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Abstract: Some light meson bound states’ eigenvalues and eigenfunctions are calculated by applying the new Numerov’s discretization
method (NDM) of the Hamiltonian. The light quark- antiquarkproblem is solved in the framework of non-relativistic quark model.
Two types of quark- antiquark potentials were tested and compared. The results show a good fit with other groups and with recent
experimental data. The NDM could be used to give accurate results when it is applied to light meson candidates.
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1 Introduction

An important part of experimental high energy physics is
to the determination of the intrinsic properties of the basic
constituents of matter going under the name elementary
particles. The main problem of theoretical high energy
physics is to understand why the elementary particles
exist with certain masses, spins and parities along with
their characteristic internal quantum numbers like charge,
hypercharge and isospin. The study of the fundamental
constituents of matter and their interactions is called
Particle Physics. The aim of particle physics is to find the
basic building blocks of matter and to understand how
they are bound together by the forces of nature. This
would help us to understand how the universe was
created. Mesons that are built out of the light flavours
(i.e., u, d and s) are called light mesons. The constituent
masses of these quarks, especially those of the u and d
quarks are so similar that they cannot be expected to be
distinguished according to their quark content but must be
expected to encounter mixed states of all three light
flavours. The masses and quantum numbers of the various
mesons may also be used to make sense of how these
particles decay. Because of the difficult of using
perturbative and non-perturbative QCD (quantum
chromodynamics) directly to compute hadronic
properties, so calculating the properties of hadrons will be

used models inspired by QCD rather than the full theory
itself. In this paper, phenomenological potential models
have provided extremely satisfactory results in describing
ordinary hadrons, more specially quark-antiquark bound
states (mesons). The quark model is one such attempt,
and a very successful one. In a quark model of a meson,
the wave function is obtained by solving the Schrodinger
equation with a Hamiltonian inspired by QCD and it
describes the relative motion of the quark and antiquark.
As an example of such a model, Godfrey and Isgur [1]
have been considered. Their effective potential contains
the effects of a Lorentz-vector one gluon exchange
interaction at short distances and a Lorentz scalar linear
interaction that models confinement. This work is
organized as follows. After the introduction, the brief
review of the numerical method which used to solve
Schrodinger equation has been introduced. In Sec.3, we
introduced the potentials models. In Sec. 4 the results and
discussion are introduced. Finally in Sec. 5, we give the
conclusion.

2 Numerov’s Discretization Method (NDM)

The numerical solution of Schrodinger equation for one
or more particles is an important problem in the field of
Quantum Mechanics and in most cases is the only method
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that could be used to obtain a usable solution. One of
these methods is; Matrix Numerov method. Many authors
have praised the virtues of the Numerov’s method [2,3,4,
5,6]. Numerov’s method is a numerical method for
approximating the solution of the second order
differential equation ψ ′′(x) = f (x,y) with initial
conditionsψ(x0) = ψ0,ψ ′(x0) = ψ ′

0. In this section a new
approach to deal with Numerov’s Discretization method
(NDM) as a matrix has been introduced. In numerical
physics the method is used to find solutions of the radial
Schrodinger Equation for arbitrary potentials [7]. Hence,
NDM can be used to solve Schrodinger equation of the
form:

Eψ(r,θ ,ϕ) = [
−h̄2

2µ
∇2+Vqq̄(r)]ψ(r,θ ,ϕ). (1)

Where −h̄2

2µ ∇2 is a non-relativistic kinetic energy which
depends only on the square of the relative momentump
between the particles, andVqq̄(r) is the potential energy
between the two particles. Now, we will make
Transforming Numerov’s Method into a Matrix Form: For
the time-independent 3− D Schrodinger equation, we
have:

f (r) =
−2µ(E −V(r))

h̄2 . (2)

By using a lattice of pointsxi evenly spaced by a distance
d, the integration formula is

ψi+1 =
(ψi−1(12− d2 fi−1)−2ψi(5d2 fi +12))

(d2 fi+1−12)
. (3)

From the above equation

ψi+1 =
(12ψi−1− d2 fi−1ψi−1−10d2 fiψi −24ψi

(d2 fi+1)−12)
. (4)

By using equation (2), we have:

−2µd2

h̄2

[

(Eψi−1 −Vi−1 ψi−1 )+ (10Eψ i −10Viψ i)+
(

Eψ i+1 −Vi+1 ψ i+1

)]

= 12ψ i−1 −2ψi +ψ i+1

(5)
Where ψi = ψ(xi). By rearranging the above equation,
then:

(−h̄2

(2µ)
(ψi−1−2ψi +ψi+1)

d2

+
(Vi−1ψi−1+10Viψi +Vi+1ψi+1)

12

=
E((ψi+1+10ψi+ψi−1))

12
. (6)

Now, the well-known Numerov’s method will be
transformed into a representation of matrix form on a
discrete lattice depending only on the grid number d and
the matrix size N. To do that,ψ will be represented by a
column vector(. . .ψi−1,ψi,ψi+1 . . .) and define matrices

AN,N =
(I−1−2I0+ I1)

d2

BN,N =
(I−1+10I0+ I1)

12
,

VN = diag(. . .Vi−1,Vi,Vi+1)).

Where I−1, I0 and I1 represent sub−, main−, and up−
diagonal unit matrices respectively. Equation (6) could be
transformed into a matrix form as follow:

−h̄2

2µ
AN,Nψi +BN,NVNψi = EiBN,Nψi. (7)

Multiplying by B−1
N,N we get,

−h̄2

2µ
AN,NB−1

N,Nψi +VNψi = Eiψi. (8)

The first term is the Numerov’s representation of the
kinetic energy operator and the second is the Numerov’s
representation of the potential energy operator. Equation
(8) represents our new approach to describe Numerov’s
Discretization Method (NDM).

3 The Potentials Used

In the non-relativistic approximation, the mesonic
wavefunction is the eigen-function of the Schrodinger
equation:

Eψ(r) = [
−h̄2

2µ
∇2+V(r)]ψ(r). (9)

The Hamiltonian of the system is:

H =
−h̄2

2µ
∇2+Vqq̄(r). (10)

Many authors have used several different potentials in the
past. Some of these potentials have been found with a
very crucial test is a unifed description of particle
spectra.These potentials have been applied on the meson
and baryon sectors, and also to tetra-quark states [8]. The
results in all of these cases have been encouraging. In this
paper, two potentials [9] that yield good overall results for
the meson spectrum have been used for this study. The
using of different potentials will allow us to check the
sensitivity of our results to the inter-quark interaction.
The general form for each potential has been more or less
imposed by some basic QCD constraints, but the
parameters have been determined by a fit to a well-chosen
sample of light meson states. Both potentials rely on a
non-relativistic expression of the kinetic energy operator,
and they need to solve the Schrodinger equation using a
Numerov algorithm. As well as they take the general form

Vqq̄(r) =−

k(1−exp?−r
rc
)

r

+λ rp
−Λ +(

2π ḱ
(3mqmq̄)

(1−exp
−r
rc

)

exp−r2

r20
)

(π
3
2 r3

0)
sigmaqsigmaq̄. (11)

c© 2017 NSP
Natural Sciences Publishing Cor.



Quant. Phys. Lett.6, No. 1, 37-41 (2017) /www.naturalspublishing.com/Journals.asp 39

Where sigmaq,sigmaq̄ are the Pauli matrices. One
peculiarity of these potentials is that the ranger0 of the
hyper?ne term is mass dependent through the relation

r0
(

mqmq́
)

= a

(

2mqmq́

mq +mq́

)

−b

. (12)

The ?rst choice of potential, denotedAL1, has the usual
Coulomb + linear form for the central part, and its
parameters arek = 0.4968; p = 1; ′k = 1.847

;λ = 0.168GeV
5
3 ;Λ = 0.818GeV ; a = 1.682GeVb−1;

b = 0.223; mu = md = 0.321GeV ; ms = 0.588GeV ;
rc = 0. The second choice of potential, denotedAP1, has
a con?ning term suggested by the Regge trajectory
behavior of orbital states in a non-relativistic treatment.
The parameters arek = 0.422; p = 2

3; ′k = 1.797

;λ = 0.401GeV
5
3 ; Λ = 1.099GeV ; a = 1.559GeVb−1;

b = 0.332; mu = md = 0.275GeV ;
ms = 0.565GeV ,;rc = 0. These names are the same than
those used in [9]. The letter A means ”for All mesons”.
The letter L or P denotes respectively the Linear or the
2
3-Power confinement; the number 1 indicate the
parameterrc is equal to zero. Both potentials reproduce
spectra of comparable quality and are simple enough to
be handled without any difficulty. In particular, it is quite
easy to solve the differential equation resulting from the
Schrodinger equation. However, the radial partRnls(r) of
the meson wavefunction is calculated numerically. Such a
form is not easily used for studying more complicated
problems. To solve this problem, the regularized part of
the exact radial wavefunction must be approximated by a
linear combination of Gaussian functions:

Rnls (r) =
N

∑
i=1

ciexp
(

−αir
2) (13)

For a given number N of Gaussian functions, the
parametersci and αi are determined by a variational
procedure on the energy of the considered state;N = 1 is
a rather rough approximation, butN = 2 or N = 3 greatly
improves the results [10]. The approximation with 3
Gaussian terms gives essentially the exact wavefunction.
Table 1 shows a few of the masses obtained in this way,
for the potentialsAL1 andAP1. Experimental values are
shown in the fifth column. The masses obtained using the
expansion of the wavefunction in Gaussian functions are
shown forN = 3.

4 Results and Discussion

The theoretical spectra of some light mesons are
calculated in two types of potentials as it is previously
explained. This new obtained theoretical spectra is
compared to new published experimental data [11]. These
theoretical spectra that obtained in different potentials
types are fitted by using the experimental spectra to give

the most suitable spectra with experiments. Theχ2

relation is used to easily compare among the results
obtained by using potentialsAL1,AP1 and this relation
can be defined as

x2 =
1
n

n

∑
k=1

(

Masstheo.
k −MassExp.

k

)2
(14)

In this formula, the summation runs over a selected
sample of m mesons; n is the number of experimental
data in the group.Massk (Exp.) is the experimental mass of
meson labeled k in the sample, whileMassk(theo.) is the
corresponding theoretical mass depending upon the free
parameters. The calculatedχ2 equals to(0.0063) and
(0.0059) for the first and second type of potentials,
respectively. Then according to the values ofχ2 the
second type of potentials(AP1) is found to be the
smallest, then it is said to be the best because it gives
convergence between theory and experiments [11]. This
mean that usingP = 2

3 is better thanP = 1.

Table 1: Theoretical versus experimental values of the masses
(GeV) when both Potentials of (AL1) and (AP1) are used.

. The wave function of is plotted in Figure1 and2 as
the radial wavefunctionU(x) is calculated within two
choices of potentialAL1 andAP1 respectively, according
to its parameters. Where thex here is calculated in fm
units.

5 Conclusion

In this paper, some light meson bound states’ eigenvalues
and eigenfunctions are calculated by applying the new
Numerov’s discretization method (NDM) of the
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Fig. 1: 2S- state and reduced redial wave function calculated
within two choices of potential AL1 and AP1 respectively,
with the approximation with 3 Gaussian terms according to its
parameters.

Fig. 2: 3S- state reduced redial wave function calculated
within two choices of potential AL1 and AP1 respectively,
with the approximation with 3 Gaussian terms according to its
parameters.

Hamiltonian. Mesons that are built out of the light
flavours (i.e., u, d and s) are called light mesons. The
constituent masses of these quarks, especially those of the
u and d quarks are so similar that they cannot be expected
to be distinguished according to their quark content but
must be expected to encounter mixed states of all three
light flavours. The masses and quantum numbers of the
various mesons may also be used to make sense of how
these particles decay. In this work the two potentials are
taken into account to compare the resulting theoretical

spectra with the experimental data. Both potentials
reproduce spectra of comparable quality and are simple
enough to be handled without any difficulty. In addition
to, it is found that the second choice of potential(AP1) is
better than the first potential(AL1). It is suggested that
the NDM is a reasonable method for solving Schrodinger
equation so we reintroduced it by transforming it into a
matrix form to solve radial Schrodinger’s equation; it was
found that the new method (NDM) is simple to calculate
and plot accurate eigenvalues and eigenfunctions. The
general agreement between the prediction of the model
and the data is very good. It is recommend using the
NDM for solving radial Schrodinger equation because it
is easy to use, saves the time and is very accurate. Finally,
we advise using NDM to obtain other mesons spectra and
their properties
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