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1 Introduction

In this paper, we are concerned with the existence of infinileany homoclinic solutions for a class of fractional
Hamiltonian systems of the following form

(DI [_DIU(t)] + L(t)u(t) = OF (t,u(t)), t € R, )
ue HY(R,RN), 1)

where;DZ and _,Df are the Liouville fractional derivatives of ordér< a < 1 respectivelyF € CY(R x RN R) is a

given function satisfying some assumptions atf(t, -) is the gradient in the second variable, dnd C(R,RNZ) is a
symmetric matrix valued function.

As we know that homoclinic orbits of dynamical systems ar@antant in applications, such as they may be
"organizing center” for the dynamics in their neighborhpddhey exist, under certain conditions, we can infer the
existence of chaos nearby or the bifurcation behavior ofoper orbits. Therefore, establishing the existence of
homoclinic orbits of Hamiltonian systems is one of the mogpartant issue in the theory of Hamiltonian systems. In
particular, ifa = 1, problem () reduces to the classical second order Hamiltonian systems

—u’(t)+L(t)u(t) =OF(t,ut)), VteR. (2)

During the last decades, the existence and multiplicityahbclinic solutions for Hamiltonian system®) (have been
extensively investigated by many authors with the aid ofvtheational methods. For example, sde?3,4,5,6,7,8,

9,10,11] and references therein. Usually many people suppose_thais a symmetric matrix valued function arkd
satisfies the global Ambrosetti-Rabinowtiz conditionttisathere exista > 2 such that

0 < uF(t,x) < (OF(t,x),X), V(t,x) € R x RN\{0}.

Especially, Rabinowtiz ing] established the existence of homoclinic orbits for the Hi@mmian systems under the above
condition. Since the domain is unbounded, there is lack afgactness of the Sobolev embedding. In order to return
the compactness, there are some assumption with respéet toattrixL(t), among them, Rabinowtiz and Tanaka 8} [
proposed the following assumption which can guaranteedhgactness of Sobolev embedding:

(L) There exists a continuous functibnR — R such that(t) > 0 for allt € R with I (t) — + as|t| — +c and

(L{t)x,x) > 1(t)[x?, forall (t,x)eR xRN,

* Corresponding author e-maiengkaimin2013@163.com

(@© 2016 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/pfda/020404

266 NS 2 K. Teng: Multiple Homoclinic Solutions ...

In this case, they proved that the systeZhlfas a nontrivial homoclinic solution. Omana and Wille&h ¢btained an
improvement result by employing a new compact embeddingréma. After 3] and [6], with the coercivity assumption
(L), many results were obtained, in recent papers, Zhang and [Y@ Sun at el. L2] established some existence and
infinitely many homoclinic solutions for problerg); respectively.

Recently, fractional differential equations have attedctextensive attentions because of its applications in
viscoelasticity, electrochemistry, control, porous naedic, please sed 3 14,15]. The existence and multiplicity of
solutions for BVP of fractional differential equations leaveen established by the tools of nonlinear analysis, ssich a
fixed point theorems1fe, 17], topological degreell§], comparison methodd p], variational methods and critical point
theory R0,21,22,23], the very recent related papeg[25,26)].

This paper is motivated by some recent pap@4d gpnd [28] where some existence and multiplicity of results
concerning problemlj) are obtained by using some critical point theorems, resmdz The purpose of this paper is
devoted to proving the existence of infinitely many homaclisolutions for problem k) with the aid of Fountain
Theorem and Dual Fountain Theorem. To the best of our knayeleitl seems that no similar results are obtained in the
literature for fractional Hamiltonian systems.

Next, we will state our main results. We assume thdt x) satisfies the following conditions.

(F1) F(t,0) =0 for allt € R, and there exist > 0 andu > 1 such thatOF (t,x)| < c(1+ [x|¥) for all (t,x) € R x RN;
(Fo) lim ZEX — o uniformly fort € R;

‘X‘—)O ‘X‘
(Fz) li X = +oo uniformly int € R;

‘x‘%oo ‘X‘
(F4) There exist® > 1 such thaBH (t,x) > H(t,sx) for all (t,x) € R x RN ands € [0, 1], whereH (t,x) = (OF (t,x),x) —
2F (t,%);

(Fp) There existo > 2 and a constara > 0 such thatoF (t,x) — (OF (t,x),x) < a(|x|> + 1) for all (t,x) € R x RN,
moreoverf (t,x) > 0 for all (t,x) € R x RN;
(Fs) F(t,x) = F(t,—x), for all (t,x) € R x RN;
(Fe) F(t,x) = A f(t)|X9+ u|x|P wheref : R — R is a positive continuous functiohe B2 (R,RT)and l<g<2<
p< -+, A uck.

The first result reads as follows.

Theorem 1Assume that L satisfied) and F satisfiesF1) — (F4) and (Fs). Then problem X) has infinitely many
homoclinic solutiong uk} satisfying

1
5 [ [I-=DE U+ (L), ult) [ dt— [ Ft uglt))at = +oo
2 Jr R

as k— oo.

RemarkThe hypothesigF,) implies thatF (t,x) > 0 for all (t,x) € R x RN (see p]).

If we replace the conditiofF) by (F;), then we will get the result as follows.
Theorem 2Assume that L satisfigs) and F satisfiegF;) — (F3), (F;) and (Fs). Then problem) has infinitely many

homoclinic solutiong uk} satisfying

3 L [FoDEu@ P + (LOu®,ut)]dt— [ Fu)dt— +eo
as k— .
Theorem 3Suppose thafl) and (Fs) hold. Then, the following two statements are true:

(a) for everyu > 0, A € R, problem () has infinitely many homoclinic solutiofsy} satisfying
1
5 . [I-Df U+ (LU ) ] dt = [ Ftu®)dt - +o0

as k— oo;

(b) For everyA > 0, u € R, problem () has infinitely many homoclinic solutiofsy} satisfying
1
5 [ [I-Df O + (L ue(t), ue(t) [ dt— [ F(t,udt)dt—0-
2Jr R

as k— oo,

The present paper is organized as follows. In section 2 weeptesome basic definitions and facts about the fractional
calculus and give some fundamental tools for the sequelSesgion 3 is devoted to proving TheordmTheoren? and
Theorens.
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2 Preliminaries

In this section, we first will recall some facts about the fi@eal calculus on the whole real axis for the readers’
convenience. On the other hand, we will give some prelinisdremmas for using in the sequel.

2.1 Liouville Fractional Calculus

The Liouville fractional integrals of order€@ a < 1 on the whole axi® (see [L3,14,15]) are defined by

1 t
a o _qa-1
elfu) = s /_ _(t-97 tu(s)ds @3)
1 00
19u(t :—/ s—t) u(s)ds 4
The Liouville fractional derivatives of orderQ o < 1 (see 13,14,15]) on the whole axifR are defined by
d d
a _ - 1-a a - _ - 1-a
—°°Dt U(t) - dtfoolt U(t), IDoou(t) dttloo U(t) (5)
The Caputo derivatives of order0a < 1 on the whole axi® (see [L3,14,15]) are defined as follows
C.DIU(t) = IFOU (1), EDIU() = I3 U (1), (6)

Letu(x) be defined ofiR, the Fourier transform of the Liouville fractional inte¢g@nd derivatives satisfies (&3]

19))

TLIEU(E) = (16)79G(E), (1Gu(E) = (—i&) " T(E), (7)
“=DFU(E) = (i§)7T(E), DIU(E) = (—i&)TT(E). ®8)

Next, we present some properties for Liouville fractiomaegral and derivatives on the real axis, which were prowed i
[15].

Proposition 1(1) Let1 < p < +o, 1 < q < 4+, a > 0, the operator_»I¢ and{I2 are bounded from B(R,RN) to
LYR,RV) ifand onlyif0<a <1,1<p< i, q= 2

(2) If a > 0, for "sufficiently good” function ft), the relations

(—Df (—ol F))(1) = f(t), (:Da(ela F))(t) = f(1)
are true. In particularly, these functions hold forsfL (R, RN).
(3) Leta > 0, B > 0and p> 1 be such thatr + 8 < %. If f € LP(R,RN), then

Lol (Calf )] = I8Pt 1G] = 18P F.
(4) If a > B > 0, then the formulas

oD (ol )] = 1P 1, [DEGIST)] = 18P
hold for "sufficiently good” functions f. In particularlyhiese functions hold for & L*(R,RN).
Proposition 2If o > 0, the relations

To0Cafwmd= [ wn@ge)wat ©

and o o
[ 10CeDegmdt= [ g)eDEN Mt (10)

—00 —

are valid for "sufficiently good” functionsg,, f,g. In particular, @) holds for functions¢ € LP(R,RN) and
Y € LYR,RN), while (10) holds for f & 13(LP(R)) and g€ _« IZ(L9(R)) provided that p> 1,9 > 1, and
%,4—% =1+4a,whergl3(LP(R)) = {f: f(x) = 13¢(x), ¢ € LP(R,RN)}, similarly, _«|&(L4(R)) can be defined.
RemarkThe function ofCg (R, RN) can be chosen to the "sufficiently good” function.

Proposition 3Let f € LR, RY), q= %5 and [t %awp(f,t)dt < o, then fe IZ(LP(R)), 1< p < 1, where
wp(F,t) = SUpcrt | F(X+T) = FOO[p.
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2.2 Fractional Derivative Space

ol

Throughout this paper, we denote by the norm of the sh&¢&, RN) for 1 < p < + as|ul|p = (f |u(t)|Pdt)? and

[[ulle> = SUReR [U(t)]-

Definition 1.Let a > 0. The fractional derivative spaceEis defined by the closure OWR,RN) with respect to the
norm

lulles = ( [ lu)Pdt+ [ |-oDuPat)?, wueEn, (1)

Definition 2.Let a > 0. The fractional derivative spacefEs defined by the closure oig’(ER,RN) with respect to the
norm

Jullee = /Iu 2dt+/|D°’ 2dt , VueES. (12)
We recall that the fractional Sobolev spat¢&(R,RN) endowed with the norm
Y 1
Jullwe = ([ Ju) P+ [ J1€17a(€)Pde)?.

Note that [p|-Dfu(t)|?dt = [ ||€|°T(&)|?dE, henceE? and HY(R,RN) are equivalent with equivalent norm.
Analogous tcE?, by (8), E? andHY(R,RN) are equivalent with equivalent norm.
Next, we recall some Sobolev embedding results about tkéidreal Sobolev spadd ® (R, RN).

Lemma 1(i) If a > 3, then H(R,RN) ¢ C(R,RV) and there exists a constant C such that
Ul < Cllullpo-

(i) If u € HY(R,RN), then ue LS(R) for all s € [2,») and

[ o< s ? [ ju) Pt (13)
R R

In order to study problemljj by variational methods, we introduce a new fractional 3sbepace which introduced in
[29]. Let

— (Ue HI(R,RV): /R|,ooofu(t)|2+(L(t)u(t),u(t))dt<oo}.

The spac&? is a separable Hilbert space with the inner product (sth&€R, RN) is a separable space)
(uv) = /R(met"’U(t),fm DEV(t)) + (L(t)u(t), v(t))dt

and the corresponding norja||2 = (u,u). Under the condition ofL), itis easy to check th&“ is continuous embedded
inHY(R,RN). By Lemma 2.2 in27] and Lemmal, we see thaE? is compactly embedded l¥(R,RN) for all s€ [2, ).

Definition 3.We say that @ E? is a solution of probleml) if

/R(_th"u(t),_th"v(t))—k(L(t)u(t),v(t))dt—/(DF(t,u(t)),v(t))dt:O

R
for every ve C3 (R, RN).

Definition 4.We call that a solution u of problend)is homoclinic (to 0) if t) — 0 as t— =oo. In addition, if uZ 0 then
u is called a nontrivial homoclinic solution.

We define the functionap : E® — R by

:%/RH—thaU(t)F—f—(L(t)u(t),u(t))]dt_/RF(LU('[))dt

(@© 2016 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl2, No. 4, 265-276 (2016)www.naturalspublishing.com/Journals.asp NS = 269

Lemma 2 Assume F satisfig§;) — (F2) or (Fe), theng € C1(E?,R) and

<¢’(U)aV>:/R[(—oth“U(t)a—oth“V(t))Jr(L(t)u(t)av(t))]dt—/R(DF(taU(t))av(t))dt

for all u,v € EY. Moreover, the critical point of corresponds to the solution of problef).(
ProofSimilar to the proof of Lemma 3.1 irR[/] or Lemma 2.5 in 9], we omit it.
Lemma 3Suppose thafl), (Fo)-(F2) or (Fs)are satisfied. If y— u in E?, thenOF (t,u,) — OF (t,u) in L2(R,RN).
Proof Similar to the proof Lemma 2.4 ir2[f/] or Lemma 2.3 in §], we omit it.
Now, we prove a concentration-compactness principle owarigemma 1.1 of P. L. Lions30Q].

Lemma4Llet|>0and2 < q< 4. If {uy} is bounded in K (R,RN) and if

y+I

5515 - lun(t)9dt — O (14)

as n— o, then i — 0in LP(R,RN) for all p € (g, +).

ProofFixing q (q < q < +) such thay < p < g, by Holder’s inequality, we have

+ 1 | 2 | 12
([ ) Pans < ([ a0 ¥ [ w0y T,

Where% = %4— %. Now, coveringR by the open sety — I,y +1), in such a way that each point Bfis contained in at

mostm open setsrtiis a prescribed number), we deduce

a-Ap (1=2)s

Amﬁwm<m%JMm%g?%fmmm%0q><mwdmi§4fmmmmnq

which implies the conclusion.

RemarkSince{u,} is bounded iH? (R, RN), it is clear that{uy} is bounded i, (R, RN). From (14) and Lemmal, we
have for allg < s < +,

y+
sup |un(t)[%dt — O (15)
yeR /y-I

asn — oo,

RemarkSinceE? is continuously embedding td? (R, RN), it is clear that if{u,} is bounded irE?, the conclusion of
Lemma4 holds true.

For proving our main theorem, we present the Fountain Theaired its dual form which were established 31,[32].
SinceE? is a separable and reflexive Banach space, therefexistc EY and{f,} C (E“)* such that

1Lifn=m,

<Mﬂm=%m={QWn¢m

EY =span{e,:n=1,2,---}, and(EY)* =span{f,:n=1,2,- --}‘"ﬁ. Fork € N, we define
X =sparfe}, Yk= @‘lexj, Z = D7 X

The functional¢ is said to satisfy théC). condition if for each sequencgy;} satisfying that$ (uj) — ¢ and (1+
lujl)¢’(uj) — 0 asj — o has a convergent subsequence. We say that the furcatisfies thatPS)¢ condition (with
respect tor,) if for any sequencgun, } C E such thatin, € Yo, ¢ (un;) — ¢ anchYnj — 0, asn; — o has a convergent
subsequence which converges to a critical poirg of
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Theorem 4Suppose X is a Banach spagec C1(X,R) is an even functional satisfying tH€). condition for every
c € R. If for every ke N, there existpy > ri > 0 such that

a= max ¢u)<0 andh= _inf @(u)— oask— . (16)

ueYi [Jull=pk UEZ [ull=r
Theng has an unbounded sequence of critical values.

Theorem 5Suppose X is a Banach spages C1(X,R) is an even functional satisfying tiES)* condition. If there is a
ko > 0 such that for every k ko, there existgpy > rx > 0 such that

k= max ¢(uy<Oand _inf @(u)>0 de= _inf uy—0 a7)
UEYiq [|ull=ri ueZy, ||ull=px ueZy, ||ull<pk

as k— . Then¢ has a sequence of negative critical values converging t. zer

3 Proof of the Main Results

Lemma 5.Suppose that the conditiofis), (Fp)-(F2) hold. ¢ : E? — R satisfies théC). condition for every & R.
ProofLet {u,} C E be a sequence such that
¢ (un) — ¢ and (14 ||un||)$’(us) — O (18)

asn — oo. We claim that{u,} is bounded irE?. If not, then||up|| — +c0 asn — co. Letv, = Hﬂ_:\l then||vy| = 1.
Claim 1.

y+
limsup/ ™ |vn(t)2dt=0. (19)

=0 yer Jy—I

Otherwise, for some > 0, up to a subsequence, we get

Y+ )
sup [Vn(t)|“dt > a > 0. (20)
yeR Jy—I

We can chooséyn} C R such that
Yn+ 2 a
/y Va(t) Pt > 2. 1)

In view of v, — vin L2(R,RN) and @1), we have
Yn+ Yo+l Yo+l
MB+S > [ woPdes [ ) -vioRae> [ woRdes [ e —voPdes 1 woPa 9 @2)
4~ Jr R Yo Yo yn—| 2

for n large enough. Fron2Q), there existsp > 0 such that the se® = {t ¢ R : |v(t)| > &} has a positive Lebsegue
measure. Hence, for dlie Q, one hagun(t)| — 4+ asn — oo, which together with(F3) shows

F(tvun(t)) _ W(taun(t))
lunfl2 Jun(t)[2

asn — oo uniformly for allt € Q. Hence by {8) and the fact thaf (t,x) > 0 for allt € R andx € RN, we have

Vn(t)]? — 400 (23)

1 cto1)  3unl>—¢(un) 1 F(t,un(t))dt F(t, un(t))dt
T T i o e A vy GO e (24)

asn — oo, we get a contradiction. Therefore, the claim 1 holds. Sjhé# is bounded, by Lemmé, we have

Va— 0 in LY(R,RN) forall q>2. (25)
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Claim 2. For any givem € R,

Am A F(t,rvn(t))dt=0. (26)
By conditions(F;) and(F,), for anye > 0 there existg, > 0 such that for al(t,x) € R x RN,

IF(t,%)] < €[X/? + ce|x|*TH. (27)

By (27), we have
/ F(t, rva(t))dt < £|r|2/ |vn(t)|2dt+cg|r|“+1/ [vi(t)[F+ . (28)
R R R
From the boundedness [, ||2, (25) and the arbitrariness af so £8) implies that the claim 2 is true.

We definet, € [0,1] by ¢ (thun) = tgglﬁqb(tun). For anyM > 0, letvy, = 2y/Mvy, by claim 2, we get

lim [ F(t,vn(t))dt = 0. (29)

n—o Jp

Hence, fom large enough, we have
8 (tatn) > ¢ (V) = 2M —/ F(t,n(t))dt > M.
R

This implies thatnﬂgowcp (thun) = +o0. Noting thatg (0) = 0 and¢ (uy) satisfying (L8), we know that, € (0,1) for largen,
and so{¢’(taUn),thun) = 0. Hence,

/R[(DF(t,tnun),tnun) — 2F (t,tqun)]dt = 2 (taun) — (@’ (taUn), thln) — +o0 (30)

asn — . By (F4), we get

/[(DF(t,un),un)—2F(t,un)]dtz %/[(DF(t,tnun),tnun)—2F(t,tnun)]dt (31)
R R
for everyn € N. By (18), we have

lim [ [(OF (t,n), Un) — 2F (t, un)Jdt = lim (26 (un) (¢'(un),un)) = 2c. (32)

n—o J»
Combining with 80), (31) and B2), we get a contradiction. Therefore, we have proved {ba} is bounded.
By the compactness of embeddi§ — LP(R,RN) with 2 < p < +o0, and the fact thafun} is bounded irE?, there
existu € E?, and a subsequence i} again denoted byu,} such that
Up—uin E% u,—uin LP(R,RN). (33)

Noting that
(¢ (un) — ¢'(u),un—u) = /R(DF(t,un(t)) — OF(t, u(t)), u(t) — un(t))dt+ [|un — u|®
By (32 and @33), we only need to prove that
ML R(DF(t,un(t)) — OF(t,u(t)),u(t) — up(t))dt =0. (34)
For this matter, by Lemmaand @3), we get
‘ /R(DF(tvun(t)) —OF(t,u(t)), u(t) — un(t))dt) < [|OF(t,un(t)) — OF (£, u(t))[2  [[un— ull2 = O.

Consequentlyjju, — u|| — 0 asn — . The proof is completed.
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Proof of Theorem 1. Since¢ € C1(E®, R) satisfies théC). condition for everyc € R and¢ (u) = ¢ (—u). Hence, to
prove Theoreni, we should just verify thap satisfies {6) of Theorem.
(i) LetB(p) = sup ||u||p, then one hafy(p) — 0 ask — . Indeed, clearly &< Bi;1(p) < Bk(p), SO there exits
ueZy [|uf=1

B(p) such thatB(p) — B(p) ask — o for every 2< p < +o. From the definition of3(p), there exist{ux(p)} € Z

with [lug(p)|| = 1 such that|uc(p)| > %p) for every 2< p < + andk € N. By the boundedness ¢fi(p)}, then there
existsu(p) € E? such thauy(p) — u(p) ask — . Now since{e,} is a basis oE?, then for alln € N, vk > n, we have
0= (ug(p),en) — (u(p),en) ask — oo. This implies thati(p) = 0. By the compactness of the embeddifg— LP(R,RN)
with 2 < p < +o00, we haveug(p) — 0in LP(R,RN) for all 2 < p < +o. Hence B(p) = 0.

By the definition of«(p), and @7), for all u € Z, we have

6(0) = Slul2~ [ Fruwdt= Slu—e [ juoPdt—ce [ jude= Flul2-CAl i+ lul# (35)

1
for € small enough. Therefore, taking = (8C)1*1_u (Bx(p + 1))%, thenry — +o ask — o and for everyu € 7 with

|ul| = rk, by (35), one has

1
b= inf > Zr2 36
= B2 g e (36)
ask — oo,
(i) Similarly as in the proof of Lemma 3.1 01 ], we see that there exits a constant 0 such that
meagt € R:|u(t)| > O|jul|} > o (37)
for all u € Y\ {0}. We denote by2, = {t € R: |u(t)| > ]|u||}. By the hypothesiéFs), there exitR > 0 such that
2
Ft.x) = 55 (38)
for all x € RN with [x| > Randt € R. Observing that for any € Y, with ||u]| > %, there holds
lu(t)] >R, forall t € Q. (39)

By (37), (38), (39andF(t,x) > 0, we have
1 2 1 2 1 2 1 2 1 2 1 2
<z - <z - = <z - = <z
b(u) < Sl ~ [ Ftuw)dt< S~ 55 [ juFt< 3P - 5 ul*measey) < —ul

for all u € Y, with ||ul| > §. Therefore, we can choogg > max{ry, §}, then

a= max ¢(u)<O0.
ueYi|lull=px
Hence, combining with Lemmf, by Theoren, we obtain that problemi] has infinitely many homoclinic solutions
{ux} satisfying

3 [ 1-=DF U+ (LOU), u®)dt— [ F(Lu0)dt - +oo

ask — oo,
Proof of Theorem 2. We only need to verify that the functionél satisfies th€C). condition. Let{u,} C E? be a
sequence such that
¢ (un) — ¢ and (14 ||un||)$’(un) — O (40)
asn — . We claim that{un} is bounded irE“. If not, then||up|| — 4+ asn — . Letv, = ﬁ then||vy|| = 1. Hence,
up to a subsequence, there existsE?® such thaw, — vin E9, v, — vin LP(R,RN) andv,(t) — v(t) a.et € R.
By (40), we have

OF (t, un(t))
/Ri|un(t)|2 Iva(t)2dt — 1 (41)

asn— o, LetX; = {t e R: v(t) # 0} andX, = R\ X3. Obviously,
2F (t,un(t))

oI Vn(t)]? = o0, teZ; (42)
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asn — . By the hypothesi¢Fs), for a constangg > 0, there exist® > 0 such thafF (t,x) > ag|x|2, for all x € R" with
|x] > Rp andt € R. It follows that

/ 2F(t7un(t))|vn(t)|2dt 2/ ZF(t’un(t))|vn(t)|2dt+/ 2F(t’un(t))|Vn(t)|2dt+/ 2F(t7un(t))dt
R

|un(t)[? 5 |un(t)]? S0{teR (=R} [Un(t)[? SN{teR:un(t)|<Ro}  [[Un(t)]|?
2F (t,un(t))

2F (t,un(t)) 2 2

> ———— > |vp(t)|°dt+ 2 Vn(t)|dt+ dt

- /zl |un(t)[? ) % zzm{teR:\unm\ZFeo}' )l Zn{teRun(®)]<Ro} [|Un(t)1
2F (t,un(t)) 2 2F (t,un(t))

2/ — " vp(t dt+/ ———dt. (43)

. wOR O L crimmir Tn@IP
By (27) and Lebesgue dominated convergent theorem, we have
]/ wdt‘gc/ Iva(t)2dt — 0. (44)
ZoN{teR:un(t) <Ro}  [Un(t)]| 2

If 21 has positive measure41)-(44) implies a contradiction. Hence, the measurepfmust be 0, i.e., we must have
v(t) =0, a.et € R. Moreover, from 40), we get

/R (DF(t,un(t)%'l:r;((tt)))'Z— OF (t.Un(V) | oy 1O s

But by the hypothesig,), we have

lun|?+1
|un|?

iminf (OF (GUn(t)) Un(t)) — OF (t, Un(t))
e |Un(t)/?

Vo(t) 2 > limin (—a |vn(t)|2) ~0.
(46)

Hence, 45) and @6) implies that 1- § > 0, this contradicts with the assumption> 2. Consequentlyju,} is bounded
in E9. As in the proof of Lemm&, we conclude thap satisfies th€C). condition.

Remarkin the proof of @3), if we use the hypothes(t,x) > 0 for all (t,x) € R x RN, it is easy to check that it holds.

Proof of Theorem 3. Case (a). Note that p > 2, we may choose|lu|| > R; large enough such that

) - cl%‘HsziHqu > 0 for all u € Z with ||ul| > Ry. By the definition offi(p) in the proof of Theoreni, we
—q
have
1 2 A i q H p 1 2 |)\| H 1 H
_ = 4 _F >z _ A q_Hpp P> Syl g P
¢ (u) =3l q”fqu”q p”u”p— 51Ul q Call 1l 2 llull ka(p)”u” 2 vl ka(p)”u”

1
for anyu € Z with ||u|| > Ry. Takingry = (W%@ + Rf’z) P2 sincep > 2, by the fact thaBy(p) — 0, thenry — +oo
k
ask — c. Thus foru € Z with |[u| = ri, we get that

. 1
inf u)> =r2 — 4o, ask— .
ueZy,[lull=rg 8

Clearly,F(t,x) satisfiegF3), so, similarly as the proof of Theoreinwe can obtain that

a= max ¢(u)<0.
e [|ull=pk

Next, we show thap satisfies th¢C). condition. In fact, we assume thfn} C E? is a sequence such that
¢ (un) — ¢ and (14 ||un||)¢’(us) — O

asn — o, |t follows that

1, 11,5 .1 1o o1 1 o 11 q
¢ (Un) — 49" (Un), Un) = (5 = D)llunll” = A (G = DI Faunllq = (5 = Dllunll™ = AN = DIz [lunllz:
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which implies that{un} is bounded inE® from the fact thatf Lﬁ(R,RJF) and 1< g <2< p< 4. Thus, the
remainder proof is similar to the proof of Theordm
Case(b). Firstly we verify that {7) of Theorenb holds. Note that] < 2, we may choosgu|| < R, small enough such

that | ul|>— cl%czﬂuﬂp > 0 for allu € Z with ||u]] < Ry. By the definition ofB¢(2) in the proof of Theorem, we have

1 Al H 1 A i 1 A
o (u) = S lull*~ allfqullg— EIIUIIB > S|lul? - EB"( M 2 Nl — 0 5 CallullP > Zul*~ EBE(Z)Hfllzg_q [Jull4.
(47)
1
We choosey = (%BE(Z)H f ”%) 79 Obviously,px — 0 ask — c. Hence, there exitey > 0 such thapy < R, for all
—q
k > ko. Combining with @7), straightforward computation gives that

1
inf u) > =p2>0.
ez = gPk

Furthermore, by47), for anyu € Z, with |Ju|| < px, we have

. A
0>dc= _inf ¢(U)2—aﬁf(Z)llfHﬁHUHq

ueZy, [lul|<px

Hencedi — 0— ask — o,
Next, we show that for the sequengey} obtained above, there exiskOry < py for all k > kg such that

ck= inf @(u)<O. (48)

ueYi,[[ull=ri
As the proof of Lemma 3.1 inl2], we get that for any finite dimensional subsp&ce E?, there exist®; > 0 such that
meagt € R: f(t)[u(t)|? > o1|ju||9} > &, VueF\{0}.
We denote by, = {t e R: f(t)[u(t)|* > & ||u||%}. Then for allu € Y, if u > 0, we have

1 ALl u A2
¢(U)§EHUHZ—EHf‘*UHg—EIIUIIB IIUIIZ——/ f(t)u®)|dt< H H2 IIUIIqmea$Q) || ul®— 1|| [

Choosing O< ry < mln{pk,( )2_} directly computation shows that

r2
< —X<0
k=77

On the other hand, ift < 0, we have

1.0 M A 1.0 H A&
u) < =ull* = =c up——/ftutth<—u — Zco|lul|P— = ||u|¥
¢ (u) = S ul 5 AL aJas (Olu®)dt < S ul 5 ALl a [Jull

1 A2 A2
— (Sl = S ull®) + (— Ecafluf]P— S ull9).
2 2 p 2q
2 2
Choosing 0< ry < mm{pk,(wl)ﬁ,(mﬁf%%)ﬁ},thenrk 1< '\61 andrf ™9 < 4q?f21>(:2. It follows that
A %% H o paa A q_ 1, o (-pee PASE 4 A& 4
k< SrE— A (— S ) - Al < S22 rd— Ly
“ 2q"(p KoK kT2l KT p Ag(-pjee ¢ 2g K
:—E —4—1rk7—§rk El’k:—rk<0

Consequently,48) holds.
Finally, we show thap satisfies th€PS); condition. Indeed, lefun, } C EY be a sequence such that

Nj =, Un €Yy, @(Un)—C, ¢’|ynj(unj)—>0. (49)
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Forn; large enough, we have

1 1 1 1 1 1
1 1 2 1. 1 .
> (5= Sl 2= A g = D)esll Lz, .

Since 1< g < 2 < p, it yields that{uy, } is bounded irE®. Hence, up to a subsequence, we may assumeithat u as
j — oo for someu € EY andup, — uin LS(R,RN) for all 2 < s < +oo. Since

(@' (ung), Unj — W)] < (19" (Un; ) | gery [|un; — Ul = O

asj — o, and by Holder’s inequality, we have

I/Rf(t)IUnj (£)]92un; (1) - (un; (1) — u(t))dt| < 11 2 [lun l12]lun; — ufl2 — 0

and
I/Rlunj ()P~ 2Un; (t) - (Un; (£) — u(t))dt] < [|un; | B~*lun, — ullp— 0

asj — o. Therefore, we get that
; 2 2
fim {[un; |~ = [[uf|*.
e

This implies thaunj —uin EY. In fact
: 2_ 2 2
lim {Jun; —uf[* = lim [[[un; [[=+ [|ul[* = 2(un;, u)] = 0.
jreo jreo

Hence, it is easy to check that(u) = 0. The proof is completed.

4 Conclusion

The existence of infinitely many high or small energy solusidor fractional Hamiltonian system$)(was established
by the well known fountain theorem and dual fountain thearétare we assume that the nonlinearities satisfy the
superquadratic growth (but not the classical AmbrosedtdiRowtiz condition) and concave-convex conditions.
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