁzD2 is @ non-relativistic kinetic energy which The first term is the Numerov's representation of the
depends only on the square of the relative momenpum kinetic energy operator and the second is the Numerov’s
between the particles, angg(r) is the potential energy representation of the potential energy operator. Equation
between the two particles. Now, we will make (8) represents our new approach to describe Numerov's
Transforming Numerov's Method into a Matrix Form: For Discretization Method (NDM).
the time-independent 3 D Schrodinger equation, we
have:
_ —2u(E-V(N)) 3 The Potentials Used

f(r) = - )
By using a lattice of pointg; evenly spaced by a distance
d, the integration formula is

In the non-relativistic approximation, the mesonic
wavefunction is the eigen-function of the Schrodinger

equation:
 (ia(12—d?fig) — 244(5d2f; + 12)) B [
From the above equation The Hamiltonian of the system is:
_R2
phoy = L2 Phiagioo - 108Gy 24 H= WD%an(r)- (10)
B d2fi q) — 12 '
(¢fia) ) Many authors have used several different potentials in the

By using equationd), we have: past. Some of these potentials have been found with a
very crucial test is a unifed description of particle

U (B, Vo ih )+ (105D~ 1OV + (Ess —Vios U2)] — 120 5 — 200+ Us spectra.These potentials have been applied on the meson

(5) and Il:)a(yor}IS(afctr]ors, and alsr(]) to tgtra—quark st8les [1eI .
o _ . 4 results in all of these cases have been encouraging. In this
Whe.re Y = Y(x). By rearranging the above equation, paper, two potential9] that yield good overall results for
then: the meson spectrum have been used for this study. The
using of different potentials will allow us to check the
(—ﬁ2 (W1 — 24 + Yigq) sensitivity of our results to the inter-quark interaction.
(2p) d2 The general form for each potential has been more or less
imposed by some basic QCD constraints, but the
(Vicai—1+ 10Vigh +Vii1iia) parameters have been determined by a fit to a well-chosen
12 sample of light meson states. Both potentials rely on a
' , ' non-relativistic expression of the kinetic energy opetato
= E((h:1+ 100+ q”"l)). (6) and they need to solve the Schrodinger equation using a
12 Numerov algorithm. As well as they take the general form

+

Now, the well-known Numerov's method will be

_ =8
transformed into a representation of matrix form on a qu):,w
discrete lattice depending only on the grid number d and ) exp=2)
the matrix size N. To do thap, will be represented by a AP A ( 2mk (1—exp—) 3707 sigmaysigmag. (11)
column vectox... ¢ 1, i, Yy 1. ..) and define matrices (3mgmy) e (m2r3)
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Where sigmay,sigmag are the Pauli matrices. One the most suitable spectra with experiments. The

peculiarity of these potentials is that the rangeof the  relation is used to easily compare among the results

hyper?ne term is mass dependent through the relation  obtained by using potential8L1,AP1 and this relation
can be defined as

N Zm]rrh >b n
ro (Mgmy) =a (T ) (12) X2 kzl(Masérw “MasEP) (1)

The ?rst choice of potential, denotédll, has the usual . .
Coulomb + linear form for the central part, and its In this formula, the summation runs over a selected

parameters arek — 0.4968; p — 1; 'k — 1847 sample of m m&sons; n is the number of experimental
o s SO b 1.  datain the group”®(Exp.) is the experimental mass of
,t))\—_ooéégg;r‘re: 3—'Amd_ B%lgffgeva m 1_'6325(38%(3\/{ meson labeled k in the sample, wilR&(theo.) is the

_ . . corresponding theoretical mass depending upon the free
rc = 0. The second choice of potential, denofdell, has parameters. The calculate? equals to(0.0063 and

a con?ning term suggested by the Regge trajectoryy ggsq for the first and second type of potentials,
behavior of orbital states in a non-relativistic treatment respectively. Then according to the values x# the

The parameterss arék = 0.422; p = %; 'k =1797  gecond type of potential$AP1) is found to be the

A = 0.401GeV3; A = 1.09%GeV; a = 1.559GeVvP1; smallest, then it is said to be the best because it gives
b = 0332 m = my = 0.275Gev; convergence between theory and experimebis [This

ms = 0.565GeV,;r. = 0. These names are the same thanmean that using = % is better tharP = 1.

those used ing. The letter A means "for All mesons”.
The letter L or P denotes respectively the Linear or the
%-Power confinement; the number 1 indicate the
parameter. is equal to zero. Both potentials reproduce
spectra of comparable quality and are simple enough t

Table 1: Theoretical versus experimental values of the masses
{GeV) when both Potentials of (AL1) and (AP1) are used.

. cree . o . Th ical M. fNRAL Expt. M
be handled without any difficulty. In particular, it is quite g Name e e’ R
easy to solve the differential equation resulting from the ALl AP1
Schrodinger equation. However, the radial fRjit(r) of 1S, P(770) 0.7975 0.831 0.775%0.0025
. H : . 15 m(138) 0.2055 0.2211 0.138 = 0.001
the meson wavefunction is calculated numerically. Such e | p; bl 11283 11481 12292 0,003
form is not easily used for studying more complicated 1'D; 2 16224 16103 1.6720.03
H H 1°D; P 1.6405 1626 1688+ 0021
problems. To' solve this prpblem, the regulan;ed part of LF, o 5007 Lot 20152 0,011
the exact radial wavefunction must be approximated by ¢ 1:p, Fi 13688 14003 1.42620.009
linear combination of Gaussian functions: e s e e [
N 1°F; P2 2.0468 20117 2.011 258
2 218, w (1300) 1.3454 1.3391 1.302=0.001
Rus(r) = ciexp (—air ) (13) 315, 7 (1800) 20584 1.9599 181220012
i= 135, @ 1.0585 1.0928 1.019=0.019
238, @ 1.7344 1.733 1.68=002
. . . 1:D; F] 1.8111 1.8204 1.834=007
For a given number N of Gaussian functions, the . 2 L1691 L4593 15254005
parametersc; and o; are determined by a variational  1:P: a2 12392 12381 1.318 5808
H 21 135, i* 0.9362 0975 0.891=0.0026
procedure on the energy o_f the considered stdte; 1 is 1P, o L3ess L1003 1 49520.005
a rather rough approximation, bit= 2 or N = 3 greatly 1D, K2 17307 1.7382 1.77= 0.008
H H H H 1°D; k2 1.7444 1.7491 1.816=0.013
improves the res_ults 10]. Thg approximation with 3' L, ok S osse > 0108 ) 04520000
Gaussian terms gives essentially the exact wavefunctior > o0 Py

Table 1 shows a few of the masses obtained in this way,
for the potentialsAL1 andAP1. Experimental values are
shown in the fifth column. The masses obtained using the
expansion of the wavefunction in Gaussian functions are . The wave function of is plotted in Figutieand?2 as
shown forN = 3. the radial wavefunctiord (x) is calculated within two

choices of potentiaAL1 andAP1 respectively, according

to its parameters. Where thehere is calculated in fm
4 Results and Discussion units.

The theoretical spectra of some light mesons are

calculated in two types of potentials as it is previously 5 Conclusion

explained. This new obtained theoretical spectra is

compared to new published experimental datd.[These  In this paper, some light meson bound states’ eigenvalues
theoretical spectra that obtained in different potentialsand eigenfunctions are calculated by applying the new
types are fitted by using the experimental spectra to givelNumerov's discretization method (NDM) of the
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Fig. 1: 2S- state and reduced redial wave function calculated

within two choices of potential AL1 and AP1 respectively,
with the approximation with 3 Gaussian terms according 2o it
parameters.
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Fig. 2: 3S- state reduced redial wave function calculated
within two choices of potential AL1 and AP1 respectively,
with the approximation with 3 Gaussian terms according 2o it
parameters.

Hamiltonian. Mesons that are built out of the light
flavours (i.e., u, d and s) are called light mesons. The

constituent masses of these quarks, especially those of the
u and d quarks are so similar that they cannot be expected

to be distinguished according to their quark content but

spectra with the experimental data. Both potentials
reproduce spectra of comparable quality and are simple
enough to be handled without any difficulty. In addition
to, it is found that the second choice of poten{iPl) is
better than the first potenti@AL1). It is suggested that
the NDM is a reasonable method for solving Schrodinger
equation so we reintroduced it by transforming it into a
matrix form to solve radial Schrodinger’s equation; it was
found that the new method (NDM) is simple to calculate
and plot accurate eigenvalues and eigenfunctions. The
general agreement between the prediction of the model
and the data is very good. It is recommend using the
NDM for solving radial Schrodinger equation because it
is easy to use, saves the time and is very accurate. Finally,
we advise using NDM to obtain other mesons spectra and
their properties
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