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Abstract: In this work, we investigate a linear differential equatiowolving Caputo-Fabrizio fractional derivative of ordex 8 < 2.
Under some assumptions the considered equation is redoeadinteger order differential equation and solutions féfecent cases
are obtained in explicit forms. We also prove a uniquenesssofution of an initial value problem with a nonlinear di#atial equation
containing the Caputo-Fabrizio derivative. Applicatidroar result to the mass-spring-damper motion is also ptesen
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1 Introduction

It is well-known that the concept of derivative in appliedthematics, which describes the rate of change of a given
function, is one of the most important concepts and it is usetkvelop mathematical models of many real life problems.
Concept of fractional derivative, in particular, becameular, because it is more suitable for modeling certainwesald
problem than the regular derivative. Various type of fracéil derivatives and their applications can be found in drileeo
most cited monographs, related to the fractional calcullus |

Without neglecting the huge amount of work, devoted to thgoal development and applications of fractional
derivatives to various branches of sciences, we directs fia the recently introduced fractional derivative withou
singular kernel 2]. This new derivative has supplementary motivating propsr precisely, it can portray substance
heterogeneities and configurations with different scaldsch noticeably cannot be managed with the renowned local
theories 8.

Properties of this new operator studied #) §nd various boundary problems for fractional heat equaitiwolving
this operator have been investigated &. We would like to note several studies, where applicatiohthe Caputo-
Fabrizio operator were under discussion. Namelygjndpplication to nonlinear Fisher’s reaction-diffusicquation, in
[7], application to steady heat flow, i8]} application to Korteweg-de Vries-Bergers equationdh [10], application to
groundwater flow and inl[1], application to the studying chaos on the Vallis model foNEo were investigated. M7,
Caputo-Fabrizio fractional Nagumo equation with nonlingifusion and convection was also studied.

We would like to note that in13], authors discussed coupled systems of time-fractiorfdréntial problems, by
using Caputo-Fabrizio derivative.

We would like also to note work of Gomez-Aquilar et d4], where modeling of mass-spring-damper system by
fractional derivatives with and without a singular kerrektudied. Authors considered fractional differential agan
with the Caputo-Fabrizio operator of ordex13 < 2. In order to solve the problem, authors used Laplace toamsénd
then solutions were obtained using numerical inverse lcapicansform. The same approach was used%h {vhere the
main object of investigation was diffusive transport witfractional derivative without singular kernel. We have tien
that in [14], authors considered only two particular cases, massgpind spring-damper motions.
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Another motivation for consideration of this type equasi@mconnected with fractional wave and fractional diffusio
wave equations, involving Caputo-Fabrizio derivative phgation of the Fourier method for studying direct and iraee
problems for afore-mentioned equations depends on ekfidich of solution to the equation, discussed in this work.
Results of this work will be base for further investigatiamsthis direction.

In [16], more general fractional derivative without singularikelris introduced. Various applications of this derivative
were discussed inl[7]. Investigations differential equations with this newdtianal derivative will give new impulse for
further researches on direct and inverse problems foriéraatorder partial differential equations.

In the present work, we investigate differential equatidgtih&aputo-Fabrizio fractional derivative of ordex1 < 2.
Reducing considered equation to the integer order diffekeguation, depending on various values of parametehnave
obtained explicit form of general solution for fix@d Based on this result, we also proved a uniqueness of thémoto
an initial value problem for nonlinear differential equatiwith Caputo-Fabrizio fractional derivative<d 3 < 2. At the
end we investigated application of our result to the massgglamper motion in general case, which is not considered

in [14].

2 Investigation of linear differential equation
Consider the following linear fractional differential emion
crDRU(t) = Au(t) = f(1), t > &, (1)

whereff =a+1suchthat< a <1,ae (—ow,t) andcg Dgtu(t) is the Caputo-Fabrizio derivative defined &k |
1 t
crDRu(t) = 7= [U'(g)e e Tds )
a

We remind that in order to get equaligg D% u(t) = ce DL u(t), we have to suppose thal(0) = 0 (see ).
Using definition 2), we rewrite equationl) as follows

t

- 1 — 135 (t—9) Ja__ _

1_a/u (e ds—Au(t) = f(t)
a

or
t
/“"(S)eﬁsds— A(L—aju(ter’a = (1—a)f(t)era".

Two times integration by parts yields

& Juwerts] - (22 1aa-0))upersts

dt _
a 2 a a_y (3)
+ (m) /u(s)eﬁ ds=(1—a)f(t)eTa +u'(a) —u(a).
Introducing new function as
v(t) = u(t)erat (4)
and differentiating3) once, we get
VI(t) — v (1) + p2v(t) = g(t), (5)
where
_ 2 o a—a) = (2 i (t) = [(1—a)F'(t) + af (t)] er's" (6)
M=% =14 ) U= :

Depending on the sign ok(A) = 4Aa + A?(1— a)? (discriminant of the corresponding auxiliary equation} get
different solutions to¥).

First, consider the cas&(A ) = 0, which correspond td =0 orA = — %4,
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It is obvious that in this case, general solution can be amitts

v(t) = et [Cl—/g(t)te(“l/z)tdt+t <Cz+/g(t)e(“l/2)tdt):| '

Considering designatiod), we get

u(t) = elA(1—a)/2t [Cl—/g(t)te_(ul/z)tdt—i—t <C2+/g(t)e—(111/2)tdt>:| '

or precisely,
u(t) = 01—/g(t)te’ﬁtdt+t <02+/g(t)e1aatdt) . @)
forA =0and
u(t) = erat [cl—/g(t)teia—a‘dt—H (Cz+/g(t)e1°’—atdt>] ®
forA = — . a)2 Herec; andc, are arbitrary constants.

Now, consider the cas&(A) > 0, which can be achieved if we suppose that (—oo; —a%)z) U (0,+w). In this
case, general solution t8)(will have the form

By \/A(_/‘)t _\/A(_/\)t e@‘ _uﬁmt
vit)=e?' |ce 2 '+ 2+ A()\)/g(t)e Tz dt—
\/A(_)\t _H1— \/_tdt
J—
Solving foru(t) using @), we obtain
a VAR,
u(t) = "7 cgeirz@wcz;e*—A‘/z@weT fat)e g gy
v ©
,Mt p1— \/7
e 2 : t
——Ja(t)e dt

Herecs andc, are arbitrary constants.
Finally, consider the cas&A) < 0, which requires that € (
based on designatiod) we get

ut)—e 7t {cos(\/—A()\ )t) (05 — /A / g(t)sin(\/T()\)t) dt) n
+sin(\/T()\)t) <06+ \/T()\)/g(t)cos(\/T(/\)t) dt)} ,

wherecs andcg are arbitrary constants.
We formulate the obtained results as the following theorem:

4a

i 0)2,0). Using the expression of general solution,

(10)

Theorem LIf f(t) € C[0, +00) NCY(0, 4), f(t) € L1(a, +) and f(a) = 0, then the general solution to equatiat) (or
fixeda can be represented

[i]by (7) for A =0and by 8) for A = —(l%y;

fi] by (9) for A e (—oo;—(14‘;) ) U (0, +-o);

fiii] by ( 10) for A € ( Wz,o)
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Let us verify that, for instance, function, defined [y ¢atisfies equatiorlj. For this aim from 7) we calculates’(t):
u'(t) = g(t)e Ta'.
Considering representation gft) given by @), we get
U't)=(1—a)f'(t)+af(t).
Therefore
crDhu() = £ [1(1- ) 1'(9) + af(g]e ot 5o

a

a

a a . L a
. f/(S)eﬁst—f— ﬁefﬁt j f(s)eﬁst: f(t) _ f(a)eiﬁt.
a

a
—@ Tat

[

Since, we imposed conditiof{a) = 0, the latter equality proves our statement.
RemarkThe following more general equation
aceDZu(t) + bepDGu(t) 4 cu(t) = h(t). (11)
can be studied similarly ag);
In fact, using the definition?), after integration by parts, we get

t
ay L, (b 1-a / (et Sdc— 2t ay
(au(t)+cu(t))e +<1—a a )O u'(s)era°ds=h(t)e +au(0).

Using integration by parts again, the above equation casWstten in the following form

ad o a b [(1-a\? o,
- T—a _— _ [ — T—a —
adt[u(t)e |+ e e ( . )]u(t)e
t
l1-a

v 955 e — o5t E/
p u(s)er-a°ds= h(t)er +au(0)+

g— <:LTTG)2] u(0).

Introducing a new function agt) = u(t)eli’_at and differentiating the above equation, we get

b a ca (1-a)?
a 1-a a aa

v+ v = [h’(t) + o h()

a _a;
—eIl-a",
a

This second order constant coefficient ordinary diffesdm@gquation can be studied similarly &.(

3 Nonlinear differential equation

In this section, we present a uniqueness result of an iniile problem containing the following nonlinear fractbn
order differential equation with the Caputo-Fabrizio dative

cFDRU(t) = §(t, u(t)).
This uniqueness result is formulated in the following thesor
Theorem2.Let T>0,8=1+a suchthaD< a <land¢ : [0,T] x R — R be a continuous function satisfying

do(t,s)) do(t,s)

_ < _ < _
pts) - ¢t o) <Lilsi—f, | =4 g | Slelsi—=
for all 51,5 € R and some positive constants, IL,.
If 2T ((1— a)Lya+ alj) < 1, then the initial value problem given by
CFDgtu(t) = ¢(tau(t))7 te [OaT]a (12)
u(0) =Up, U(0) =U; € R; (13)

has a unique solution on[G, T].
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ProofConsider the operator” : C[0,T] — C[0, T| defined by

Au(t)=Cy—1g(t)+t <c2+| @) forall ueC[0,T],

whereC; = Up+ | g(t) Lo G=Uitl @L_O and | g(t) is an anti-derivative of

glt) = [(1— a)w +ag(t, u(t))} te Tl

Finding a solution 0f12)-(13) in C[0, T] in the form (7) is equivalent to finding a fixed point of the operatéf. Since
ug, U € C[0, T], using the imposed hypothesis ¢1) and% we then have

|JVU1(t) —JVUé(t)LS . dolt .
<2T[(1—a)la+aLy]||us — ugl|

\ T ald(tun(t) - ¢<t,u2<t>>|] o ratdt <

forallt € [0, T].
The above inequality shows that operatéris a contraction, sinceT2[(1— a)L2+ als] < 1. The statement follows
from Banach’s fixed point theorem.

4 Application to mass-spring-damper motion

According to [L4], [18], to be consistent with the dimensionality of the physiagiation, an auxiliary parameter is
introduced into the fractional temporal operator:

d . 1 dv d? . 1 d2

dt ~ogl-v dty’ dtz2 " g2l-y) dt2y’
wherey represents the order of the fractional temporal operatdrarmas the dimension of seconds. The auxiliary
parameteu is associated with the temporal components in the systessétbomponents change the time constant of the

system). Following this idea, authors df4], introduced the equation of the mass-spring-damper sys¢presented in
Figure 1 as follows:

m—1l<y<m m=123 ..

m 0
mCFDgth(t) + mchéx(t) +kx(t)=F(t), 0<y<1, (14)

wheremis the mass 9 is the damping coefficienk is the spring constant ark{t) represents the forcing function.

; " —p X(1)
WAL
o _ m F(1)
% .

7 L=

vl

Fig. 1. Mass-spring-damper system

Since, equationl{d) cannot be written in the forml(), we investigate it separately.
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Using definition P]
CF D&X(t) =

we get

t
1 _ Y
cFDE!X(t) = crDY () = cr DYy (1__V/>((s)e =y %ls) _
0

t
1 R 2PN I )
_(1_y)20/x’(s)[1 —1_y(t s)}e v ds
Substituting this expression fgg Dcz)tyx(t) into equation {4), we get

t
! m my 5

5t m NG
x(t)el y [02(1_y)(1_y) 01_y+k(1 y):|
t
4 2m my vy
_ryo/x(s) {02(1—)’)(1_ Y) - 021V (1 y)2 (t —S)—|—m:| eI v3ds=
7 m my 5
= J— r _
(1-y)F(t)eTv +x(0) {02(1y>(1_ V) o2 V(1— y)2t+ Gly] :

Introducing new function ag(t) = x(t)eivat, we obtain second kind Volterra integral equation
t
YO+ [ y(s)[A+ Bt~ 9)]ds= Fy(t).
0

+ -2, +k(1—y) #0, which is uniquely solvable {F], page 110). Here

if —m
2T (1-y)

y(2m+3(1—y)ol)
(1—y)?2(m+ 30t Y+k(1—y)o2i-)’

B=— m
 (1-y)3(m+ootr+k(1-y)o2iy)’
0'2(1*)’)
Fu(t) =
1t m+ 801-Y + k(1 - y)2021-Y) *

2t FO) (m+3(1-yjotY  my
x |(1=y)F(t)ery + K ( g21-y) _02(1—v>t

5 Conclusion

In the present work, we investigate a linear differentialaipn involving Caputo-Fabrizio fractional derivativearder

1 < B < 2. We have found explicit form of solutions in various casucing it to the integer order differential equation.
Statement on a uniqueness of a solution of an initial valobdlpm with a nonlinear differential equation containing th
Caputo-Fabrizio derivative is proved. Application of oasult to the mass-spring-damper motion is also presented.
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