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1 Introduction

In this paper, we are concerned with the existence of infinitely many homoclinic solutions for a class of fractional
Hamiltonian systems of the following form

{
tDα

∞[−∞Dα
t u(t)]+L(t)u(t) = ∇F(t,u(t)), t ∈ R,

u∈ Hα(R,RN),
(1)

wheretDα
∞ and−∞Dα

t are the Liouville fractional derivatives of order1
2 < α < 1 respectively,F ∈ C1(R×RN,R) is a

given function satisfying some assumptions and∇F(t, ·) is the gradient in the second variable, andL ∈ C(R,RN2
) is a

symmetric matrix valued function.
As we know that homoclinic orbits of dynamical systems are important in applications, such as they may be

”organizing center” for the dynamics in their neighborhood, if they exist, under certain conditions, we can infer the
existence of chaos nearby or the bifurcation behavior of periodic orbits. Therefore, establishing the existence of
homoclinic orbits of Hamiltonian systems is one of the most important issue in the theory of Hamiltonian systems. In
particular, ifα = 1, problem (1) reduces to the classical second order Hamiltonian systems

−u′′(t)+L(t)u(t) = ∇F(t,u(t)), ∀ t ∈R. (2)

During the last decades, the existence and multiplicity of homoclinic solutions for Hamiltonian systems (2) have been
extensively investigated by many authors with the aid of thevariational methods. For example, see [1,2,3,4,5,6,7,8,
9,10,11] and references therein. Usually many people suppose thatL(t) is a symmetric matrix valued function andF
satisfies the global Ambrosetti-Rabinowtiz condition, that is, there existsµ > 2 such that

0< µF(t,x)≤ (∇F(t,x),x), ∀(t,x) ∈R×RN\{0}.

Especially, Rabinowtiz in [2] established the existence of homoclinic orbits for the Hamiltonian systems under the above
condition. Since the domain is unbounded, there is lack of compactness of the Sobolev embedding. In order to return
the compactness, there are some assumption with respect to the matrixL(t), among them, Rabinowtiz and Tanaka in [3]
proposed the following assumption which can guarantee the compactness of Sobolev embedding:
(L) There exists a continuous functionl : R→ R such thatl(t)> 0 for all t ∈ R with l(t)→+∞ as|t| →+∞ and

(L(t)x,x) ≥ l(t)|x|2, for all (t,x) ∈R×RN
.
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In this case, they proved that the system (2) has a nontrivial homoclinic solution. Omana and Willem [6] obtained an
improvement result by employing a new compact embedding theorem. After [3] and [6], with the coercivity assumption
(L), many results were obtained, in recent papers, Zhang and Yuan [10], Sun at el. [12] established some existence and
infinitely many homoclinic solutions for problem (2), respectively.

Recently, fractional differential equations have attracted extensive attentions because of its applications in
viscoelasticity, electrochemistry, control, porous media etc, please see [13,14,15]. The existence and multiplicity of
solutions for BVP of fractional differential equations have been established by the tools of nonlinear analysis, such as,
fixed point theorems [16,17], topological degree [18], comparison methods [19], variational methods and critical point
theory [20,21,22,23], the very recent related papers [24,25,26].

This paper is motivated by some recent papers [27] and [28] where some existence and multiplicity of results
concerning problem (1) are obtained by using some critical point theorems, respectively. The purpose of this paper is
devoted to proving the existence of infinitely many homoclinic solutions for problem (1) with the aid of Fountain
Theorem and Dual Fountain Theorem. To the best of our knowledge, it seems that no similar results are obtained in the
literature for fractional Hamiltonian systems.

Next, we will state our main results. We assume thatF(t,x) satisfies the following conditions.
(F1) F(t,0) = 0 for all t ∈ R, and there existc> 0 andµ > 1 such that|∇F(t,x)| ≤ c(1+ |x|µ) for all (t,x) ∈ R×RN;

(F2) lim
|x|→0

∇F(t,x)
|x| = 0 uniformly for t ∈R;

(F3) lim
|x|→∞

F(t,x)
|x|2 =+∞ uniformly in t ∈ R;

(F4) There existsθ ≥ 1 such thatθH(t,x)≥ H(t,sx) for all (t,x) ∈R×RN ands∈ [0,1], whereH(t,x) = (∇F(t,x),x)−
2F(t,x);
(F ′

4) There existσ > 2 and a constanta > 0 such thatσF(t,x)− (∇F(t,x),x) ≤ a(|x|2 + 1) for all (t,x) ∈ R×RN,
moreover,F(t,x)≥ 0 for all (t,x) ∈R×RN;
(F5) F(t,x) = F(t,−x), for all (t,x) ∈ R×RN;

(F6) F(t,x) = λ f (t)|x|q+ µ |x|p where f : R→ R+ is a positive continuous functionf ∈ L
2

2−q (R,R+) and 1< q< 2<

p<+∞, λ ,µ ∈R.
The first result reads as follows.

Theorem 1.Assume that L satisfies(L) and F satisfies(F1)− (F4) and (F5). Then problem (1) has infinitely many
homoclinic solutions{uk} satisfying

1
2

∫

R

[
|−∞Dα

t uk(t)|2+(L(t)uk(t),uk(t))
]
dt−

∫

R
F(t,uk(t))dt →+∞

as k→ ∞.

Remark.The hypothesis(F4) implies thatF(t,x)≥ 0 for all (t,x) ∈ R×RN (see [5]).

If we replace the condition(F4) by (F ′
4), then we will get the result as follows.

Theorem 2.Assume that L satisfies(L) and F satisfies(F1)− (F3), (F ′
4) and(F5). Then problem (1) has infinitely many

homoclinic solutions{uk} satisfying

1
2

∫

R

[
|−∞Dα

t uk(t)|2+(L(t)uk(t),uk(t))
]
dt−

∫

R
F(t,uk(t))dt →+∞

as k→ ∞.

Theorem 3.Suppose that(L) and(F6) hold. Then, the following two statements are true:
(a) for everyµ > 0, λ ∈ R, problem (1) has infinitely many homoclinic solutions{uk} satisfying

1
2

∫

R

[
|−∞Dα

t uk(t)|2+(L(t)uk(t),uk(t))
]
dt−

∫

R
F(t,uk(t))dt →+∞

as k→ ∞;
(b) For everyλ > 0, µ ∈ R, problem (1) has infinitely many homoclinic solutions{uk} satisfying

1
2

∫

R

[
|−∞Dα

t uk(t)|2+(L(t)uk(t),uk(t))
]
dt−

∫

R
F(t,uk(t))dt → 0−

as k→ ∞.

The present paper is organized as follows. In section 2 we present some basic definitions and facts about the fractional
calculus and give some fundamental tools for the sequel use.Section 3 is devoted to proving Theorem1, Theorem2 and
Theorem3.
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2 Preliminaries

In this section, we first will recall some facts about the fractional calculus on the whole real axis for the readers’
convenience. On the other hand, we will give some preliminaries Lemmas for using in the sequel.

2.1 Liouville Fractional Calculus

The Liouville fractional integrals of order 0< α < 1 on the whole axisR (see [13,14,15]) are defined by

−∞Iα
t u(t) =

1
Γ (α)

∫ t

−∞
(t − s)α−1u(s)ds (3)

t I
α
∞ u(t) =

1
Γ (α)

∫ ∞

t
(s− t)α−1u(s)ds. (4)

The Liouville fractional derivatives of order 0< α < 1 (see [13,14,15]) on the whole axisR are defined by

−∞Dα
t u(t) =

d
dt−∞

I1−α
t u(t), tD

α
∞u(t) =− d

dt t
I1−α
∞ u(t). (5)

The Caputo derivatives of order 0< α < 1 on the whole axisR (see [13,14,15]) are defined as follows
C
−∞Dα

t u(t) =−∞ I1−α
t u′(t), C

t Dα
∞u(t) =−t I

1−α
∞ u′(t). (6)

Let u(x) be defined onR, the Fourier transform of the Liouville fractional integrals and derivatives satisfies (see [13,
15])

−̂∞Iα
t u(ξ ) = (iξ )−α û(ξ ), t̂ Iα

∞ u(ξ ) = (−iξ )−α û(ξ ), (7)

−̂∞Dα
t u(ξ ) = (iξ )α û(ξ ), t̂Dα

∞u(ξ ) = (−iξ )α û(ξ ). (8)

Next, we present some properties for Liouville fractional integral and derivatives on the real axis, which were proved in
[15].

Proposition 1.(1) Let 1 ≤ p ≤ +∞, 1 ≤ q ≤ +∞, α > 0, the operator−∞Iα
t and t Iα

∞ are bounded from Lp(R,RN) to
Lq(R,RN) if and only if0< α < 1, 1< p<

1
α , q= p

1−α p.
(2) If α > 0, for ”sufficiently good” function f(t), the relations

(−∞Dα
t (−∞Iα

t f ))(t) = f (t), (tD
α
∞(t I

α
∞ f ))(t) = f (t)

are true. In particularly, these functions hold for f∈ L1(R,RN).
(3) Letα > 0, β > 0 and p≥ 1 be such thatα +β <

1
p. If f ∈ Lp(R,RN), then

[−∞Iα
t (−∞Iβ

t f )] =−∞ Iα+β
t f , [t I

α
∞ (t I

β
∞ f )] =t Iα+β

∞ f .

(4) If α > β > 0, then the formulas

[−∞Dβ
t (−∞Iα

t f )] =−∞ Iα−β
t f , [tD

β
∞(t I

α
∞ f )] =t Iα−β

∞ f

hold for ”sufficiently good” functions f . In particularly, these functions hold for f∈ L1(R,RN).

Proposition 2.If α > 0, the relations
∫ +∞

−∞
ϕ(t)(−∞Iα

t ψ)(t)dt =
∫ +∞

−∞
ψ(t)(t I

α
∞ ϕ)(t)dt (9)

and ∫ +∞

−∞
f (t)(−∞Dα

t g)(t)dt =
∫ +∞

−∞
g(t)(tD

α
∞ f )(t)dt (10)

are valid for ”sufficiently good” functionsϕ ,ψ , f ,g. In particular, (9) holds for functionsϕ ∈ Lp(R,RN) and
ψ ∈ Lq(R,RN), while (10) holds for f ∈t Iα

∞ (L
p(R)) and g∈−∞ Iα

t (L
q(R)) provided that p> 1,q > 1, and

1
p +

1
q = 1+α, wheret Iα

∞ (L
p(R)) = { f : f (x) =t Iα

∞ ϕ(x),ϕ ∈ Lp(R,RN)}, similarly,−∞Iα
t (L

q(R)) can be defined.

Remark.The function ofC∞
0 (R,R

N) can be chosen to the ”sufficiently good” function.

Proposition 3.Let f ∈ Lq(R,RN), q = p
1−α p and

∫ ∞
0 t−1−αωp( f , t)dt < ∞, then f ∈t Iα

∞ (L
p(R)), 1 < p <

1
α , where

ωp( f , t) = sup0<τ<t ‖ f (x+ τ)− f (x)‖p.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


268 K. Teng: Multiple Homoclinic Solutions ...

2.2 Fractional Derivative Space

Throughout this paper, we denote by the norm of the spaceLp(R,RN) for 1 ≤ p ≤ +∞ as‖u‖p =
(∫

R |u(t)|pdt
) 1

p and
‖u‖∞ = supt∈R |u(t)|.

Definition 1.Let α > 0. The fractional derivative space Eα
− is defined by the closure of C∞

0 (R,R
N) with respect to the

norm
‖u‖Eα

− =
(∫

R
|u(t)|2dt+

∫

R
|−∞Dα

t u(t)|2dt
) 1

2 , ∀u∈ Eα
−. (11)

Definition 2.Let α > 0. The fractional derivative space Eα
+ is defined by the closure of C∞

0 (R,R
N) with respect to the

norm
‖u‖Eα

+
=
(∫

R
|u(t)|2dt+

∫

R
|tDα

∞u(t)|2dt
) 1

2 , ∀u∈ Eα
+. (12)

We recall that the fractional Sobolev spaceHα(R,RN) endowed with the norm

‖u‖Hα = (

∫

R
|u(t)|2dt+

∫

R
||ξ |α û(ξ )|2dξ )

1
2 .

Note that
∫
R |−∞Dα

t u(t)|2dt =
∫
R ||ξ |α û(ξ )|2dξ , henceEα

− and Hα(R,RN) are equivalent with equivalent norm.
Analogous toEα

−, by (8), Eα
+ andHα(R,RN) are equivalent with equivalent norm.

Next, we recall some Sobolev embedding results about the fractional Sobolev spaceHα(R,RN).

Lemma 1.(i) If α >
1
2, then Hα(R,RN)⊂C(R,RN) and there exists a constant C such that

‖u‖∞ ≤C‖u‖Hα .

(ii) If u ∈ Hα(R,RN), then u∈ Ls(R) for all s∈ [2,∞) and
∫

R
|u(t)|sdt ≤ ‖u‖s−2

∞

∫

R
|u(t)|2dt. (13)

In order to study problem (1) by variational methods, we introduce a new fractional Sobolev space which introduced in
[29]. Let

Eα = {u∈ Hα(R,RN) :
∫

R
|−∞Dα

t u(t)|2+(L(t)u(t),u(t))dt < ∞}.

The spaceEα is a separable Hilbert space with the inner product (sinceHα(R,RN) is a separable space)

〈u,v〉=
∫

R
(−∞Dα

t u(t),−∞ Dα
t v(t))+ (L(t)u(t),v(t))dt

and the corresponding norm‖u‖2 = 〈u,u〉. Under the condition of(L), it is easy to check thatEα is continuous embedded
in Hα(R,RN). By Lemma 2.2 in [27] and Lemma1, we see thatEα is compactly embedded inLs(R,RN) for all s∈ [2,∞).

Definition 3.We say that u∈ Eα is a solution of problem (1) if
∫

R
(−∞Dα

t u(t),−∞ Dα
t v(t))+ (L(t)u(t),v(t))dt−

∫

R
(∇F(t,u(t)),v(t))dt = 0

for every v∈C∞
0 (R,R

N).

Definition 4.We call that a solution u of problem (1) is homoclinic (to 0) if u(t)→ 0 as t→±∞. In addition, if u6≡ 0 then
u is called a nontrivial homoclinic solution.

We define the functionalϕ : Eα →R by

ϕ(u) =
1
2

∫

R
[|−∞Dα

t u(t)|2+(L(t)u(t),u(t))]dt−
∫

R
F(t,u(t))dt.

c© 2016 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl.2, No. 4, 265-276 (2016) /www.naturalspublishing.com/Journals.asp 269

Lemma 2.Assume F satisfies(F1)− (F2) or (F6), thenϕ ∈C1(Eα ,R) and

〈ϕ ′(u),v〉=
∫

R
[(−∞Dα

t u(t),−∞ Dα
t v(t))+ (L(t)u(t),v(t))]dt−

∫

R
(∇F(t,u(t)),v(t))dt

for all u,v∈ Eα . Moreover, the critical point ofϕ corresponds to the solution of problem (1).

Proof.Similar to the proof of Lemma 3.1 in [27] or Lemma 2.5 in [9], we omit it.

Lemma 3.Suppose that(L), (F0)-(F2) or (F6)are satisfied. If un ⇀ u in Eα , then∇F(t,un)→ ∇F(t,u) in L2(R,RN).

Proof.Similar to the proof Lemma 2.4 in [27] or Lemma 2.3 in [9], we omit it.

Now, we prove a concentration-compactness principle owingto Lemma I.1 of P. L. Lions [30].

Lemma 4.Let l > 0 and2≤ q<+∞. If {un} is bounded in Hα(R,RN) and if

sup
y∈R

∫ y+l

y−l
|un(t)|qdt → 0 (14)

as n→ ∞, then un → 0 in Lp(R,RN) for all p ∈ (q,+∞).

Proof.Fixing q̄ (q< q̄≤+∞) such thatq< p< q̄, by Hölder’s inequality, we have

(

∫ y+l

y−l
|un(t)|pdt)

1
p ≤ (

∫ y+l

y−l
|un(t)|q̄dt)

λ
q̄ (

∫ y+l

y−l
|un(t)|qdt)

1−λ
q ,

where1
p = λ

q̄ + 1−λ
q . Now, coveringR by the open set(y− l ,y+ l), in such a way that each point ofR is contained in at

mostm open sets (m is a prescribed number), we deduce

∫

R
|un(t)|pdt ≤ m(

∫

R
|un(t)|q̄dt)

λ p
q̄ (

∫ y+l

y−l
|un(t)|qdt)

(1−λ)p
q ≤ m‖un‖q̄

Hα sup
y∈R

(

∫ y+l

y−l
|un(t)|qdt)

(1−λ)s
q

which implies the conclusion.

Remark.Since{un} is bounded inHα(R,RN), it is clear that{un} is bounded inL∞(R,RN). From (14) and Lemma1, we
have for allq< s<+∞,

sup
y∈R

∫ y+l

y−l
|un(t)|sdt → 0 (15)

asn→ ∞.

Remark.SinceEα is continuously embedding toHα(R,RN), it is clear that if{un} is bounded inEα , the conclusion of
Lemma4 holds true.

For proving our main theorem, we present the Fountain Theorem and its dual form which were established in [31,32].
SinceEα is a separable and reflexive Banach space, there exist{en} ⊂ Eα and{ fn} ⊂ (Eα)∗ such that

〈 fn,em〉= δn,m =

{
1, if n= m,
0, if n 6= m,

Eα = span{en : n= 1,2, · · ·}, and(Eα )∗ = span{ fn : n= 1,2, · · ·}w∗
. Fork∈ N, we define

Xk = span{ek}, Yk =⊕k
j=1Xj , Zk =⊕∞

j=kXk.

The functionalϕ is said to satisfy the(C)c condition if for each sequence{u j} satisfying thatϕ(u j) → c and (1+
‖u j‖)ϕ ′(u j)→ 0 as j → ∞ has a convergent subsequence. We say that the functionϕ satisfies that(PS)∗c condition (with
respect toYn) if for any sequence{un j} ⊂ Eα such thatun j ∈Yn j , ϕ(un j )→ c andϕ ′|Ynj

→ 0, asn j → ∞ has a convergent
subsequence which converges to a critical point ofϕ .
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Theorem 4.Suppose X is a Banach space,ϕ ∈ C1(X,R) is an even functional satisfying the(C)c condition for every
c∈ R. If for every k∈N, there existsρk > rk > 0 such that

ak = max
u∈Yk,‖u‖=ρk

ϕ(u)≤ 0 and bk = inf
u∈Zk,‖u‖=rk

ϕ(u)→ ∞ as k→ ∞. (16)

Thenϕ has an unbounded sequence of critical values.

Theorem 5.Suppose X is a Banach space,ϕ ∈C1(X,R) is an even functional satisfying the(PS)∗ condition. If there is a
k0 > 0 such that for every k≥ k0, there existsρk > rk > 0 such that

ck = max
u∈Yk,‖u‖=rk

ϕ(u)< 0 and inf
u∈Zk,‖u‖=ρk

ϕ(u)≥ 0 dk = inf
u∈Zk,‖u‖≤ρk

ϕ(u)→ 0 (17)

as k→ ∞. Thenϕ has a sequence of negative critical values converging to zero.

3 Proof of the Main Results

Lemma 5.Suppose that the conditions(L), (F0)-(F2) hold.ϕ : Eα →R satisfies the(C)c condition for every c∈ R.

Proof.Let {un} ⊂ Eα be a sequence such that

ϕ(un)→ c and (1+ ‖un‖)ϕ ′(un)→ 0 (18)

asn→ ∞. We claim that{un} is bounded inEα . If not, then‖un‖→+∞ asn→ ∞. Let vn =
un

‖un‖ , then‖vn‖= 1.
Claim 1.

lim
n→∞

sup
y∈R

∫ y+l

y−l
|vn(t)|2dt = 0. (19)

Otherwise, for someα > 0, up to a subsequence, we get

sup
y∈R

∫ y+l

y−l
|vn(t)|2dt ≥ α > 0. (20)

We can choose{yn} ⊂ R such that ∫ yn+l

yn−l
|vn(t)|2dt ≥ α

2
. (21)

In view of vn → v in L2(R,RN) and (21), we have

‖v‖2
2+

α
4
≥

∫

R
|v(t)|2dt+

∫

R
|vn(t)− v(t)|2dt ≥

∫ yn+l

yn−l
|v(t)|2dt+

∫ yn+l

yn−l
|vn(t)− v(t)|2dt ≥

∫ yn+l

yn−l
|vn(t)|2dt ≥ α

2
(22)

for n large enough. From (22), there existsε0 > 0 such that the setΩ = {t ∈ R : |v(t)| ≥ ε0} has a positive Lebsegue
measure. Hence, for allt ∈ Ω , one has|un(t)| →+∞ asn→ ∞, which together with(F3) shows

F(t,un(t))
‖un‖2 =

W(t,un(t))
|un(t)|2

|vn(t)|2 →+∞ (23)

asn→ ∞ uniformly for all t ∈ Ω . Hence by (18) and the fact thatF(t,x)≥ 0 for all t ∈ R andx∈ RN, we have

1
2
− c+o(1)

‖un‖2 =
1
2‖un‖2−ϕ(un)

‖un‖2 =

∫

R

F(t,un(t))dt
‖un‖2 dt ≥

∫

Ω

F(t,un(t))dt
|un(t)|2

|vn(t)|2dt →+∞ (24)

asn→ ∞, we get a contradiction. Therefore, the claim 1 holds. Since‖vn‖ is bounded, by Lemma4, we have

vn → 0 in Lq(R,RN) for all q> 2. (25)
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Claim 2. For any givenr ∈R,

lim
n→∞

∫

R
F(t, rvn(t))dt = 0. (26)

By conditions(F1) and(F2), for anyε > 0 there existscε > 0 such that for all(t,x) ∈ R×RN,

|F(t,x)| ≤ ε|x|2+ cε |x|1+µ
. (27)

By (27), we have ∫

R
F(t, rvn(t))dt ≤ ε|r|2

∫

R
|vn(t)|2dt+ cε |r|µ+1

∫

R
|vn(t)|µ+1dt. (28)

From the boundedness of‖vn‖2, (25) and the arbitrariness ofε, so (28) implies that the claim 2 is true.
We definetn ∈ [0,1] by ϕ(tnun) = max

t∈[0,1]
ϕ(tun). For anyM > 0, let v̄n = 2

√
Mvn, by claim 2, we get

lim
n→∞

∫

R
F(t, v̄n(t))dt = 0. (29)

Hence, forn large enough, we have

ϕ(tnun)≥ ϕ(v̄n) = 2M−
∫

R
F(t, v̄n(t))dt ≥ M.

This implies that lim
n→∞

ϕ(tnun) = +∞. Noting thatϕ(0) = 0 andϕ(un) satisfying (18), we know thattn ∈ (0,1) for largen,

and so〈ϕ ′(tnun), tnun〉= 0. Hence,

∫

R
[(∇F(t, tnun), tnun)−2F(t, tnun)]dt = 2ϕ(tnun)−〈ϕ ′(tnun), tnun〉 →+∞ (30)

asn→ ∞. By (F4), we get

∫

R
[(∇F(t,un),un)−2F(t,un)]dt ≥ 1

θ

∫

R
[(∇F(t, tnun), tnun)−2F(t, tnun)]dt (31)

for everyn∈ N. By (18), we have

lim
n→∞

∫

R
[(∇F(t,un),un)−2F(t,un)]dt = lim

n→∞
(2ϕ(un)−〈ϕ ′(un),un〉) = 2c. (32)

Combining with (30), (31) and (32), we get a contradiction. Therefore, we have proved that{un} is bounded.
By the compactness of embeddingEα →֒ Lp(R,RN) with 2≤ p<+∞, and the fact that{un} is bounded inEα , there

existu∈ Eα , and a subsequence of{un} again denoted by{un} such that

un ⇀ u in Eα
, un → u in Lp(R,RN). (33)

Noting that

〈ϕ ′(un)−ϕ ′(u),un−u〉=
∫

R
(∇F(t,un(t))−∇F(t,u(t)),u(t)−un(t))dt+ ‖un−u‖2

By (32) and (33), we only need to prove that

lim
n→∞

∫

R
(∇F(t,un(t))−∇F(t,u(t)),u(t)−un(t))dt = 0. (34)

For this matter, by Lemma3 and (33), we get

∣∣∣
∫

R
(∇F(t,un(t))−∇F(t,u(t)),u(t)−un(t))dt

∣∣∣≤ ‖∇F(t,un(t))−∇F(t,u(t))‖2×‖un−u‖2 → 0.

Consequently,‖un−u‖→ 0 asn→ ∞. The proof is completed.
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Proof of Theorem1. Sinceϕ ∈C1(Eα ,R) satisfies the(C)c condition for everyc∈ R andϕ(u) = ϕ(−u). Hence, to
prove Theorem1, we should just verify thatϕ satisfies (16) of Theorem4.

(i) Let βk(p) = sup
u∈Zk,‖u‖=1

‖u‖p, then one hasβk(p)→ 0 ask→ ∞. Indeed, clearly 0< βk+1(p)≤ βk(p), so there exits

β (p) such thatβk(p) → β (p) ask → ∞ for every 2≤ p < +∞. From the definition ofβk(p), there exists{uk(p)} ∈ Zk

with ‖uk(p)‖= 1 such that‖uk(p)‖> βk(p)
2 for every 2≤ p<+∞ andk∈N. By the boundedness of{uk(p)}, then there

existsu(p) ∈ Eα such thatuk(p)⇀ u(p) ask→ ∞. Now since{en} is a basis ofEα , then for alln∈ N, ∀k> n, we have
0= 〈uk(p),en〉→ 〈u(p),en〉 ask→∞. This implies thatu(p) = 0. By the compactness of the embeddingEα →֒ Lp(R,RN)
with 2≤ p<+∞, we haveuk(p)→ 0 in Lp(R,RN) for all 2≤ p<+∞. Hence,β (p) = 0.

By the definition ofβk(p), and (27), for all u∈ Zk, we have

ϕ(u) =
1
2
‖u‖2−

∫

R
F(t,u(t))dt ≥ 1

2
‖u‖2− ε

∫

R
|u(t)|2dt− cε

∫

R
|u(t)|µ+1dt ≥ 1

4
‖u‖2−Cβ µ+1

k (µ +1)‖u‖µ+1 (35)

for ε small enough. Therefore, takingrk = (8C)
1

1−µ (βk(µ +1))
µ+1
1−µ , thenrk → +∞ ask → ∞ and for everyu∈ Zk with

‖u‖= rk, by (35), one has

bk = inf
u∈Zk,‖u‖=1

ϕ(u)≥ 1
8

r2
k →+∞, (36)

ask→ ∞.
(ii) Similarly as in the proof of Lemma 3.1 of [12], we see that there exits a constantδ > 0 such that

meas{t ∈R : |u(t)| ≥ δ‖u‖} ≥ δ (37)

for all u∈Yk\{0}. We denote byΩu = {t ∈ R : |u(t)| ≥ δ‖u‖}. By the hypothesis(F3), there exitsR> 0 such that

F(t,x)≥ |x|2
δ 3 (38)

for all x∈ RN with |x| ≥ Randt ∈ R. Observing that for anyu∈Yk with ‖u‖ ≥ R
δ , there holds

|u(t)| ≥ R, for all t ∈ Ωu. (39)

By (37), (38), (39)andF(t,x)≥ 0, we have

ϕ(u)≤ 1
2
‖u‖2−

∫

Ωu

F(t,u(t))dt ≤ 1
2
‖u‖2− 1

δ 3

∫

Ωu

|u(t)|2dt ≤ 1
2
‖u‖2− 1

δ
‖u‖2meas(Ωu)≤−1

2
‖u‖2

for all u∈Yk with ‖u‖ ≥ R
δ . Therefore, we can chooseρk > max{rk,

R
δ }, then

ak = max
u∈Yk,‖u‖=ρk

ϕ(u)< 0.

Hence, combining with Lemma5, by Theorem4, we obtain that problem (1) has infinitely many homoclinic solutions
{uk} satisfying

1
2

∫

R
|−∞Dα

t uk(t)|2+(L(t)uk(t),uk(t))dt−
∫

R
F(t,uk(t))dt →+∞

ask→ ∞.
Proof of Theorem 2. We only need to verify that the functionalϕ satisfies the(C)c condition. Let{un} ⊂ Eα be a

sequence such that
ϕ(un)→ c and (1+ ‖un‖)ϕ ′(un)→ 0 (40)

asn→ ∞. We claim that{un} is bounded inEα . If not, then‖un‖→+∞ asn→ ∞. Let vn =
un

‖un‖ , then‖vn‖= 1. Hence,

up to a subsequence, there existsv∈ Eα such thatvn ⇀ v in Eα , vn → v in Lp(R,RN) andvn(t)→ v(t) a.e.t ∈R.
By (40), we have ∫

R

2F(t,un(t))
|un(t)|2

|vn(t)|2dt → 1 (41)

asn→ ∞. Let Σ1 = {t ∈ R : v(t) 6= 0} andΣ2 = R\Σ1. Obviously,

2F(t,un(t))
|un(t)|2

|vn(t)|2 →+∞, t ∈ Σ1 (42)
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asn→ ∞. By the hypothesis(F3), for a constanta0 > 0, there existsR0 > 0 such thatF(t,x)≥ a0|x|2, for all x∈ Rn with
|x| ≥ R0 andt ∈R. It follows that
∫

R

2F(t,un(t))
|un(t)|2

|vn(t)|2dt ≥
∫

Σ1

2F(t,un(t))
|un(t)|2

|vn(t)|2dt+
∫

Σ2∩{t∈R:|un(t)|≥R0}

2F(t,un(t))
|un(t)|2

|vn(t)|2dt+
∫

Σ2∩{t∈R:|un(t)|≤R0}

2F(t,un(t))
‖un(t)‖2 dt

≥
∫

Σ1

2F(t,un(t))
|un(t)|2

|vn(t)|2dt+2a0

∫

Σ2∩{t∈R:|un(t)|≥R0}
|vn(t)|2dt+

∫

Σ2∩{t∈R:|un(t)|≤R0}

2F(t,un(t))
‖un(t)‖2 dt

≥
∫

Σ1

2F(t,un(t))
|un(t)|2

|vn(t)|2dt+
∫

Σ2∩{t∈R:|un(t)|≤R0}

2F(t,un(t))
‖un(t)‖2 dt. (43)

By (27) and Lebesgue dominated convergent theorem, we have

∣∣∣
∫

Σ2∩{t∈R:|un(t)|≤R0}

2F(t,un(t))
‖un(t)‖2 dt

∣∣∣≤ c
∫

Σ2

|vn(t)|2dt → 0. (44)

If Σ1 has positive measure, (41)-(44) implies a contradiction. Hence, the measure ofΣ1 must be 0, i.e., we must have
v(t)≡ 0, a.e.t ∈ R. Moreover, from (40), we get

∫

R

(∇F(t,un(t)),un(t))−σF(t,un(t))
|un(t)|2

|vn(t)|2dt → 1− σ
2
. (45)

But by the hypothesis(F ′
4), we have

liminf
n→∞

(∇F(t,un(t)),un(t))−σF(t,un(t))
|un(t)|2

|vn(t)|2 ≥ lim inf
n→∞

(
−a

|un|2+1
|un|2

|vn(t)|2
)
= 0.

(46)

Hence, (45) and (46) implies that 1− σ
2 ≥ 0, this contradicts with the assumptionσ > 2. Consequently,{un} is bounded

in Eα . As in the proof of Lemma5, we conclude thatϕ satisfies the(C)c condition.

Remark.In the proof of (43), if we use the hypothesisF(t,x)≥ 0 for all (t,x) ∈ R×RN, it is easy to check that it holds.

Proof of Theorem 3. Case (a). Note that p > 2, we may choose‖u‖ ≥ R1 large enough such that
1
4‖u‖2− c1

|λ |
q ‖ f‖ 2

2−q
‖u‖q ≥ 0 for all u ∈ Zk with ‖u‖ ≥ R1. By the definition ofβk(p) in the proof of Theorem1, we

have

ϕ(u) =
1
2
‖u‖2− λ

q
‖ f

1
q u‖q

q−
µ
p
‖u‖p

p ≥
1
2
‖u‖2− |λ |

q
c1‖ f‖ 2

2−q
‖u‖q− µ

p
β p

k (p)‖u‖p ≥ 1
4
‖u‖2− µ

p
β p

k (p)‖u‖p

for anyu∈ Zk with ‖u‖ ≥ R1. Takingrk =
(

p
8µβ p

k (p)
+Rp−2

1

) 1
p−2

, sincep> 2, by the fact thatβk(p)→ 0, thenrk →+∞
ask→ ∞. Thus foru∈ Zk with ‖u‖= rk, we get that

inf
u∈Zk,‖u‖=rk

ϕ(u)≥ 1
8

r2
k →+∞, as k→ ∞.

Clearly,F(t,x) satisfies(F3), so, similarly as the proof of Theorem1, we can obtain that

ak = max
u∈Yk,‖u‖=ρk

ϕ(u)< 0.

Next, we show thatϕ satisfies the(C)c condition. In fact, we assume that{un} ⊂ Eα is a sequence such that

ϕ(un)→ c and (1+ ‖un‖)ϕ ′(un)→ 0

asn→ ∞. It follows that

ϕ(un)−
1
p
〈ϕ ′(un),un〉= (

1
2
− 1

p
)‖un‖2−λ (

1
q
− 1

p
)‖ f

1
q un‖q

q ≥ (
1
2
− 1

p
)‖un‖2−|λ |(1

q
− 1

p
)‖ f‖ 2

2−q
‖un‖q

2,
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which implies that{un} is bounded inEα from the fact thatf ∈ L
2

2−q (R,R+) and 1< q < 2 < p < +∞. Thus, the
remainder proof is similar to the proof of Theorem1.

Case(b). Firstly we verify that (17) of Theorem5 holds. Note thatq< 2, we may choose‖u‖≤ R2 small enough such
that 1

4‖u‖2−c1
|µ|
p c2‖u‖p ≥ 0 for all u∈ Zk with ‖u‖ ≤ R2. By the definition ofβk(2) in the proof of Theorem1, we have

ϕ(u) =
1
2
‖u‖2− λ

q
‖ f

1
q u‖q

q−
µ
p
‖u‖p

p ≥
1
2
‖u‖2− λ

q
β q

k (2)‖ f‖ 2
2−q

‖u‖q− |µ |
p

c2‖u‖p ≥ 1
4
‖u‖2− λ

q
β q

k (2)‖ f‖ 2
2−q

‖u‖q
.

(47)

We chooseρk =
(

8λ
q β q

k (2)‖ f‖ 2
2−q

) 1
2−q

. Obviously,ρk → 0 ask→ ∞. Hence, there exitsk0 > 0 such thatρk ≤ R2 for all

k≥ k0. Combining with (47), straightforward computation gives that

inf
u∈Zk,‖u‖=ρk

ϕ(u)≥ 1
8

ρ2
k > 0.

Furthermore, by (47), for anyu∈ Zk with ‖u‖ ≤ ρk, we have

0≥ dk = inf
u∈Zk,‖u‖≤ρk

ϕ(u)≥−λ
q

β q
k (2)‖ f‖ 2

2−q
‖u‖q

.

Hence,dk → 0− ask→ ∞.
Next, we show that for the sequence{ρk} obtained above, there exist 0< rk < ρk for all k≥ k0 such that

ck = inf
u∈Yk,‖u‖=rk

ϕ(u)< 0. (48)

As the proof of Lemma 3.1 in [12], we get that for any finite dimensional subspaceF ⊂ Eα , there existsδ1 > 0 such that

meas{t ∈ R : f (t)|u(t)|q ≥ δ1‖u‖q} ≥ δ1, ∀u∈ F\{0}.

We denote byΩ ′
u = {t ∈ R : f (t)|u(t)|q ≥ δ1‖u‖q}. Then for allu∈Yk, if µ ≥ 0, we have

ϕ(u)≤ 1
2
‖u‖2− λ

q
‖ f

1
q u‖q

q−
µ
p
‖u‖p

p≤
1
2
‖u‖2− λ

q

∫

Ω ′
u

f (t)|u(t)|qdt≤ 1
2
‖u‖2− λ δ1

q
‖u‖qmeas(Ω ′

u)≤
1
2
‖u‖2− λ δ 2

1

q
‖u‖q

.

Choosing 0< rk < min{ρk,(
λ δ 2

1
q )

1
2−q}, directly computation shows that

ck ≤− r2
k

2
< 0.

On the other hand, ifµ < 0, we have

ϕ(u)≤ 1
2
‖u‖2− µ

p
c2‖u‖p− λ

q

∫

Ω ′
u

f (t)|u(t)|qdt ≤ 1
2
‖u‖2− µ

p
c2‖u‖p− λ δ 2

1

q
‖u‖q

= (
1
2
‖u‖2− λ δ 2

1

2q
‖u‖q)+ (−µ

p
c2‖u‖p− λ δ 2

1

2q
‖u‖q).

Choosing 0< rk < min{ρk,(
λ δ 2

1
2q )

1
2−q ,(

pλ δ 2
1

4q(−µ)c2
)

1
p−q}, thenr2−q

k ≤ λ δ 2
1

2q andr p−q
k ≤ pλ δ 2

1
4q(−µ)c2

. It follows that

ck ≤
1
2

r2
k −

λ δ 2
1

2q
rq
k +(−µ

p
c3r p−q

k rq
k −

λ δ 2
1

2q
rq
k ≤

1
2

r2
k − r2

k +
(−µ)c2

p
pλ δ 2

1

4q(−µ)c2
rq
k −

λ δ 2
1

2q
rq
k

=−1
2

r2
k −

λ δ 2
1

4q
rq
k ≤−1

2
r2
k −

1
2

r2
k =−r2

k < 0.

Consequently, (48) holds.
Finally, we show thatϕ satisfies the(PS)∗c condition. Indeed, let{un j} ⊂ Eα be a sequence such that

n j → ∞, un j ∈Yn j , ϕ(un j )→ c, ϕ ′|Ynj
(un j )→ 0. (49)
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Forn j large enough, we have

c+1+ ‖un j‖= ϕ(un j )−
1
p
〈ϕ ′(un j ),un j 〉= (

1
2
− 1

p
)‖un j‖2−λ (

1
q
− 1

p
)‖ f

1
q un j‖q

q

≥ (
1
2
− 1

p
)‖un j‖2−λ (

1
q
− 1

p
)c3‖ f‖ 2

2−q
‖‖un j‖q

.

Since 1< q< 2< p, it yields that{un j} is bounded inEα . Hence, up to a subsequence, we may assume thatun j ⇀ u as
j → ∞ for someu∈ Eα andun j → u in Ls(R,RN) for all 2≤ s<+∞. Since

|〈ϕ ′(un j ),un j −u〉| ≤ ‖ϕ ′(un j )‖(Eα )∗‖un j −u‖→ 0

as j → ∞, and by Hölder’s inequality, we have

|
∫

R
f (t)|un j (t)|q−2un j (t) · (un j (t)−u(t))dt| ≤ ‖ f‖ 2

2−q
‖un j‖2‖un j −u‖2 → 0

and
|
∫

R
|un j (t)|p−2un j (t) · (un j (t)−u(t))dt| ≤ ‖un j‖p−1

p ‖un j −u‖p → 0

as j → ∞. Therefore, we get that
lim
j→∞

‖un j‖2 = ‖u‖2
.

This implies thatun j → u in Eα . In fact

lim
j→∞

‖un j −u‖2 = lim
j→∞

[‖un j‖2+ ‖u‖2−2〈un j ,u〉] = 0.

Hence, it is easy to check thatϕ ′(u) = 0. The proof is completed.

4 Conclusion

The existence of infinitely many high or small energy solutions for fractional Hamiltonian systems (1) was established
by the well known fountain theorem and dual fountain theorem. Here we assume that the nonlinearities satisfy the
superquadratic growth (but not the classical Ambrosetti-Rabinowtiz condition) and concave-convex conditions.
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