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Abstract: In the present work, a discretized fractional-order SIR model for an Influenza A viruses is derived. The basic reproductive
numberR0 is defined and the dynamic behavior of the discretized model is investigated. Local stability of both the disease free
equilibrium and the endemic equilibrium is investigated. Equations and inequalities of critical bifurcation surfaces at the disease free
equilibrium are given. Numerical simulations are performed to assure the analytical results obtained and to reveal thecomplex dynamics
of the discretized model.
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1 Introduction

Infectious diseases have always been an important part of our life. Many of them, such as Influenza, have small
symptoms and are purely an annoyance; but others, such as AIDS, fill us with dread. Over the past decades, the spread of
diseases has been understood with the help of mathematics byrelating basic public-health questions to some infection
parameters. Mathematical modeling is central to infectious disease epidemiology. They describe the dynamical evolution
of infectious diseases which improve our understanding andpredictive ability. Simplest models classify individualsas
one of susceptible, infectious or recovered; this is known as the SIR model. An infectious disease transmission dynamics
can be described by modeling the individuals. Epidemic models defined in continuous-time have been widely
investigated by many researchers ([1]-[5]). Meanwhile, many researchers used some discretization methods to the
continuous-time systems to study the consistency, convergence, permanence, stability of the discrete system ( [6]-[9]).

In recent years, many authors have suggested that discrete-time models are more suitable than their continuous
counterparts. This actually because They do not only have the basic properties of their continuous counterparts but also
they provide a reduction of computer time [10]. In fact, discrete models exhibit more complex dynamics than observed in
the continuous-time models and their dynamics can not be predicted biologically ([11]-[15]).

Influenza, or “flu”, is a birds and mammals infectious disease. In virus classification, influenza viruses are RNA viruses
that make up three of the five genera of the family Orthomyxoviridae: Influenza virus A, Influenza virus B, and Influenza
virus C. The the most virulent human pathogens among the three influenza types are type A ([16]-[20]).

Fractional calculus is a branch of mathematics which concerns the possibility of taking arbitrary orders of the
differential and integral operators. Actually, this branch attracted the attention of many researchers and engineerssince
long time ago (see [21]-[31]). Many systems in different fields may be described via fractional derivatives in which both
integration and differentiation can be applied to any arbitrary order. For those who are interested in existence of solutions
for fractional differential equations, they can see [32]-[35]. In this paper we adopt the basic definitions (Caputo) of
fractional-order calculus:

Definition 1.The fractional integral of orderβ ∈R
+ of the function f(t), t > 0 is defined by

Iβ f (t) =
∫ t

0

(t − s)β−1

Γ (β )
f (s)ds,
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and the fractional derivative of orderα ∈ (0,1) of f(t), t > 0 is defined by

Dα f (t) = I1−α d f(t)
dt

.

The following results are also of the main importance in fractional calculus. Letβ ,γ ∈ R
+, α ∈ (0,1),

• Iβ
a : L1 → L1, and if f (x) ∈ L1, thenI γ

aIβ
a f (x) = I γ+β

a f (x).

• limβ→n Iβ
a f (x) = In

a f (x) uniformly on[a,b], n= 1,2,3, ..., where
I1
a f (x) =

∫ x
a f (s)ds.

• limβ→0 Iβ
a f (x) = f (x) weakly.

• If f (x) is absolutely continuous on[a,b], then limα→1 Dα
a f (x) = d f(x)

dx .
The rest of the paper is organized as follows. Section 2 represents the formulation of the model for Influenza. In Section 3,
we discuss the equilibria of the model and their local stability analysis. Section 4 investigates the analytical representation
of bifurcations of the discretized model. Numerical simulations are carried out in Section 5. Finally, we conclude in
Section 6.

2 Formulation of the Model

Kermack and McKendrick set a SIR model [36] to explain increasing and decreasing number of infective individuals
observed in epidemics and is given by

dS
dt

=−βSI,

dI
dt

= βSI− γI ,

dR
dt

= γI ,

(1)

whereSdenotes the susceptible number,I denotes the infectious number andR is the recovered individuals number,β is
the rate of transmission , andγ is the rate of recovery. From a biological point of view, all parameters to be non-negative.
Suppose thatN denote the size of population. Obiviously,

N = S+ I +R, and

N. = S.+ I .+R. = 0,

where the “dots” denotes derivative w.r.t. time.
In model (1), both rate of birth and death are not considered while the rate of transmissionβ is considered as a constant.
In this paper, the following assumptions are taken into account:
(1) Introduced a new susceptible at a constant rate of birthµ ,
(2) The same constant birth rateµ is introduced to both the infectious and recovered individuals ,
(3) Constant death rate is introduced to the three classes ofindividuals and is equal to the birth rateµ .
From assumption (3), it is pretty clear that the population size is fixed. To make it simple, we setN = 1. The new SIR
model reads:

dS
dt

= µ − µS−βSI,

dI
dt

= βSI− (µ + γ)I ,

dR
dt

= γI − µR.

(2)

A significant difference between fractional-order models and their integer-order counterparts is that the first possess
memory. In the the current paper, we will introduce the fractional-order derivative to model (2) with piecewise constant
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arguments as follows

dαS
dtα

= µ − µS(r[
t
r
])−βS(r[

t
r
])I(r[

t
r
]), t ∈ (nr,(n+1)r],n= 0,1,2, ...,

dα I
dtα

= βS(r[
t
r
])I(r[

t
r
])− (µ + γ)I(r[

t
r
]),

dαR
dtα

= γI(r[
t
r
])− µR(r[

t
r
]),

(3)

where [.] denotes the greatest integer function, 0< r < 1 is the discretization step size, andα ∈ (0,1) is the
fractional-order parameter. Most of biological processesmay be described more suitably by discrete-time models rather
than their continuous counterparts. Biological dynamics described via discrete systems should be meaningful: Influenza
outbreaks occur during winter while the disease is somewhere else during summer. Now, we apply the discretization
method represented in [37]-[40] and lettingt → (n+1)r, we end up with the discretized model

Sn+1 = Sn+
rα

Γ (1+α)
(µ − µSn−βSnIn),

In+1 = In+
rα

Γ (1+α)
(βSnIn− (µ + γ)In),

Rn+1 = Rn+
rα

Γ (1+α)
(γIn− µRn).

(4)

To analyze model (4), suppose that

S(0), I(0),R(0)≥ 0, S(0)+ I(0)+R(0)= 1. (5)

Biologically, the solution of model (4)should be non-negative with initial values satisfying (5). This can be guaranteed if
the two following inequalities hold:

rα

Γ (1+α)
(β + µ)< 1, and

rα

Γ (1+α)
(µ + γ)< 1. (6)

The two inequalities in (6) are essential demands for model (4). The first, rα

Γ (1+α)
(β + µ) < 1, illustrates that the

susceptible in percentage who get infected or die is less than one within a unit time. The second, rα

Γ (1+α)(µ + γ) < 1,
shows that the infected individuals in percentage who get recovered or die is less than one within a unit time.
Obliviously, those two inequalities ensure thatS(n), I(n),R(n)≥ 0 for all n≥ 0 if (5) is satisfied.

Since the basic reproductive numberR0 is one of the essential concepts in mathematical biology. Itis known as the
average number of secondary infected individuals caused bya single infectious individual during their whole infectious
lifetime. We would like to pay attention thatR0 is a dimensionless number and not a rate which would have units of
time−1. As it is mentioned in [41] about the importance ofR0 “One of the foremost and most valuable ideas that
mathematical thinking has brought to epidemic theory”. R0 often used as a threshold that can predict whether a certain
disease dies out or persists in a population. We calculate the basic reproductive number for model (4) following
instructions in [42]-[44] which is given byR0 =

β
µ+γ . In the next section, we analyze the local stability of equilibria of

model (4) depending onR0.

3 Equilibria and Local Stability

Rewrite model (4) in terms ofR0 we have

Sn+1 = Sn+
rα

Γ (1+α)
(µ − µSn−βSnIn),

In+1 = In+
rα

Γ (1+α)
(µ + γ)(R0SnIn− In),

Rn+1 = Rn+
rα

Γ (1+α)
(γIn− µRn).

(7)
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Equilibria of the model (7) should satisfy the following set of algebraic equations

µ − µS−βSI = 0,

R0SI− I = 0,

γI − µR= 0,

where rα

Γ (1+α) > 0. It is clear that model (7) has two equilibria, the disease free equilibriumE0 = (1,0,0) for all parameters

values and a unique endemic equilibrium whenR0 > 1 given byE∗ = ( 1
R0

,
µ(R0−1)

β ,
γ(R0−1)

β ). The local asymptotic

stability of the disease free equilibriumE0 is discussed in the next theorem

Theorem 1.The disease free equilibrium E0 of model (4) is locally asymptotically stable if0<R0 < 1, and E0 is unstable
if R0 > 1.

Proof.The local asymptotic stability ofE0 can be investigated by linearization. The Jacobian Matrix for model (4) is given
by

J =





1−K(µ +β I) −KβS 0
K(µ + γ)R0I 1+K(µ + γ)(R0S−1) 0

0 Kγ 1−Kµ



 ,

whereK = rα

Γ (1+α) . The jacobian matrix evaluated atE0 is given by

J =





1−Kµ −Kβ 0
0 1+K(µ + γ)(R0−1) 0
0 Kγ 1−Kµ



 .

We look for the necessary and sufficient conditions forE0 to have all the eigenvalues ; roots of the characteristic
polynomial; less than one in modulus

F(λ ) = λ 3− (A+B+C)λ 2+(AB+AC+BC+KβSD)λ −ABC−KβSDC,

where A = 1− K(µ + β I), B = 1+ K(µ + γ)(R0S− 1), C = 1− Kµ , and D = K(µ + γ)R0I . Following [45] the
eigenvalues of the polynomial given above have to satisfy the following conditions:

1.1− (A+B+C)+AB+AC+BC+KβSD−ABC−KβSDC> 0,

2.1+A+B+C+AB+AC+BC+KβSD+ABC+KβSDC> 0,

3.1− (AB+AC+BC+KβSD)+ (A+B+C)(ABC+KβSDC)+ (ABC+KβSDC)2 > 0,

4.AB+AC+BC+KβSD< 3.

The eigenvalues associated toJ evaluated atE0 areλ1,2 = 1−Kµ , andλ3 = 1+K(µ + γ)(R0− 1). Now we have
|λ1,2| < 1 if 0 < Kµ < 2, while |λ3| < 1 if 0 < K(µ + γ)(R0−1) < 2. The conditionµ + γ < 1 together withR0 < 1
guarantees that|λi |< 1, i = 1,2,3 and henceE0 is locally asymptotic stable. IfR0 > 1, we will have|λ3|> 1 and hence
E0 is unstable.

Next, we discuss the stability ofE∗.

Theorem 2.E∗ is locally asymptotically stable ifR0 > 1.

Proof.Evaluating J atE∗ gives

J =







1−KµR0
−Kβ
R0

0

1+ Kµ
β (µ + γ)(R0−1) 1 0

0 Kγ 1−Kµ






.
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The characteristic equation of eigenvalues associated toJ evaluated atE∗ reads:

P(λ ) = (1−Kµ −λ )((1−KµR0−λ )(1−λ )+K2µ(µ + γ)(R0−1)) = 0, (8)

with λ1 = 1−Kµ , where|λ1|< 1 if 0 < Kµ < 2. As a matter of fact, to discuss the stability ofE∗, we should study the
roots of

F(λ ) = (1−KµR0−λ )(1−λ )+K2µ(µ + γ)(R0−1),

= λ 2+λ (KµR0−2)+1−KµR0+K2µ(µ + γ)(R0−1),
(9)

as follows:
WhenR0 > 1, we have

F(1) = K2µ(R0µ +R0γ − µ − γ)
= K2(R0µ2+ µR0γ − µ2− µγ)
= K2(R0(µ2+ µγ)− (µ2+ µγ))
= K2(µ2+ µγ)(R0−1)> 0.

F(−1) = 4−2KµR0+K2µ(µ + γ)R0−K2µ(µ + γ)
= 4−KµR0+K2µ2

R0+K2µγR0−K2µ2−K2µγ < 0.

Now we are left with the constant term inF(λ ) which is given by
C = 1−KµR0+K2µ(µ + γ)(R0− 1) < 1. Thus, the Jury criteria is satisfied for the characteristic equation (9) which
implies that|λ2|< 1 and|λ3|< 1. Hence,E∗ is locally asymptotically stable.

Depending onλ1,λ2 andλ3, the three roots of the jacobian matrixJ, we have the following topological properties of the
equilibria of model (7) as follows:
(1) If |λ1|< 1, |λ2|< 1 and|λ3|< 1, then E(S, I, R) is a sink which is locally asymptotic stable;
(2) If |λ1|> 1, |λ2|> 1 and|λ3|> 1, then E(S, I, R) is a source which is unstable;
(3) If |λ1|> 1, |λ2|> 1 and|λ3|< 1 (or |λ1|< 1, |λ2|> 1 and|λ13|> 1), then E(S, I, R) is a saddle which is unstable;
(4) If |λ1|= 1 or |λ2|= 1 or |λ3|= 1, then E(S, I, R) is non-hyperbolic.

According to these definitions, we can classify equilibria of the model (7) topologically in the next propositions

Proposition 1.E0 has the following properties:
E0 is a sink if:
(i) 0< Kµ < 2, and (ii) 0< K(µ + γ)(R0−1)< 2.
E0 is a source if:
(i) K µ > 2 and (ii) K(µ + γ)(R0−1) ∈ (−∞,−2]∪ [0,∞), providedR0 < 1.
E0 is a saddle if:
(i) 0< Kµ < 2, (ii) K (µ + γ)(R0−1)> 0, and (iii) K(µ + γ)(R0−1)<−2.
Or
(i) K µ > 2, and (ii) 0< K(µ + γ)(R0−1)< 2.
E0 is a non-hyperbolic if:
(i) K µ = 2, or (ii)R0 = 1.

Proposition 2.The endemic equilibria E∗ has the following properties:
E∗ is a sink if:
(i) R0(Kµ +Kγ −1)< K(µ + γ), (ii) R0(Kµ +Kγ −2)< K + γ, and (iii) 0< Kµ < 2.
E∗ is a source if:
(i)R0(Kµ +Kγ −2)< K + γ, (ii) R0(Kµ +Kγ −1)> K(µ + γ), and (iii) Kµ > 2.
E∗ is a saddle if and only if:
(i)R0(Kµ +Kγ −1)Kµ < K2(µ + γ)−4, and (ii) 0< Kµ < 2.
E∗ is non-hyperbolic if:
(i) R0(Kµ +Kγ −1) = K(µ + γ), (ii) 4(µ + γ)<R0(4γ +3µ), and (iii) Kµ = 2.
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4 Analytical Representation of Bifurcations of the Discretized Model

This section investigates the analytical representation of bifurcations of the model (7) relaying on the bifurcation
parameters. Ifλ1, λ2, andλ3 are the roots of the characteristic equation

λ 3+ c1λ 2+ c2λ + c3 = 0,

then as well known:
c1 =−(λ1+λ2+λ3),c2 = λ1λ2+λ1λ3+λ2λ3,c3 =−λ1λ2λ3. (10)

By the Von Neumann theorem of equilibria,E(S, I ,R) is asymptotically stable iff for all eigenvalues ofJ we have|λi |< 1,
i = 1,2,3. The latter condition defines the domain of attraction of equilibria.

4.1 Critical bifurcation surfaces at E0

ForE0 = (1,0,0), we find that

c1 = 3Kµ +Kγ −3−KR0(µ + γ),
c2 = 2−Kγ +KR0(µ + γ)+ (1−Kµ)2+(1−Kµ)(1+K(µ+ γ)(R0−1)),
−c3 = (1−Kµ)2(1+K(µ + γ)(R0−1)).
Introduce the new parametersb0,b1,b2,b3 such that:
b0 = 1+ c1+ c2+ c3, b1 = 3+ c1− c2+3c3, b2 = 3c1− c2+3c3, b3 = 1− c1+ c2− c3. Thus we have
b0 = 3Kµ +(1−Kµ)(1+Kµ(1+Kµ(µ+ γ)(R0−1)),
b1 = 3Kµ +2Kγ −2KR0(µ + γ)−2+(1−Kµ)(−1+Kµ+(2−3Kµ)1+K(µ+ γ)(R0−1)),
b2 = (4−3Kµ)(1− (1−Kµ)(1+K(µ+ γ)(R0−1)))− (1−Kµ)2,
b3 = 6−3Kµ −2Kγ +2KR0(µ + γ)+ (1−Kµ)2+(1−Kµ)(2−Kµ)(1+K(µ+ γ)(R0−1)).

By constructing the Routh-Hurwitz matrix




b1 b3 0
b0 b2 0
0 b1 b3



 ,

and its main minors
△1 = b1, △2 = b1b2−b0b3, △3 = b3△2. The classical condition of asymptotic stability are
b0 > 0;b1 > 0;b2 > 0;b3 > 0;b1b2 > b0b3. The domain of attraction ofE0 is defined by three inequalities:
(1)3Kµ +(1−Kµ)(1+Kµ(1+Kµ(µ+ γ)(R0−1))> 0,

(2)6+2KR0(µ + γ)+ (1−Kµ)2+(1−Kµ)(2−Kµ)(1+K(µ+ γ)(R0−1))> 3Kµ +2Kγ,

(3)(3Kµ +2Kγ −2KR0(µ + γ)−2+(1−Kµ)(−1+Kµ +(2−3Kµ)1+K(µ + γ)(R0−1)))((4−3Kµ)(1− (1−
Kµ)(1+K(µ + γ)(R0 − 1)))− (1−Kµ)2) > (3Kµ +(1−Kµ)(1+Kµ(1+Kµ(µ + γ)(R0 −1)))(6− 3Kµ − 2Kγ +
2KR0(µ + γ)+ (1−Kµ)2+(1−Kµ)(2−Kµ)(1+K(µ+ γ)(R0−1))).

The domain of attraction has boundaries which are given by the two planes,

(i) b0 = 0⇒ (µ + γ)(R0−1) = 2Kµ+1
K2µ(Kµ−1)

,

(ii) b3 = 0⇒ 6+2KR0(µ + γ)+ (1−Kµ)2+(1−Kµ)(2−Kµ)(1+K(µ+ γ)(R0−1)) = 3Kµ +2Kγ,

and a saddle(3Kµ + 2Kγ − 2KR0(µ + γ)− 2+ (1− Kµ)(−1+ Kµ + (2− 3Kµ)1+ K(µ + γ)(R0 − 1)))((4−
3Kµ)(1− (1−Kµ)(1+K(µ + γ)(R0−1)))− (1−Kµ)2) = (3Kµ +(1−Kµ)(1+Kµ(1+Kµ(µ + γ)(R0−1)))(6−
3Kµ −2Kγ +2KR0(µ + γ)+ (1−Kµ)2+(1−Kµ)(2−Kµ)(1+K(µ+ γ)(R0−1))).

In Figure (1)[46],the first plane intersects the saddle by the sides AD and BD;and the second plane intersects the
saddle by the sides AC and BC; these two planes and the saddle will be called critical bifurcation surfaces.

From (10) we can write
b0 = (1−λ1)(1−λ2)(1−λ3),
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Fig. 1: Domain of attraction of model (7).

b3 = (1+λ1)(1+λ2)(1+λ3).
Thusb0 = 0 is a divergence plane because at least one of the eigenvalues is equal to 1. That is, the dynamics are divergent.
Onb3 = 0 at least one of the eigenvalues is equal to 1, that is, the dynamics are oscillatory. Every point on the flip triangle
ABC matches two-periodic cycle. The periodic doubling sequence is generated by the movements of the equilibria through
it leading to chaos.

5 Numerical simulations

This section is mainly devoted to perform some numerical simulations to illustrate our analytical results and to revealthe
complex dynamics of the discretized model (7) such as bifurcation, chaos, phase portrait. In all numerical simulations we
taker = 0.01,µ = 1,γ = 1, andβ = 3.
With these parameters values, direct calculations giveR0 = 1.5. Figure (2) shows the trajectories of the discretized SIR
model (7) for α = 0.80,0.85,0.90,0.95. Whenα → 1, the number of infected individuals increases compared with the
case whenα = 0.80, while the number of recovered individuals decreases when α → 1. Figure (3) insures that taking
α smaller than 1, the number of infected individuals is being decreased while the number of recovered individuals is
being increased at the same time. Figure (4) shows the phase portraits of model (7) for different α. Theorem 1 and
Theorem 2 imply thatE0 = (1,0,0) is locally asymptotically stable whenR0 < 1 and unstable whenR0 > 1. On the
contrary,E∗ = (0.6667,0.1667,0.1667) is asymptotically stable whenR0 > 1. This means that whenR0 < 1, every
person contracts to the disease will infect less than one person before dying or recovering while whenR0 > 1, there will
be disease outbreak. This is clearly shown in Figure (5) and Figure (6).

From the epidemiological point of view, we assume that the inequalities rα

Γ (1+α)(β + µ) < 1 and rα

Γ (1+α)(µ + γ) < 1
hold. If they are hold, then all solutions of model (7) with positive initial conditions are non-negative, then the numerical
simulations show that model (7) does not show any complex dynamics at all. On the contrary, if they are not satisfied, then
model (7) may exhibit more complex dynamics. The numerical simulations illustrate that there exists a period-doubling
bifurcation sequence leads to chaos as shown in Figures (5) and (6). For smallR0 the endemic equilibrium is unique
and locally asymptotically stable (see Figure (5)(a)). WhenR0 ≃ 99, the endemic equilibrium losses its stability, and a
stable periodic solution of period 2 appears (see Figure (5)d). WhenR0 ≃ 112, the periodic solution of period 2 losses
its stability, and a stable periodic solution of period 4 appears. IfR0 is increased further, the periodic solution of period
4 becomes unstable, and a periodic solution of period 8 appears. The numerical simulations illustrate that the period-
doubling bifurcation may continue and go to chaos (see Figure (5)d)). From Figures (5) and (6), we can see that the
chaotic behavior is being delayed whenα = 0.95 if compared withα = 0.85.
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(a) (b)

(c) (d)

Fig. 2: Trajectories of model (7) for differentα with initial conditions(S0, I0,R0) = (0.1,0.9,0)

(a) (b)

Fig. 3: (a)Infected individuals and (b) recovered individuals of (7) for differentα
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(a) (b)

(c) (d)

Fig. 4: Phase portraits of model (7) for differentα

(a) (b)

(c) (d)

Fig. 5: Bifurcation diagram of model (7) as a function ofR0 with α = 0.85
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(a) (b)

(c) (d)

Fig. 6: Bifurcation diagram of model (7) as a function ofR0 with α = 0.95

6 Conclusion

The asymptotic behavior of a discrete SIR epidemic model forInfluenza A viruses have been considered. The discrete
model is obtained by applying a discretization method for fractional-order differential equations with piecewise constant
arguments. Explicit conditions for local asymptotic stability of the disease free equilibrium and endemic equilibrium are
given. Equations and inequalities of critical bifurcationsurfaces at the disease free equilibrium are given. Indeed,taking
the fractional-order parameterα → 1, the number of infected individuals will be increased while reducing the value ofα
below 1, such asα = 0.95,090,85,80, gives better results. That is choosing 0< α < 1 decreases the number of infected
individuals and increases the number of recovered ones. In reality,α should be chosen to be not less than 0.80 to better
simulate biological processes.
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