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Abstract: In this paper, we continue with the development of the newly Benkhettou–Hassani–Torres fractional (noninteger order)
calculus on time scales by proving Rolle’s Theorem, Mean Value Theorem, generalized Mean Value Theorem and some other auxiliary
results for the fractional derivativeTα . Our results coincide with well-known classical results when the operatorTα is of (integer) order
α = 1 and the time scale coincides with the set of real numbers.
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1 Introduction

The concept of fractional derivative is traditionally associated to non-integers where the order of derivative is considered
to be non-integer. In 1988, Hilger [1] initiated the concept of time scale for which the notion of the delta derivative was
defined. For this derivative, Guseinov and Kaymakçalan [2] obtained, among other things, a Rolle’s and Mean Value
Theorem for the delta derivative. It is now a subject of interest to combine this concept of fractional derivative with the
time scale theory. For more on this see [3,4,5,6]. In 2014, Khalil et al. in [7] came up with an interesting idea of the
fractional derivative that extends the familiar limit definition of the derivatives of a function called conformable fractional
derivative. The simple nature of this definition allows for many extensions of some classical theorems in calculus for
which the applications are indispensable in the fractionaldifferential models that the existing definitions do not permit.
Recently, Benkhettou, et al. [8] extended this definition to an arbitrary time scaleT by introducingTα differentiation
operator and theα-fractional integral.

Motivated by the work in [2], we continue with the development of the conformable time-scale fractional calculus
initiated in [8]. Precisely, we prove Rolle’s Theorem (Theorem5), Mean Value Theorem (Theorem6), generalized Mean
Value Theorem (Theorem7) and some other auxiliary results for the fractional derivative Tα . For the caseα = 1 and
T= R, see [2] and [9], respectively.

The paper is organized as follows. In Section2 we recall the basics of the conformable fractional calculuson time
scales. Our results are then stated and proved in Section3.

2 Preliminaries

We start by presenting some basic notions in time scale theory. For more on this subject, we refer the reader to the book
[10].

Definition 1. A time scaleT is an arbitrary nonempty closed subset ofR. The forward jump operatorσ : T → T and
backward jump operatorρ : T→ T are defined by

σ(t) := inf{s∈ T : s> t} and ρ(t) := sup{s∈ T : s< t}
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for t ∈ T. In this definition, we putσ(supT) := supT. andρ(infT) := infT. Clearly, we see thatσ(t)≥ t andρ(t)≤ t
for all t ∈ T. We say that t is right-scattered, right-dense, left-scattered, and left-dense ifσ(t) > t, σ(t) = t, ρ(t) < t,
ρ(t) = t, respectively. The setTk is derived from the time scaleT as follows: IfT has a left-scattered maximum t∗

, then
T

k =T\{t∗}. Otherwise,Tk =T. For a,b∈ T with a≤ b, we define the interval[a,b] in T by [a,b] = {t ∈ T : a≤ t ≤ b}.
Open intervals and half-open intervals are defined in the same manner.

Now, we briefly recall the necessary definitions and results from the conformable fractional calculus on time scales
[8].

Definition 2(See [8]). LetT be a time scale, f: T→ R, t ∈ T
κ , andα ∈ (0,1]. For t > 0, we define Tα( f )(t) to be the

number, provided it exists, with the property that, given any ε > 0, there is aδ -neighbourhood

Vt = (t − δ , t + δ )∩T ([t, t + δ )∩T)

of t, δ > 0, such that
∣

∣[ f (σ(t))− f (s)] t1−α −Tα( f )(t) [σ(t)− s]
∣

∣ ≤ ε |σ(t)− s| for all s ∈ Vt . We call Tα( f )(t) the
α-fractional derivative(right-sidedα-differentiable) of f of orderα at t, and we define theα-fractional derivative at 0
as Tα( f )(0) := lim

t→0+
Tα( f )(t).

In what follows, we will simply say “ f isα-differentiable at t” instead of “ f isα-differentiable of order f at t.” We
say that f isα-differentiable on[a,b) if it is α-differentiable at every point in(a,b), and right-sidedα-differentiable at a.

If α = 1, then we obtain from Definition2 the Hilger delta derivative of time scales [10]. Theα-fractional derivative
of order zero is defined by the identity operator:T0( f ) := f .

Theorem 1(See [8]). Let α ∈ (0,1], λ ∈ R, andT be a time scale. Assume f,g : T→ R and let t∈ T
k. The following

holds

(i) if f is continuous at t and t is right-scattered, then f isα-differentiable at t with

Tα( f )(t) =
f (σ(t))− f (t)

σ(t)− t
t1−α

.

(ii) if t is right-dense, then f isα-differentiable at t if and only if the limit

lim
s→t

f (t)− f (s)
t − s

t1−α exists as a finite number. In this case,

Tα( f )(t) = lim
s→t

f (t)− f (s)
t − s

t1−α
.

(iii) if f (t) = t for all t ∈ T, then Tα( f )(t) = t1−α , if 0< α < 1 and1 if α = 1. In addition, theα-derivative of a constant
function is zero.

(iv) if f and g areα-differentiable, then f+g andλ f are bothα-differentiable with Tα( f + g) = Tα( f ) +Tα(g) and
Tα(λ f ) = λTα( f ).

Let f be a real-valued function defined on an intervalI . We say thatf is increasing, decreasing, nondecreasing,
and nonincreasing onI if t1, t2 ∈ I and t1 < t2 implies f (t1) < f (t2), f (t1) > f (t2), f (t1) ≤ f (t2), and f (t1) ≤ f (t2),
respectively.

Definition 3. We say a function f: T→ R is right-increasing (right-decreasing) at t0 ∈ T
k provided that

(i) if t0 is right scattered, then f(σ(t0))> f (t0), ( f (σ(t0))< f (t0)),
(ii) if t0 is right dense, then there is a neighborhood U of t0 such that f(t)> f (t0), ( f (t)< f (t0)), for all t ∈U, t > t0.

Definition 4. We say a function f: T→ R is local right-maximum (local right-minimum) at t0 ∈ T
k provided that

(i) if t0 is right scattered, then f(σ(t0))≤ f (t0), ( f (σ(t0))≥ f (t0)),
(ii) if t0 is right dense, then there is a neighborhood U of t0 such that f(t)≤ f (t0), ( f (t)≥ f (t0)), for all t ∈U, t > t0.
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3 Main Results

Throughout this paper,α ∈ (0,1].

Theorem 2. Let f : T→R beα-differentiable at t0 ∈ T
k and Tα( f )(t0)> 0, (Tα( f )(t0)< 0). Then f is right-increasing,

(right-decreasing), at t0.

Proof. We prove the case whenTα( f )(t0) > 0, since the proof for the caseTα( f )(t0) < 0 is similar. Now, ift0 is right
scattered (i.e.σ(t0)> t0 ), then by item (i) of Theorem1, we obtain

Tα( f )(t0) =
f (σ(t0))− f (t0)

σ(t0)− t0
t1−α
0 .

Tα( f )(t0)> 0 implies thatf (σ(t0))> f (t0) if σ(t0)> t0 (sincet0 > 0). In the other hand, ift0 is right dense, then by item
(ii) of Theorem1, we have

Tα( f )(t0) = lim
t→t0

f (t0)− f (t)
t0− t

t1−α
0 .

So, forε = Tα( f )(t0) there is a neighborhoodU of t0 such that
∣

∣

∣

∣

f (t0)− f (t)
t0− t

t1−α
0 −Tα( f )(t0)

∣

∣

∣

∣

< Tα( f )(t0)

for all t ∈U, t 6= t0. Hence 0<
f (t0)− f (t)

t0− t
t1−α
0 < 2 Tα( f )(t0) for all t ∈U. Therefore,f (t)> f (t0) for all t ∈U, t > t0,

and hence the proof is complete.

Theorem 3. Let f : T → R be α-differentiable at t0 ∈ T
k and Tα(t0) > 0 (Tα(t0) < 0). Then f attains its local right-

minimum (local right-maximum), at t0.

Proof. If Tα( f )(t0) > 0, then by Theorem2, f will be right-increasing att0 and thereforef will attain its local right-
minimum att0.

Theorem 4. Let f : T→ R beα-differentiable at t0 ∈ T
k
. If f attains its local right-minimum (local right-maximum), at

t0, then
Tα( f )(t0)≥ 0, (Tα( f )(t0)≤ 0).

Proof. Let f attain its local right-minimum att0. We need to show thatTα( f )(t0)≥ 0. To do this, we assume the contrary,
viz, thatTα( f )(t0)< 0. Then by Theorem2, f will be right-decreasing, hence contradicting our assumption that f attains
its local right-minimum att0. Thus we must have thatTα( f )(t0)≥ 0.

Theorem 5(A fractional version of the Rolle’s Theorem). Let f be a function satisfying the following

(a)continuous on[a,b]
(b) α-differentiable on[a,b)
(c) f (a) = f (b).

Then there existη ,η ′ ∈ [a,b) such that
Tα( f )(η) ≤ 0≤ Tα( f )(η ′)

Proof. By the extreme value theorem, there existη ,η ′ ∈ [a,b] such thatf attains its minimum value att = η ′ and
maximum value att = η . Since f (a) = f (b), we may assume thatη ,η ′ ∈ [a,b). Clearly, f attains its local right-minimum
at η ′ and its local right-maximum atη . Then by Theorem4 we haveTα( f )(η) ≤ 0 andTα( f )(η ′)≥ 0.

Theorem 6(A fractional version of the Mean Value Theorem). Let f be a function satisfying the following

(a)continuous on[a,b]
(b) α-differentiable on[a,b).

Then there existη ,η ′ ∈ [a,b) such that

ηα−1Tα( f )(η) ≤ R( f ;a,b)≤ (η ′)α−1Tα( f )(η ′),

whereR( f ;a,b) =
f (b)− f (a)

b−a
.
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Proof. For the case whenα = 1, see [2, Theorem 2.7]. So we only prove the case when 0< α < 1. Consider the function
F defined on[a,b] by

F(t) = f (t)− f (a)−
f (b)− f (a)

b−a
(t −a).

As a difference of continuous functions,F is continuous on[a,b]. Also, by item (iv) of Theorem1, F is α-differentiable
on [a,b) andF(a) = 0= F(b). Applying Theorem5 to F, then there existη ,η ′ ∈ [a,b) such that

Tα(F)(η)≤ 0≤ Tα(F)(η ′).

Using items (iii) and (iv) of Theorem1, we get

Tα(F)(t) = Tα( f )(t)−
f (b)− f (a)

b−a
t1−α

,

and hence our result is proven.

Corollary 1. Let f be a continuous function on[a,b] that isα-differentiable on[a,b). If Tα( f )(t) = 0 for all t ∈ [a,b),
then f is a constant function on[a,b].

Corollary 2. Let f be a continuous function on[a,b] that isα-differentiable on[a,b). Then f is increasing, decreasing,
nondecreasing, and nonincreasing on[a,b] if Tα( f )(t)> 0, Tα( f )(t)< 0, Tα( f )(t)≥ 0, and Tα( f )(t)≤ 0 for all t ∈ [a,b),
respectively.

We now present a generalized Mean Value Theorem which generalizes Theorem6 by takingg(t) = t for all t ∈ T.

Theorem 7(A fractional version of the generalized Mean Value Theorem). Let f and g be functions satisfying the
following

(a)continuous on[a,b]
(b) α-differentiable on[a,b).

Suppose Tα(g)(t)> 0 for all t ∈ [a,b). Then there existη ,η ′ ∈ [a,b) such that

Tα( f )(η)
Tα(g)(η)

≤
f (b)− f (a)
g(b)−g(a)

≤
Tα( f )(η ′)

Tα(g)(η ′)
.

Proof. If Tα(g)(t)> 0 for all t ∈ [a,b), then it follows from Theorem6 thatg(a) 6= g(b). Now we consider the following
function

F(t) = f (t)− f (a)−
f (b)− f (a)
g(b)−g(a)

(g(t)−g(a)).

As a difference of continuous functions,F is continuous on[a,b].Also, by item (iv) of Theorem1, F is α-differentiable
on [a,b) andF(a) = 0= F(b). Applying Theorem5 to F, then there existη ,η ′ ∈ [a,b) such that

Tα(F)(η)≤ 0≤ Tα(F)(η ′).

Using items (iii) and (iv) of Theorem1, we get

Tα(F)(t) = Tα( f )(t)−
f (b)− f (a)
g(b)−g(a)

Tα(g)(t),

and hence the desired result.

4 Conclusion

We continue the development of the newly proposed definitionof the conformable fractional calculus (on time scale)
initiated in [8]. For this, we proved the mean value theorem and some relatedresults in this direction for the conformable
fractional operator on an arbitrary time scale.
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