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Abstract: In this paper, we continue with the development of the newgniBhettou—Hassani—Torres fractional (noninteger order)
calculus on time scales by proving Rolle’s Theorem, Mean&dlheorem, generalized Mean Value Theorem and some otkiéaau
results for the fractional derivative,. Our results coincide with well-known classical results wiiee operatofy is of (integer) order

a =1 and the time scale coincides with the set of real numbers.
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1 Introduction

The concept of fractional derivative is traditionally asisbed to non-integers where the order of derivative is icmned

to be non-integer. In 1988, Hilget]initiated the concept of time scale for which the notion lné delta derivative was
defined. For this derivative, Guseinov and Kaymak¢aBroptained, among other things, a Rolle’s and Mean Value
Theorem for the delta derivative. It is now a subject of iagtito combine this concept of fractional derivative with th
time scale theory. For more on this sé&4]5,6]. In 2014, Khalil et al. in ] came up with an interesting idea of the
fractional derivative that extends the familiar limit defion of the derivatives of a function called conformabladtional
derivative. The simple nature of this definition allows foamy extensions of some classical theorems in calculus for
which the applications are indispensable in the fractialifé@rential models that the existing definitions do notméyr
Recently, Benkhettou, et alg8][ extended this definition to an arbitrary time scéleby introducingT, differentiation
operator and the-fractional integral.

Motivated by the work in 2], we continue with the development of the conformable tsoale fractional calculus
initiated in [8]. Precisely, we prove Rolle’s Theorem (TheorgjnMean Value Theorem (Theored), generalized Mean
Value Theorem (Theorem) and some other auxiliary results for the fractional deiweaT,. For the casex = 1 and
T =R, see P] and [9], respectively.

The paper is organized as follows. In Sectwe recall the basics of the conformable fractional calcoingime
scales. Our results are then stated and proved in SeXtion

2 Preliminaries

We start by presenting some basic notions in time scale yhEor more on this subject, we refer the reader to the book
[10].

Definition 1. A time scal€T is an arbitrary nonempty closed subsetif The forward jump operatoo : T — T and
backward jump operatgp : T — T are defined by

o(t):=inf{seT:s>t} and p(t):=sup{seT:s<t}
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fort € T. In this definition, we puto (supT) := supl. andp(infT) :=infT. Clearly, we see thatr(t) >t andp(t) <t
forallt € T. We say that t is right-scattered, right-dense, left-seatieand left-dense i'(t) >t, o(t) =t, p(t) <t,
p(t) =t, respectively. The sét¥ is derived from the time scalB as follows: IfT has a left-scattered maximurh then
TK =T\ {t*}. OtherwiseT* = T. For a,b € T with a< b, we define the intervadh, b] in T by[a,b] = {t ¢ T:a <t < b}.
Open intervals and half-open intervals are defined in theesamanner.

Now, we briefly recall the necessary definitions and resuéismifthe conformable fractional calculus on time scales

[8].

Definition 2(See B]). LetT be a time scale, fT — R, t € T, anda € (0,1]. For t > 0, we define §(f)(t) to be the
number, provided it exists, with the property that, givey an- O, there is ad-neighbourhood

HK=(@t-0,t+0)NT (t,t+0)NT)
of t, & > 0, such that|[f(a(t)) — f(s)]t* = Ta(f)(t) [o(t) — 5| < e|a(t)—s| for all s € %. We call (f)(t) the
a-fractional derivative(right-sideda-differentiable of f of ordera att, and we define the-fractional derivative at 0
as To()(0) ::ti@T"(f)(t)'

In what follows, we will simply say “f isr-differentiable at t” instead of “f isa-differentiable of order f at.t We
say that f isa-differentiable orja, b) if it is a-differentiable at every pointita, b), and right-sided-differentiable at a.

If a =1, then we obtain from Definitio# the Hilger delta derivative of time scale&]]. The a-fractional derivative
of order zero is defined by the identity operaf@y(f) := f.

Theorem 1(See§]). Leta € (0,1], A € R, andT be a time scale. Assumegf: T — R and let te T¥. The following
holds

(i) if f is continuous att andt is right-scattered, then faisdifferentiable att with

_ fo®)—ft) 14
(ii) if t is right-dense, then f isr-differentiable at t if and only if the limit
lim Mtl‘“ exists as a finite number. In this case,
st t—s

Ta(f)(t):mwtlfa.

(iii) if f(t) =tforallt € T, then T (f)(t) =t*% if 0< a < landlif a = 1. In addition, thea-derivative of a constant
function is zero.

(iv) if f and g area-differentiable, then f-g andA f are botha-differentiable with % (f +g) = To(f) + T (g) and
Ta(Af) =ATa(f).

Let f be a real-valued function defined on an interbalWe say thatf is increasing, decreasing, nondecreasing,
and nonincreasing ohif t1,t; € | andt; <ty implies f(t1) < f(t2), f(t1) > f(tz), f(t1) < f(t2), and f(t1) < f(t2),
respectively.

Definition 3. We say a function fT — R is right-increasing (right-decreasing) aj £ T provided that

(i) if to is right scattered, then (b (tp)) > f(to), (f(o(to)) < f(to)),
(ii) if to is right dense, then there is a neighborhood UgdSuich that ft) > f(tg), (f(t) < f(tg)), forallt e U, t > to.

Definition 4. We say a function fT — R is local right-maximum (local right-minimum) a &€ T* provided that

(i) if to is right scattered, then (b (tp)) < f(tg), (f(o(to)) > f(to)),
(ii) if to is right dense, then there is a neighborhood UgdSiich that ft) < f(tg), (f(t) > f(tg)), forallt e U, t > to.
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3 Main Results

Throughout this papeq < (0,1].

Theorem 2. Let f: T — R bea-differentiable atg € T and Ty (f)(to) > 0, (Ta(f)(to) < 0). Then f is right-increasing,
(right-decreasing), atgt

Proof. We prove the case whery (f)(tg) > 0, since the proof for the cask (f)(tp) < O is similar. Now, ifty is right
scattered (i.eo(tg) > to ), then by item (i) of Theorert, we obtain

f(o(to) — 1(10) 1 o
O'(to) —1g o -

Ta(T)(to) > 0 implies thatf (o (tg)) > f(to) if a(to) > to (Sincetg > 0). In the other hand, i is right dense, then by item
(i) of Theoreml, we have

Ta(F)(to) =

f(to) — f
mum@:mgi%%T@%ﬂ.

So, fore = Ty ()(tp) there is a neighborhodd of ty such that

Mtg—a—m(f)(to) <Ta(f)(to)
-

f(tg) — f(t
forallt e U, t #tg. Hence O< %t&f“ < 2Tg(f)(to) forallt € U. Thereforef(t) > f(tg) forallt eU, t > to,
0—
and hence the proof is complete.

Theorem 3. Let f: T — R be a-differentiable atg € T and T (to) > 0 (Ta(to) < 0). Then f attains its local right-
minimum (local right-maximum), ag.t

Proof. If Ty (f)(to) > 0, then by Theoren2, f will be right-increasing aty and thereforef will attain its local right-
minimum attg.

Theorem 4. Let f: T — R be a-differentiable atg € T*. If f attains its local right-minimum (local right-maximut
to, then
Ta(f)(to) =0, (Ta(f)(to) <0).

Proof. Let f attain its local right-minimum &bp. We need to show tha, (f)(tp) > 0. To do this, we assume the contrary,
viz, thatTy (f)(to) < 0. Then by Theorer®, f will be right-decreasing, hence contradicting our assionghatf attains
its local right-minimum aty. Thus we must have thak (f)(tg) > 0.

Theorem 5(A fractional version of the Rolle’s Theorem). Let f be a function satisfying the following

(a) continuous orja, bj
(b) a-differentiable ona, b)
(c) f(a) = f(b).
Then there exisy, n’ € [a,b) such that
Ta(F)(n) <0< Ta(f)(n)

Proof. By the extreme value theorem, there exjst)’ € [a,b] such thatf attains its minimum value at= n’ and
maximum value at = . Sincef (a) = f(b), we may assume thgt n’ € [a,b). Clearly, f attains its local right-minimum
atn’ and its local right-maximum aj. Then by Theorerd we haveT, (f)(n) <0andTy(f)(n’) > 0.

Theorem 6(A fractional version of the Mean Value Theorem). Let f be a function satisfying the following

(a) continuous orja, bj
(b) a-differentiable ona, b).

Then there exisy,n’ € [a,b) such that
N Ta(f)(n) < Z(f;a,b) < ()" Ta(f)(n),

whereZ(f;a,b) = w.
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Proof. For the case whea = 1, see R, Theorem 2.7]. So we only prove the case when® < 1. Consider the function
F defined ora, b] by
Fit)=f(t)—f(a)— W(t —a).

As a difference of continuous functiorfs,is continuous ora, b]. Also, by item (iv) of Theoreni, F is a-differentiable
on[a,b) andF(a) = 0= F(b). Applying Theorenb to F, then there exisg,n’ € [a,b) such that

Ta(F)(n) <0< Ta(F)(n").

Using items (iii) and (iv) of Theorert, we get

and hence our result is proven.

Corollary 1. Let f be a continuous function da, b that is a-differentiable ona,b). If T4 (f)(t) = 0for all t € [a,b),
then f is a constant function da, b).

Corollary 2. Let f be a continuous function da, b] that is a-differentiable ora, b). Then f is increasing, decreasing,
nondecreasing, and nonincreasingfanb] if Ty (f)(t) >0, To(f)(t) <O, To(f)(t) >0,and Ty(f)(t) <Oforallt € [a,b),
respectively.

We now present a generalized Mean Value Theorem which geresd@heorent by takingg(t) =t forallt € T.

Theorem 7(A fractional version of the generalized Mean Vale Theorem). Let f and g be functions satisfying the
following

(a) continuous ora, b]
(b) a-differentiable or{a, b).

Supposed(g)(t) > 0for allt € [a,b). Then there exisf,n’ € [a,b) such that

Ta(H(n) _ f)—f(@) _ Ta(F)(n)
Ta(9)(n) ~ 9(b)—g(@) ~ Ta(9)(n’)

Proof. If T4(g)(t) > O for allt € [a,b), then it follows from Theorenb thatg(a) # g(b). Now we consider the following

function
f(b)—f(a)

(9(t) —9(a))-

As a difference of continuous functiortsjs continuous offe, b. Also, by item (iv) of Theoreni, F is a-differentiable
on|[a,b) andF(a) = 0= F(b). Applying Theoren®b to F, then there exisg, n’ € [a,b) such that

Ta(F)(n) <0< Ta(F)(n').

Using items (iii) and (iv) of Theorert, we get

and hence the desired result.

4 Conclusion

We continue the development of the newly proposed definitibthe conformable fractional calculus (on time scale)
initiated in [8]. For this, we proved the mean value theorem and some ralasedts in this direction for the conformable
fractional operator on an arbitrary time scale.
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