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Abstract: In this work, we investigate a linear differential equationinvolving Caputo-Fabrizio fractional derivative of order1< β ≤ 2.
Under some assumptions the considered equation is reduced to an integer order differential equation and solutions for different cases
are obtained in explicit forms. We also prove a uniqueness ofa solution of an initial value problem with a nonlinear differential equation
containing the Caputo-Fabrizio derivative. Application of our result to the mass-spring-damper motion is also presented.
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1 Introduction

It is well-known that the concept of derivative in applied mathematics, which describes the rate of change of a given
function, is one of the most important concepts and it is usedto develop mathematical models of many real life problems.
Concept of fractional derivative, in particular, became popular, because it is more suitable for modeling certain realworld
problem than the regular derivative. Various type of fractional derivatives and their applications can be found in one of the
most cited monographs, related to the fractional calculus [1].

Without neglecting the huge amount of work, devoted to theoretical development and applications of fractional
derivatives to various branches of sciences, we directly pass to the recently introduced fractional derivative without
singular kernel [2]. This new derivative has supplementary motivating properties, precisely, it can portray substance
heterogeneities and configurations with different scales,which noticeably cannot be managed with the renowned local
theories [3].

Properties of this new operator studied in [4] and various boundary problems for fractional heat equation involving
this operator have been investigated in [5]. We would like to note several studies, where applicationsof the Caputo-
Fabrizio operator were under discussion. Namely, in [6], application to nonlinear Fisher’s reaction-diffusion equation, in
[7], application to steady heat flow, in [8], application to Korteweg-de Vries-Bergers equation, in [9], [10], application to
groundwater flow and in [11], application to the studying chaos on the Vallis model for El Nino were investigated. In [12],
Caputo-Fabrizio fractional Nagumo equation with nonlinear diffusion and convection was also studied.

We would like to note that in [13], authors discussed coupled systems of time-fractional differential problems, by
using Caputo-Fabrizio derivative.

We would like also to note work of Gomez-Aquilar et al [14], where modeling of mass-spring-damper system by
fractional derivatives with and without a singular kernel is studied. Authors considered fractional differential equation
with the Caputo-Fabrizio operator of order 1< β ≤ 2. In order to solve the problem, authors used Laplace transform and
then solutions were obtained using numerical inverse Laplace transform. The same approach was used in [15], where the
main object of investigation was diffusive transport with afractional derivative without singular kernel. We have to note
that in [14], authors considered only two particular cases, mass-spring and spring-damper motions.
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Another motivation for consideration of this type equations is connected with fractional wave and fractional diffusion-
wave equations, involving Caputo-Fabrizio derivative. Application of the Fourier method for studying direct and inverse
problems for afore-mentioned equations depends on explicit form of solution to the equation, discussed in this work.
Results of this work will be base for further investigationson this direction.

In [16], more general fractional derivative without singular kernel is introduced. Various applications of this derivative
were discussed in [17]. Investigations differential equations with this new fractional derivative will give new impulse for
further researches on direct and inverse problems for fractional order partial differential equations.

In the present work, we investigate differential equation with Caputo-Fabrizio fractional derivative of order 1< β ≤ 2.
Reducing considered equation to the integer order differential equation, depending on various values of parameter, wehave
obtained explicit form of general solution for fixedβ . Based on this result, we also proved a uniqueness of the solution to
an initial value problem for nonlinear differential equation with Caputo-Fabrizio fractional derivative 1< β ≤ 2. At the
end we investigated application of our result to the mass-spring-damper motion in general case, which is not considered
in [14].

2 Investigation of linear differential equation

Consider the following linear fractional differential equation

CFDβ
atu(t)−λu(t) = f (t), t ≥ a, (1)

whereβ = α +1 such that 0< α ≤ 1, a∈ (−∞, t) andCFDβ
atu(t) is the Caputo-Fabrizio derivative defined as [2]

CFDβ
atu(t) =

1
1−α

t
∫

a

u′′(s)e−
α

1−α (t−s)ds. (2)

We remind that in order to get equalityCFDα+1
at u(t) = CFD1+α

at u(t), we have to suppose thatu′(0) = 0 (see [2]).
Using definition (2), we rewrite equation (1) as follows

1
1−α

t
∫

a

u′′(s)e−
α

1−α (t−s)ds−λu(t) = f (t)

or
t
∫

a

u′′(s)e
α

1−α sds−λ (1−α)u(t)e
α

1−α t = (1−α) f (t)e
α

1−α t .

Two times integration by parts yields

d
dt

[

u(t)e
α

1−α t
]

−
(

2α
1−α

+λ (1−α)

)

u(t)e
α

1−α t+

+

(

α
1−α

)2 t
∫

a

u(s)e
α

1−α sds= (1−α) f (t)e
α

1−α t +u′(a)−u(a).
(3)

Introducing new function as
v(t) = u(t)e

α
1−α t (4)

and differentiating (3) once, we get
v′′(t)− µ1v′(t)+ µ2v(t) = g(t), (5)

where

µ1 =
2α

1−α
+λ (1−α), µ2 =

(

α
1−α

)2

, g(t) =
[

(1−α) f ′(t)+α f (t)
]

e
α

1−α t . (6)

Depending on the sign ofA(λ ) = 4λ α + λ 2(1− α)2 (discriminant of the corresponding auxiliary equation), we get
different solutions to (5).

First, consider the caseA(λ ) = 0, which correspond toλ = 0 orλ =− 4α
(1−α)2

.
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It is obvious that in this case, general solution can be written as

v(t) = eµ1t
[

c1−
∫

g(t)te−(µ1/2)tdt+ t

(

c2+

∫

g(t)e−(µ1/2)tdt

)]

.

Considering designation (4), we get

u(t) = e(λ (1−α)/2)t
[

c1−
∫

g(t)te−(µ1/2)tdt+ t

(

c2+
∫

g(t)e−(µ1/2)tdt

)]

.

or precisely,

u(t) = c1−
∫

g(t)te−
α

1−α tdt+ t

(

c2+

∫

g(t)e−
α

1−α tdt

)

. (7)

for λ = 0 and

u(t) = e
−2α
1−α t

[

c1−
∫

g(t)te
α

1−α tdt+ t

(

c2+

∫

g(t)e
α

1−α tdt

)]

(8)

for λ =− 4α
(1−α)2

. Herec1 andc2 are arbitrary constants.

Now, consider the caseA(λ ) > 0, which can be achieved if we suppose thatλ ∈
(

−∞;− 4α
(1−α)2

)

∪ (0,+∞). In this

case, general solution to (5) will have the form

v(t) = e
µ1
2 t



c3e
√

A(λ )
2 t + c4e

−
√

A(λ )
2 t +

e
√

A(λ)
2 t

√

A(λ )

∫

g(t)e−
µ1+

√
A(λ)

2 tdt−

−e−
√

A(λ)
2 t

√

A(λ )

∫

g(t)e−
µ1−

√
A(λ)

2 tdt



 .

Solving foru(t) using (4), we obtain

u(t) = e
λ(1−α)

2 t

[

c3e
√

A(λ )
2 t + c4e−

√
A(λ )
2 t + e

√
A(λ)
2 t√

A(λ)

∫

g(t)e−
µ1+

√
A(λ)

2 tdt−

− e−
√

A(λ)
2 t√

A(λ )

∫

g(t)e−
µ1−

√
A(λ)

2 tdt

]

.

(9)

Herec3 andc4 are arbitrary constants.

Finally, consider the caseA(λ )< 0, which requires thatλ ∈
(

− 4α
(1−α)2

,0
)

. Using the expression of general solution,

based on designation (4), we get

u(t) = e
λ(1−α)

2 t
[

cos
(

√

−A(λ )t
)

(

c5−
√

−A(λ )
∫

g(t)sin
(

√

−A(λ )t
)

dt

)

+

+sin
(

√

−A(λ )t
)

(

c6+
√

−A(λ )
∫

g(t)cos
(

√

−A(λ )t
)

dt

)]

,
(10)

wherec5 andc6 are arbitrary constants.
We formulate the obtained results as the following theorem:

Theorem 1.If f (t) ∈C[0,+∞)∩C1(0,+∞), f ′′(t) ∈ L1(a,+∞) and f(a) = 0, then the general solution to equation (1) for
fixedα can be represented

[i] by ( 7) for λ = 0 and by (8) for λ =− 4α
(1−α)2

;

[ii] by ( 9) for λ ∈
(

−∞;− 4α
(1−α)2

)

∪ (0,+∞);

[iii] by ( 10) for λ ∈
(

− 4α
(1−α)2

,0
)

.
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Let us verify that, for instance, function, defined by (7) satisfies equation (1). For this aim from (7) we calculateu′′(t):

u′′(t) = g(t)e−
α

1−α t .

Considering representation ofg(t) given by (6), we get

u′′(t) = (1−α) f ′(t)+α f (t).

Therefore

CFDβ
atu(t) =

1
1−α

t
∫

a
[(1−α) f ′(s)+α f (s)]e−

α
1−α (t−s)ds=

= e−
α

1−α t
t
∫

a
f ′(s)e

α
1−α sds+ α

1−α e−
α

1−α t
t
∫

a
f (s)e

α
1−α sds= f (t)− f (a)e−

α
1−α t .

Since, we imposed conditionf (a) = 0, the latter equality proves our statement.

Remark.The following more general equation

aCFDα+1
at u(t)+bCFDα

atu(t)+ cu(t) = h(t). (11)

can be studied similarly as (1).

In fact, using the definition (2), after integration by parts, we get

( a
α

u′(t)+ cu(t)
)

e
α

1−α t +

(

b
1−α

− 1−α
α

) t
∫

0

u′(s)e
α

1−α sds= h(t)e
α

1−α t +
a
α

u′(0).

Using integration by parts again, the above equation can be rewritten in the following form

a
α

d
dt

[

u(t)e
α

1−α t
]

+

[

c− a
1−α

+
b
α
−
(

1−α
α

)2
]

u(t)e
α

1−α t−

−1−α
α

t
∫

0

u(s)e
α

1−α sds= h(t)e
α

1−α t +
a
α

u′(0)+

[

b
α
−
(

1−α
α

)2
]

u(0).

Introducing a new function asv(t) = u(t)e
α

1−α t and differentiating the above equation, we get

v′′(t)+

[

b
a
− α

1−α
+

cα
a

− (1−α)2

aα

]

v′(t)+
1−α

a
v(t) =

[

h′(t)+
α

1−α
h(t)

]

α
a

e
α

1−α t .

This second order constant coefficient ordinary differential equation can be studied similarly as (5).

3 Nonlinear differential equation

In this section, we present a uniqueness result of an initialvalue problem containing the following nonlinear fractional
order differential equation with the Caputo-Fabrizio derivative

CFDβ
0tu(t) = ϕ(t,u(t)).

This uniqueness result is formulated in the following theorem.

Theorem 2.Let T> 0, β = 1+α such that0< α ≤ 1 andϕ : [0,T]×R→R be a continuous function satisfying

|ϕ(t,s1)−ϕ(t,s2)| ≤ L1 |s1− s2| ,
∣

∣

∣

∣

dϕ(t,s1)

dt
− dϕ(t,s2)

dt

∣

∣

∣

∣

≤ L2 |s1− s2|

for all s1,s2 ∈ R and some positive constants L1, L2.
If 2T ((1−α)L2+αL1)< 1, then the initial value problem given by

CFDα
0tu(t) = ϕ(t,u(t)), t ∈ [0,T], (12)

u(0) =U0, u′(0) =U1 ∈ R; (13)

has a unique solution on C[0,T].
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Proof.Consider the operatorN : C[0,T]→C[0,T] defined by

N u(t) =C1− I g(t)+ t

(

C2+ I
g(t)

t

)

for all u∈C[0,T],

whereC1 =U0+ I g(t)
∣

∣

∣

t=0
, C1 =U1+ I g(t)

t

∣

∣

∣

t=0
and I g(t) is an anti-derivative of

g(t) =

[

(1−α)
dϕ(t,u(t))

dt
+αϕ(t,u(t))

]

te−
α

1−α t .

Finding a solution of (12)-(13) in C[0,T] in the form (7) is equivalent to finding a fixed point of the operatorN . Since

u1, u2 ∈C[0,T], using the imposed hypothesis onϕ(·) and dϕ(·)
dt we then have

|N u1(t)−N u2(t)| ≤
2T
∫

[

(1−α)

∣

∣

∣

∣

dϕ(t,u1(t))
dt

− dϕ(t,u2(t))
dt

∣

∣

∣

∣

+α |ϕ(t,u1(t))−ϕ(t,u2(t))|
]

e−
α

1−α tdt ≤
≤ 2T [(1−α)L2+αL1] ||u1−u2||

for all t ∈ [0,T].
The above inequality shows that operatorN is a contraction, since 2T [(1−α)L2+αL1]< 1. The statement follows

from Banach’s fixed point theorem.

4 Application to mass-spring-damper motion

According to [14], [18], to be consistent with the dimensionality of the physical equation, an auxiliary parameterσ is
introduced into the fractional temporal operator:

d
dt

→ 1
σ1−γ · dγ

dtγ
,

d2

dt2
→ 1

σ2(1−γ) ·
d2γ

dt2γ , m−1< γ ≤ m, m= 1,2,3, ...

whereγ represents the order of the fractional temporal operator and σ has the dimension of seconds. The auxiliary
parameterσ is associated with the temporal components in the system (these components change the time constant of the
system). Following this idea, authors of [14], introduced the equation of the mass-spring-damper system represented in
Figure 1 as follows:

m

σ2(1−γ)CFD2γ
0t x(t)+

δ
σ1−γ CFDγ

0tx(t)+ kx(t) = F(t), 0< γ ≤ 1, (14)

wherem is the mass ,δ is the damping coefficient,k is the spring constant andF(t) represents the forcing function.

Fig. 1: Mass-spring-damper system

Since, equation (14) cannot be written in the form (11), we investigate it separately.
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Using definition [2]

CFDγ
0tx(t) =

1
1− γ

t
∫

0

x′(s)e−
γ

1−γ (t−s)ds,

we get

CFD2γ
0t x(t) = CFDγ+γ

0t x(t) = CFDγ
0t





1
1− γ

t
∫

0

x′(s)e−
γ

1−γ (t−s)ds



=

=
1

(1− γ)2

t
∫

0

x′(s)

[

1− γ
1− γ

(t − s)

]

e−
γ

1−γ (t−s)ds.

Substituting this expression forCFD2γ
0t x(t) into equation (14), we get

1
1− γ

t
∫

0

x′(s)

[

m

σ2(1−γ)(1− γ)
− mγ

σ2(1−γ)(1− γ)2
(t − s)+

δ
σ1−γ

]

×

×e−
γ

1−γ (t−s)ds+ kx(t) = F(t).

Using integration by parts, after some evaluations, we get

x(t)e
γ

1−γ t
[

m

σ2(1−γ)(1− γ)
+

δ
σ1−γ + k(1− γ)

]

−

− γ
1− γ

t
∫

0

x(s)

[

2m

σ2(1−γ)(1− γ)
− mγ

σ2(1−γ)(1− γ)2
(t − s)+

δ
σ1−γ

]

e
γ

1−γ sds=

= (1− γ)F(t)e
γ

1−γ t
+ x(0)

[

m

σ2(1−γ)(1− γ)
− mγ

σ2(1−γ)(1− γ)2
t +

δ
σ1−γ

]

.

Introducing new function asy(t) = x(t)e
γ

1−γ t , we obtain second kind Volterra integral equation

y(t)+

t
∫

0

y(s) [A+B(t− s)]ds= F1(t),

if m
σ2(1−γ)(1−γ)

+ δ
σ1−γ + k(1− γ) 6= 0, which is uniquely solvable ([19], page 110). Here

A=
γ
(

2m+ δ (1− γ)σ1−γ)

(1− γ)2
(

m+ δσ1−γ + k(1− γ)σ2(1−γ)
) ,

B=− mγ2

(1− γ)3
(

m+ δσ1−γ + k(1− γ)σ2(1−γ)
) ,

F1(t) =
σ2(1−γ)

m+ δσ1−γ + k(1− γ)2σ2(1−γ)×

×
[

(1− γ)F(t)e
γ

1−γ t
+

F(0)
k

(

m+ δ (1− γ)σ1−γ

σ2(1−γ) − mγ
σ2(1−γ) t

)]

.

5 Conclusion

In the present work, we investigate a linear differential equation involving Caputo-Fabrizio fractional derivative of order
1< β ≤ 2. We have found explicit form of solutions in various cases reducing it to the integer order differential equation.
Statement on a uniqueness of a solution of an initial value problem with a nonlinear differential equation containing the
Caputo-Fabrizio derivative is proved. Application of our result to the mass-spring-damper motion is also presented.
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