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Abstract: In this paper, we introduce a fractional order model of vector-borne plant diseases. Memory in both the host, and the vector
population provides essential tools to understand the behavior of plant diseases. We use the presented model to study the effects of
memory on the host and the vector. The fractional order derivative which is considered as the index of memory is describedin the
Caputo sense.
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1 Introduction and Preliminaries

Plants are an essential resource for human well-being. Theyare the major sources of oxygen and products that people
use [1]. Plants can get infected by various diseases just like people do caused by pathogens which cannot be seen or
recognized without magnification [2]. Plant infectious diseases are very destructive to plants. There are different kinds of
plant diseases such as Tobacco Mosaic Virus, Cucumber Mosaic Virus and Barley Yellow Dwarf, that can be detected by
different symptoms like wilting or yellowing [3]. Plant diseases pose a serious threat to food security, human health and
world economies [1,4]. However, it is impossible to study the large scale dynamics of plant infectious diseases without
a formal structure of mathematical model. It is proven that such models help to predict the future behavior of natural
disasters [4,5] like plant diseases. Mathematical models are essential and helpful to assist the decision makers to put
their strategies and to activate their programs. Nowadays,there is a rapid expansion of studies of mathematical modeling
applied to the biological control system [1,4].

We recall that the fractional calculus refers to integration or differentiation of non-integer order [6,7]. Fractional
calculus is three centuries old as the conventional calculus, but not very popular among science and engineering
community. The beauty of this subject is that fractional derivatives (and integrals) are not a local property or quantity [8].
In the last years has found use in studies of viscoelastic materials, as well as in many fields of science and engineering
including fluid flow, rheology, diffusive transport, electrical networks, electromagnetic theory and probability [7]. The
fractional calculus and its applications are undergoing rapid developments with more and more persuasion applications
in the real world. Below, we will give the definition of fractional-order integration and fractional-order differentiation.
The two most commonly used definitions are Riemann - Liouville and Caputo.
Definition 2.1 Riemann –Liouville fractional integration of orderα is defined as:

Jα f (x) =
1

Γ(α)

∫ x

0
(x− t)α−1 f (t)dt, 0< α < 1, x > 0,

J0 f (x) = f (x) .

This is called integral with memory
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Definition 2.2 Riemann–Liouville and Caputo fractional derivatives of orderαcan be defined respectively as:
Dα f (x) = Dm (

Jm−α f (x)
)

,

Dα
∗ f (x) = Jm−α (Dm f (x)) ,

where m−1< α ≤ m, m ∈ N.

Properties of the operatorJαcan be found in [9,10], we mention only the following:
(1) Jα Jβ f (x) = Jα+β f (x),
(2) Jα Jβ f (x) = Jβ Jα f (x),

(3) Jα tγ =
Γ (+1)

Γ (α+γ+1) t
α+γ

, α > 0, γ >−1, t > 0.
Few of the biological models are of fractional order. The concept of fractional calculus has tremendous potential to

change the way we see the model.
The major reason of using fractional order models is that they are naturally related to systems with memory which

exist in most biological systems [2].
Hence, we introduce fractional-order into the integer order model of vector-borne plant disease model described in

[11]:

Dα(s) = µ (K − s)−
(

βpy
1+γPy +

βsx
1+γsx

)

s+ dx,

Dα (x) =
(

βPy
1+γpy +

βsx
1+γsx

)

s−wx,

Dα(y) = β1x
1+γ1x

(Λ
m − y

)

−my,

(1)

where 0< α ≤ 1, is considered as the index of memory [12].

The parameters of the model are defined below:

Table 1
parameter description
s number of the susceptible plant hosts
x number of the infected plant hosts
y density of the infected insect vectors
βP biting rate of an infected vector on the susceptible host plants
βs infection incidence between infected and susceptible hosts
β1 infection ratio between infected hosts and susceptible vectors
γp determines the level at which the force of infection saturates
γ1 determines the level at which the force of infection saturates
γs determines the level at which the force of infection saturates
γ the conversion rate of infected hosts to recovered hosts
µ natural death rate of plant hosts
m natural death rate of insect vectors
Λ birth or immigration of insect vectors
d disease-induced mortality of infected hosts
w w=d+ µ+θ , θ is the conversion rate of infected hosts to

recovered hosts

Model (1) has some flaws, since the left-hand side and the right-hand side of the system have different dimensions. So,
the system (1) can be mathematically corrected using the procedure described by Diethelm [13] as follows:

Dα(s) = µα (K − s)−
(

β α
p y

1+γPy +
β α

s x
1+γsx

)

s+ dαx,

Dα (x) =
(

β α
p y

1+γpy +
β α

s x
1+γsx

)

s−wx,

Dα(y) = β1x
1+γ1x

( Λ
mα − y

)

−mαy.

(2)

In the remaining sections we discuss the properties of the proposed model. We discuss the basic reproduction number
in Section 2, the non-negative solutions in Section 3, the equilibrium points and stability in Section 4 and existence of
uniformly stable solution in Section 5, respectively. In Section 6 we present the numerical results. The conclusions are
presented in Section 7.
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2 The Basic Reproduction Number

The basic reproduction number is defined as the expected number of cases produced by an infection in a completely
uninfected population. WhenR0 < 1, the infection will die out in the long run. But ifR0 > 1, the disease is able to invade
the susceptible population. We are able to calculate the basic reproduction number of system (1) by the next generation
method [14,15,11]. The rate at which new infections are created is determinedby the matrixF, and the rates of transfer
into and out of the class of infected states are represented by the matrix V; these are given by

F =

(

βsK βpK
0 0

)

and

V =

(

ω 0
− β1Λ

m m

)

.

Therefore, the next generation matrix is

FV−1 =

( βsK
ω +

β1βpΛK
m2ω

βpK
m

0 0

)

from which we get the basic reproduction number as

R0 =
βsK
ω

+
β1βpΛK

m2ω
. (3)

For the system (2), the basic reproduction number can be alsodetermined to be

R∗
0 =

β α
s K
ω

+
β1β α

p ΛK

(m2)
α ω

. (4)

The effect of the fractional orderα (which is defined as the memory of the system [12]) is depicted in (4). So, the
system (2) is more realistic as it reflects the effects of the memory of the plant host and insect vector.

3 Non-Negative Solutions

DenoteR3
+ =

{

χ ∈ R3
∣

∣ χ ≥ 0
}

and letχ (t) = (s(t) , x(t) ,y(t))T } . To prove the Theorem 1, we need the following
generalized mean value theorem [16] and corollary.
Lemma 1.(Generalized Mean Value Theorem [16]). Suppose thatf (χ) ∈ ∁[a,b] andDα

a f (χ) ∈ ∁ [a,b] , f or 0< α ≤ 1 ,

then we have

f (χ) = f (a)+
1

Γ (α)
(Dα

a f )(ξ )(χ − a)α

with a ≤ ξ ≤ χ , ∀χ ∈ (a,b] .
Corollary 1. Suppose thatf (χ) ∈ ∁[a,b] andDα

a f (χ) ∈ ∁(a,b], f or 0< α ≤ 1 . If Dα
a f (χ)≥ 0, ∀χ ∈ (a,b) , then f (χ)

is non-decreasing for eachχ ∈ [a,b].
Proof. This is clear fromLemma 1.
Theorem 1.There is a unique solutionχ (t) = (s,x,y)T to system (2) ont ≥ 0 and the solution will remain inR3

+.
Proof. From Theorem 3.1 and Remark 3.2 in [17], we know the solution on(0,+∞) of (2) is existent and unique. Next,
we will show the nonnegative orthantR3

+ is a positively invariant region. What is needed for this is to show that on each
hyper plane bounding the nonnegative orthant, the vector field points intoR3

+ . From Eq. (2), we find

Dα s|s=0 = µα K + dαx ≥ 0,

Dα x|x=0 =
β α

p y
1+γpy s ≥ 0,

Dα y|y=0 =
β1x

1+γ1x

( Λ
mα

)

≥ 0.
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4 Equilibrium Points and Stability

To evaluate the equilibrium points of (2), let
Dα s = 0,

Dα x = 0,

Dα y = 0.

Then,E0=(K,0,0) and E∗=(s∗,x∗,y∗) are the equilibrium points, where

s∗ = K −
(

1+
γ

µα

)

x∗,

x∗ =
−B+

√
B2−4AC

2A
,

y∗ =
β1Λx∗

mα β1x∗+(m2)
α
(1+ γ1x∗)

,

where
A = (µα + γ)

(

β α
p β1γsΛ +mβ1β α

s +(m2)
α

β α
s γ1+β α

s β α
p β1Λ

)

> 0,

B = (µα + γ)
(

β α
p β1Λ +β α

s (m2)
α)− µαK (mβ α

s )β1+ γ1β α
s (m2)

α
+

β α
s β α

p β1Λ +β α
p β1γsΛ)+ µαω

(

mα β1+ γ1(m
2)

α
+ γpβ1Λ +(m2)α γs

)

,

C=(µm2)
α ω (1−R∗

0) .
The Jacobian matrixJ(E0) for system (2) is given by

J (E0) =





−µα dα −β α
s K −β α

p K,

0 β α
s K −ω β α

p K,

0 Λβ1
mα −mα



 .

The uninfected steady state is asymptotically stable if allof the eigenvaluesλ of the Jacobian matrixJ(E0) satisfy the
following condition [6,18]:

|arg(λ ) |> απ
2

.

5 Existence of Uniformly Stable Solution

We will prove the existence and uniqueness of solution for the reduced system (2). Consider the following Lemma:
Lemma 5.1. (Theorem 8.11, [19]) Let 0< α j < 1, for j = 1,2, . . . ,k and consider the initial value problem given by the
multi-order fractional differential system (in the Caputosense)

D
α j
∗ y j = f j(x,y1 (x) , . . . ,yk (x))), j = 1,2, . . . ,k (5)

with initial conditions
y j (0) = c j, j = 1,2, . . . ,k.
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Assume that the functionsf j = [0,x]×Rk → R, j = 1,2, . . . ,k are continuous and satisfy Lipschitz conditions with respect
to all their arguments except for the first. Then, the initialvalue problem (5) has a uniquely determined continuous solution.
Since eachfi = [0,T1]×R3 → R+ ; i = 1,2,3 is continuous, to prove that systems (2) have a unique continuous solution,
we need to show that eachfi satisfies the Lipschitz condition with respect to each of itsargument except for the first.
Let

x1 (t) = s(t) , x2 (t) = x(t) ,x3 (t) = y(t) ,

Dα x1 (t) = f1 (x1 (t) ,x2 (t) ,x3 (t)) , t > 0 and x1(0) = x◦1, (6)

Dα x2 (t) = f2 (x1 (t) ,x2 (t) ,x3 (t)) , t > 0 and x2 (0) = x◦2, (7)

Dα x3 (t) = f3 (x1 (t) ,x2 (t) ,x3 (t)) , t > 0 and x3 (0) = x◦3, (8)

Let D = {x1,x2,x3 ∈ R : |xi (t)≤ a, t ∈ [0,T ] , i = 1,2,3|} .
The functionsfi satisfy the Lipschitz condition onR3

+ if

| fi (s1,x1,y1)− fi (s2,x2,y2)| ≤ K2‖X1 (t)−X2(t)‖2, (9)

where‖X1 (t)−X2(t)‖2 = |s1− s2|+ |x1− x2|+ |y1− y2| andK2 is the Lipschitz constant.

Condition (9) is equivalent to show that: each∂ fi
∂x j

(x1 (t) ,x2 (t) ,x3 (t)) exists and satisfies the following relation:
∂ fi
∂x j

(x1 (t) ,x2 (t) ,x3 (t))≤ Kn, ∀ i, j = 1,2,3 and n = 1,2,3, . . . ,9 [16], where

x1 (t) = s(t) , x2 (t) = x(t) , x3 (t) = y(t) .

This implies that each of the three functionsf1, f2, f3 satisfies the Lipschitz condition with respect to the three
argumentsx1,x2 and x3 , and then each of the three functionsf1, f2, f3 is absolutely continuous with respect to the three
argumentsx1,x2 and x3.
Consider the following initial value problem which represents the fractional order model which describes a vector-borne
plant disease model (6) and (7) and (8).
Definition 5.1. By a solution of the fractional order model which describesa vector-borne plant disease model (6) and (7)
and (8), we mean a column vector(x1 (t) x2 (t) x3(t))

τ , x1,x2and x3 ∈ ∁ [0,T ] is the class of continuous functions defined
on the interval[0,T ] andτ denote the transpose of the matrix [16].

Theorem 5.1.The fractional order model which describes a vector-borne plant disease model (2) has a unique
uniformly Lyapunov stable solution [12].
Proof. Write the model (6) and (7) and (8) in the matrix form

DαX (t) = F (X (t)) , t > 0 andX (0) = x0,

where
X (t) = (x1 (t) x2 (t) x3 (t))

τ
,

F((X (t)) = ( f1 (x1 (t) , x2 (t) ,x3 (t)) f2 (x1 (t) , x2 (t) ,x3 (t)) f3 (x1 (t) , x2 (t) ,x3 (t)))
τ .

Applying the Theorem 2.1 [20], we deduce that the fractional order model which describesa vector-borne plant disease
model (6) and (7) and (8) has an unique solution. Also, by Theorem 3.2 [20] this solution is uniformly Lyapunov stable.

6 Numerical Results

In this section, GEM [16,21] is applied to get approximate solutions of the system (1). Consider that:
γ1 = 0.1, γp = 0.2, γs = 0.2, d = 0.1.The initial conditions are(x0,y0,z0) =(700, 200, 10).
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Fig (1.a) Fig (1.b)

Fig.1. The number of the susceptible plant hosts; s(t), whenα = 1,β1 = 0.0025, βp = 0.0025, βs = 0.0001(1.a) , β1 =
0.01, βp = 0.02, βs = 0.01, (1.b) .

Fig(2.a) Fig(2.b)

Fig.2. The number of the infected plant hosts x(t) whenα = 1, β1 = 0.0025, βp = 0.0025, βs = 0.0001(2.a) , β1 =
0.01, βp = 0.02, βs = 0.01, (2.b) .

Fig (3.a) Fig (3.b)

Fig.3.The density of the infected insect vectors y (t) whenα = 1,β1 = 0.0025, βp = 0.0025, βs = 0.0001(3.a) , β1 =
0.01, βp = 0.02, βs = 0.01(3.b) .
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Fig.4. The number of the susceptible plant hosts; s (t), the numberof the infected plant hosts x(t), the density of the
infected insect vectors y (t), in the 1st case whenβ1 = 0.0025, βp = 0.0025, βs = 0.0001 forα = 1 (the gray line)
α = 0.98, (the dashed line),α = 0.95 (the black solid line).

Now, GEM [21] is applied to get approximate solutions of the system (2). Consider that γ1 = 0.1, γp = 0.2, γs = 0.2, d =
0.1. The initial conditions are(x0,y0,z0) =(700, 200, 10).

Fig 5.a Fig 5.b

Fig.5.The number of the susceptible plant hosts; s(t), whenα2 = 1,β1 = 0.0025, βp = 0.0025, βs = 0.0001 (5.a) , β1 =
0.01, βp = 0.02, βs = 0.01, (5.b) .
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Fig 6.a Fig 6.b
Fig.6. The number of the infected plant hosts x(t) whenα2 = 1, β1 = 0.0025, βp = 0.0025, βs = 0.0001(6.a) , β1 =
0.01, βp = 0.02, βs = 0.01, (6.b) .

Fig 7.a Fig 7.b
Fig.7.The density of the infected insect vectors y (t) whenα2 = 1, β1 = 0.0025, β p = 0.0025, βs = 0.0001(7.a) , β1 =

0.01, βp = 0.02, βs = 0.01, (7.b) .

Fig.8. The number of the susceptible plant hosts; s (t), the number of the infected plant hosts x(t), the density of the
infected insect vectors y (t), in the 1st case whenβ1 = 0.0025,βp = 0.0025,βs = 0.0001 forα = 1 (the gray line)
α = 0.98, (the dashed line),α = 0.95 (the black solid line).
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7 Conclusion

In this paper, we studied the behavior of vector-borne plantdisease fractional order model. The influence of the fractional
order derivative, which is considered as the index of memoryon the vector and host is studied here (see the Figures 1-
8). We argued that the fractional order models are more suitable than integer order ones in plant diseases models where
memory effects are essential.
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