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Abstract: In this paper, we introduce a fractional order model of vebimrne plant diseases. Memory in both the host, and thewvect
population provides essential tools to understand theviehaf plant diseases. We use the presented model to stedgftbcts of
memory on the host and the vector. The fractional order devir which is considered as the index of memory is describate
Caputo sense.
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1 Introduction and Preliminaries

Plants are an essential resource for human well-being. @heyhe major sources of oxygen and products that people
use [l]. Plants can get infected by various diseases just like lpetdp caused by pathogens which cannot be seen or
recognized without magnificatio@]. Plant infectious diseases are very destructive to plamtsre are different kinds of
plant diseases such as Tobacco Mosaic Virus, Cucumber Mdsas and Barley Yellow Dwarf, that can be detected by
different symptoms like wilting or yellowingg. Plant diseases pose a serious threat to food securityahiealth and
world economies], 4]. However, it is impossible to study the large scale dynanoicplant infectious diseases without

a formal structure of mathematical model. It is proven thathsmodels help to predict the future behavior of natural
disasters 4,5] like plant diseases. Mathematical models are essent@lhafpful to assist the decision makers to put
their strategies and to activate their programs. Nowadhgse is a rapid expansion of studies of mathematical mogleli
applied to the biological control systerh, {].

We recall that the fractional calculus refers to integnatio differentiation of non-integer orde6,[7]. Fractional
calculus is three centuries old as the conventional cadcubut not very popular among science and engineering
community. The beauty of this subject is that fractionahdsgives (and integrals) are not a local property or qughé}.

In the last years has found use in studies of viscoelastienadg, as well as in many fields of science and engineering
including fluid flow, rheology, diffusive transport, eleictl networks, electromagnetic theory and probabilifly [The
fractional calculus and its applications are undergoimidra@evelopments with more and more persuasion application
in the real world. Below, we will give the definition of fraotial-order integration and fractional-order differetitia.

The two most commonly used definitions are Riemann - Lioenglid Caputo.

Definition 2.1 Riemann —Liouville fractional integration of orderis defined as:

1

Jaf(x):m

X
/ (x—)* L (t)dt, O<a <1, x>0,
0

J0F (x) = f(x).
This is called integral with memory
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Definition 2.2 Riemann-Liouville and Caputo fractional derivatives ad@racan be defined respectively as:
DYf (x) =DM (I™f (x)),

DY f (x) = I (D" (x)),

where m—1<a<m mecN.
Properties of the operatdf can be found in9,10], we mention only the following:
(1) J9IBF (x) = J9HPf (x),
(2) 9B f (x) = IBIf (x),
(3) J9tY = ﬁt“ﬂ, a>0,y>-1,t>0.

Few of the biological models are of fractional order. Theaapt of fractional calculus has tremendous potential to
change the way we see the model.

The major reason of using fractional order models is that #ve naturally related to systems with memory which
exist in most biological systemg]

Hence, we introduce fractional-order into the integer ordedel of vector-borne plant disease model described in

[17]:

DY) = 1 (K—9) — (22 + {55 ) sy
DY (x) = (1%%), ESV)ZX)S—WX, 1)

YA
DU(Y) = 175 (R —Y) —my,
where O< a <1, is considered as the index of memoty]

The parameters of the model are defined below:

Table 1

parameter | description
S number of the susceptible plant hosts
X number of the infected plant hosts

density of the infected insect vectors
Bp biting rate of an infected vector on the susceptible hosttpla
Bs infection incidence between infected and susceptibleshost
B1 infection ratio between infected hosts and susceptibleovec

determines the level at which the force of infection saksat
determines the level at which the force of infection saggat
determines the level at which the force of infection saggat
the conversion rate of infected hosts to recovered hosts
natural death rate of plant hosts

natural death rate of insect vectors

birth or immigration of insect vectors

disease-induced mortality of infected hosts

w=d+ u+6, 6 is the conversion rate of infected hosts |to
recovered hosts

2> EBEINFEE

Model (1) has some flaws, since the left-hand side and thé-highd side of the system have different dimensions. So,
the system (1) can be mathematically corrected using theedroe described by Diethelrh3] as follows:

I+wy ' 1+ysX

Bgx
+ +ysx) S— WX, 2

D(y) = 1255 (Fr —y) — .
In the remaining sections we discuss the properties of thpqaed model. We discuss the basic reproduction number

in Section 2, the non-negative solutions in Section 3, thelibgium points and stability in Section 4 and existence of
uniformly stable solution in Section 5, respectively. Ircten 6 we present the numerical results. The conclusioas ar

presented in Section 7.

DA (s) = 9 (K—9)— (55 + f£X ) s+-dx
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2 The Basic Reproduction Number

The basic reproduction number is defined as the expected etuofiltases produced by an infection in a completely
uninfected population. WheRy < 1, the infection will die out in the long run. But Ry > 1, the disease is able to invade
the susceptible population. We are able to calculate thie beysroduction number of system (1) by the next generation
method [14,15,11]. The rate at which new infections are created is determinyeithe matrixF, and the rates of transfer
into and out of the class of infected states are represegtételmatrix V; these are given by

BsK BpK
FZ:( 0 0 )
V:<_(,§l :;)

BsK 515p/\K 5p
Fv-1= *
(¢ 5)

and

Therefore, the next generation matrix is

from which we get the basic reproduction number as

For the system (2), the basic reproduction number can bealatsomined to be

. BIK  BiBy/AK
Ro=" T (m)%w

The effect of the fractional order (which is defined as the memory of the systetd]] is depicted in (4). So, the
system (2) is more realistic as it reflects the effects of tkenwry of the plant host and insect vector.

Ry =

(4)

3 Non-Negative Solutions

DenoteR? = {x € R®| x >0} and letx (t) = (s(t), x(t),y(t))"} . To prove the Theorem 1, we need the following
generalized mean value theoreh®][and corollary.

Lemma 1.(Generalized Mean Value Theoreafy). Suppose that (x) € C[a,b] andDZ f (x) € C[a,b], for 0<a <1,
then we have

(D) (&) (x —a)

witha< & <x, Vx € (ab].

Corollary 1. Suppose that (x) € C[a,b] andD¢ f (x) € C(a,b], for O<a <1.I1f DZf(x) >0, Vx € (a,b), thenf (x)

is non-decreasing for eaghe [a,b].

Proof. This is clear fromLemma 1.

Theorem 1.There is a unique solutiox (t) = (s,x,y)" to system (2) o > 0 and the solution will remain iR

Proof. From Theorem 3.1 and Remark 3.2 itv/], we know the solution ofi0, +) of (2) is existent and unique. Next,
we will show the nonnegative orthaﬁfr is a positively invariant region. What is needed for thisoisihow that on each
hyper plane bounding the nonnegative orthant, the vectdrgi@nts intoRi . From Eq. (2), we find

DYSls—0 = UK +d*x >0,
DGX|X—0 = 1ﬁpyzys 20,
DYly—0 = 151;/);x () 0.
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4 Equilibrium Points and Stability

To evaluate the equilibrium points of (2), let
D% =0,

D% =0,

D% =0.

Then,Ep=(K,0,0) and E=(s",x*,y*) are the equilibrium pointsvhere

S —K— <1+u—‘;) X,

. —B+vB2-4AC
X'=———,
2A
- Bl/\X*
ma Bux + () (14 yaxt)

where .
A= (U +Yy) (BS'Ble/\ +mBLBY + (m?) " B ya + BSBS’Bl/\) >0,

B= (1 +y) (BS B+ B(M)" ) — LK (MBE) By -+ B (mP) "+

Bs'Bp BN + B By ) + po @ (m"Bﬁ- V(m?) "+ ypBiA + (P)° Vs) :

C=(un?)’ 0 (1-Ry).

The Jacobian matrix(Ep) for system (2) is given by

—p® d — BIK —BK,
JE)=| O B£/|\<B—w BoK, |.
0 FHw -

The uninfected steady state is asymptotically stable ibaithe eigenvalued of the Jacobian matrid(Ep) satisfy the
following condition 6, 18]:
arm

larg(A) | > =

5 Existence of Uniformly Stable Solution

We will prove the existence and uniqueness of solution ferdduced system (2). Consider the following Lemma:
Lemma 5.1 (Theorem 8.11,19]) Let 0 < aj < 1, for j = 1,2,... .k and consider the initial value problem given by the
multi-order fractional differential system (in the Capgtnse)

DY) = f06YL (%), W), | =12,k (5)

with initial conditions
yi(0)=cj, j=12.. .k
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Assume that the functionfg = [0,x] x R<— R, j=1,2,... kare continuous and satisfy Lipschitz conditions with respe
to all their arguments except for the first. Then, the initelie problem (5) has a uniquely determined continuoudisolu
Since eachf; = [0, T;] x R®* = R, ;i = 1,2,3 is continuous, to prove that systems (2) have a uniqueraomtis solution,
we need to show that eadhsatisfies the Lipschitz condition with respect to each odiitgument except for the first.

Let

x () =s(t), x(t) =x(t),xs(t)=y(),

D%y t)=f1(x1(t),x(t),x3(t)), t>0 and x1(0)=X1, (6)
D% (t) = f2(xa (1), %2(t) X3 (t)), t>0 and xz(0)=xy, (7)
D%x3 (t) = fa(x1(t),x2(t),x3(t)), t>0 and X3(0)=Xes, (8)

LetD = {x1,x2,xs € R: |x (t) <ate[0,T],i=1,2,3]}.
The functionsf; satisfy the Lipschitz condition oﬁi if

i (51,%1,Y1) — fi (S2,%2,¥2)| < Ka|[X1 (t) — X2 (1) 5, 9)

where||Xy (t) — Xo (1) ||, = |s1 — Sp| + [X1 — X2| + |y1 — Y| @andKy is the Lipschitz constant.
Condition (9) is equivalent to show that: ea%[? (x1 (1), x2(t), X3 (t)) exists and satisfies the following relation:

S0 (1) % (1) X3 (1) <Kn, Vi,j=1,2,3 axdn=1,23,...,9[16], where

X1 (t) =s(t), x () =x(), x3(t) =y(t)-

This implies that each of the three functiofiig f,, f3 satisfies the Lipschitz condition with respect to the three
argumentsxy Xo and x3 , and then each of the three functioiisf», f3 is absolutely continuous with respect to the three
argumentsxy X2 and Xa.
Consider the following initial value problem which repraetethe fractional order model which describes a vectondor
plant disease model (6) and (7) and (8).
Definition 5.1. By a solution of the fractional order model which descriae®ctor-borne plant disease model (6) and (7)
and (8), we mean a column vecter (t) X (t) x3(t))", x1,%and x3 € [0, T] is the class of continuous functions defined
on the intervalO, T] andt denote the transpose of the matrix [16].

Theorem 5.1.The fractional order model which describes a vector-boraatpdisease model (2) has a unique
uniformly Lyapunov stable solutioriP].
Proof. Write the model (6) and (7) and (8) in the matrix form

DYX (t) = F (X (t)),t > 0 andX (0) = xg,

where

X(t) = (xa(t) xa(t) xa(t),

FIX(0) = (fu(xa (1), %2 (1), x3(t)) fa(xa(t), X2 (t),xa(t)) fa(xa(t), X2 (t),X3(t)))".

Applying the Theorem 2.120], we deduce that the fractional order model which descrébesctor-borne plant disease
model (6) and (7) and (8) has an unique solution. Also, by Témd.2 () this solution is uniformly Lyapunov stable.

6 Numerical Results

In this section, GEM16,21] is applied to get approximate solutions of the system (bn<ider that:
y1=0.1, yp=0.2, s = 0.2, d = 0.1.The initial conditions aréx,, Yo, Zzo) =(700, 200, 10).
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Fig.1. The number of the susceptible plant hosts; s(t), whea 1, 31 = 0.0025 B, =0.0025 Bs=0.0001(1.a), B =
0.01, Bp =0.02, Bs=0.01, (1.b).
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Fig.2. The number of the infected plant hosts x(t) wher= 1, 1 = 0.0025 B, = 0.0025 (s = 0.0001(2.a), B1 =
0.01, Bp =0.02, Bs=0.01, (2.b).
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Fig.3.The density of the infected insect vectors y (t) whens- 1, 3; = 0.0025 S, = 0.0025 s = 0.0001(3.a), B =
0.01, Bp=0.02, Bs=0.01(3.b).
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Fig.4. The number of the susceptible plant hosts; s (t), the nurab#re infected plant hosts x(t), the density of the
infected insect vectors y (t), in thé' ase wherB; = 0.0025 S, = 0.0025 Bs=0.0001 fora =1 (the gray line)
o = 0.98, (the dashed line)y = 0.95 (the black solid line).

Now, GEM [21] is applied to get approximate solutions of the system (Bh<ider thaty; =0.1, ,=0.2, s=0.2, d=
0.1. The initial conditions aréx,, Yo, Zg) =(700, 200, 10).
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Fig.5.The number of the susceptible plant hosts; s(t), wites- 1, B = 0.0025 B, = 0.0025 Bs=0.0001(5.a), B1 =
0.01, Bp=0.02, Bs=0.01, (5.b).
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Fig.6. The number of the infected plant hosts x(t) when= 1, B, = 0.0025 3, = 0.0025 Ss = 0.0001(6.a), B =
0.01, Bp =0.02, Bs=0.01, (6.b).
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Fig.7.The density of the infected insect vectors y (t) wieen=1, 3, = 0.0025 f3,=0.0025 Bs=0.0001(7.a), 1=
0.01, Bp =0.02, Bs=0.01, (7.b).
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Fig.8. The number of the susceptible plant hosts; s (t), the numb#reoinfected plant hosts x(t), the density of the
infected insect vectors y (t), in thé* Icase wher; = 0.0025, 3, = 0.0025,3; = 0.0001  fora = 1 (the gray line)
a = 0.98, (the dashed line)y = 0.95 (the black solid line).

(@© 2016 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl2, No. 4, 277-285 (2016)www.naturalspublishing.com/Journals.asp NS = 285

7 Conclusion

In this paper, we studied the behavior of vector-borne plésgase fractional order model. The influence of the fraetio
order derivative, which is considered as the index of menooryhe vector and host is studied here (see the Figures 1-
8). We argued that the fractional order models are moreldaithan integer order ones in plant diseases models where
memory effects are essential.
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