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Abstract: In the present work, a discretized fractional-order SIR ebdar an Influenza A viruses is derived. The basic reprodacti
numberfRg is defined and the dynamic behavior of the discretized mal@hviestigated. Local stability of both the disease free
equilibrium and the endemic equilibrium is investigatedugtions and inequalities of critical bifurcation surfaee the disease free
equilibrium are given. Numerical simulations are perfodieeassure the analytical results obtained and to reveabtimglex dynamics

of the discretized model.
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1 Introduction

Infectious diseases have always been an important part ofifeu Many of them, such as Influenza, have small
symptoms and are purely an annoyance; but others, such &, Allus with dread. Over the past decades, the spread of
diseases has been understood with the help of mathematiedaiiyng basic public-health questions to some infection
parameters. Mathematical modeling is central to infectidisease epidemiology. They describe the dynamical ewalut
of infectious diseases which improve our understanding@edictive ability. Simplest models classify individuas
one of susceptible, infectious or recovered; this is knositha SIR model. An infectious disease transmission dyramic
can be described by modeling the individuals. Epidemic rnwdkefined in continuous-time have been widely
investigated by many researcherg]{[5]). Meanwhile, many researchers used some discretizatiethads to the
continuous-time systems to study the consistency, coewery permanence, stability of the discrete systedit[(]).

In recent years, many authors have suggested that digaretenodels are more suitable than their continuous
counterparts. This actually because They do not only hazdaisic properties of their continuous counterparts bt als
they provide a reduction of computer timE])]. In fact, discrete models exhibit more complex dynamiesithbserved in
the continuous-time models and their dynamics can not bedigiesl biologically (L1]-[15]).

Influenza, or “flu”, is a birds and mammals infectious dise&seirus classification, influenza viruses are RNA viruses
that make up three of the five genera of the family Orthomysidae: Influenza virus A, Influenza virus B, and Influenza
virus C. The the most virulent human pathogens among the thfleenza types are type Al@-[20]).

Fractional calculus is a branch of mathematics which carecéne possibility of taking arbitrary orders of the
differential and integral operators. Actually, this brhrattracted the attention of many researchers and engisieees
long time ago (se€e?[1]-[31]). Many systems in different fields may be described viatfoaal derivatives in which both
integration and differentiation can be applied to any aabjtorder. For those who are interested in existence ofisols
for fractional differential equations, they can s&2]{[35. In this paper we adopt the basic definitions (Caputo) of
fractional-order calculus:

Definition 1.The fractional integral of ordefd € R™ of the function ft), t > 0is defined by

_g)B-1
Iﬁf(t)z/ot%f(s)ds
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and the fractional derivative of ordex € (0,1) of f(t), t > Ois defined by

agpy_1adf(t)
DYf(t) =11 TR

The following results are also of the main importance inticawl calculus. Lef3,y € R™, a € (0,1),
o811 5 L1 andiff(x) € L, therd 15 f(x) = 1P £ (x).

elimg_,, Igf(x) = 18f(x) uniformly on[a,b], n=1,2 3, ..., where

11f(x) = [Xf(s)ds

° IimB_,Olgf( x) = f(x) weakly.

o If f(X) is absolutely continuous da, b], then lim,_,; D f(x) =
The rest of the paper is organized as follows. Section 2 sejits the formulatlon of the model for Influenza. In Sectipn 3
we discuss the equilibria of the model and their local siigtanalysis. Section 4 investigates the analytical regmestion

of bifurcations of the discretized model. Numerical sintiglas are carried out in Section 5. Finally, we conclude in
Section 6.

df(x)

2 Formulation of the Model

Kermack and McKendrick set a SIR mod&f] to explain increasing and decreasing number of infectidividuals
observed in epidemics and is given by

d_S=_33|
9—3& 1)
dR_ v,

whereS denotes the susceptible numHedenotes the infectious number aRds the recovered individuals numbgrjs
the rate of transmission , anyds the rate of recovery. From a biological point of view, alrpameters to be non-negative.
Suppose thdll denote the size of population. Obiviously,

N=S+I1+R and
N'=S+I"+R =0,

where the “dots” denotes derivative w.r.t. time.

In model @), both rate of birth and death are not considered while tteeabtransmissioi8 is considered as a constant.
In this paper, the following assumptions are taken into anto

(1) Introduced a new susceptible at a constant rate of pirth

(2) The same constant birth rgtes introduced to both the infectious and recovered indialduy

(3) Constant death rate is introduced to the three classesigfduals and is equal to the birth rate

From assumption (3), it is pretty clear that the populatiae $s fixed. To make it simple, we skt= 1. The new SIR
model reads:

ds

azu—uS—BSI,

9—3&—w+w (2)
dR_yI 3

A significant difference between fractional-order modetsl gheir integer-order counterparts is that the first passes
memory. In the the current paper, we will introduce the fawl-order derivative to modeR) with piecewise constant
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arguments as follows

z:a—u uS(r[ I)— BS(r[;])I(r[;]), te (nn(n+1)r,n=0,1,2,..,
jtil—ﬁsm)([:]) (u+ YL, @
e = (L))~ BR(Y)),

where [.] denotes the greatest integer function<O < 1 is the discretization step size, amdec (0,1) is the
fractional-order parameter. Most of biological processey be described more suitably by discrete-time modelerath
than their continuous counterparts. Biological dynamigsatibed via discrete systems should be meaningful: Irduen
outbreaks occur during winter while the disease is somesvhke during summer. Now, we apply the discretization
method represented iB7]-[40] and lettingt — (n+ 1)r, we end up with the discretized model

a

Sii1=S+ (Ha)(u—usn—ﬁsnln),
|n+1:|n+m(331ln_(u+y)ln)a (4)
Rn+1—Rn+ (1+a)(yln—IJRn)-
To analyze modeH), suppose that
$(0),1(0),R(0) =0, S(0)+1(0)+R(0)=1. (5)

Biologically, the solution of modeM)should be non-negative with initial values satisfyiig. (This can be guaranteed if
the two following inequalities hold:
rd a

m([3+u)<1, and )(u+y)<1. (6)

Fl+a

The two inequalities in@) are essential demands for modé).(The first, =7 1+a (B+ ) < 1, illustrates that the

susceptible in percentage who get infected or die is less dha within a unit time. The secongalH—a H+y) <1,

shows that the infected individuals in percentage who gebvered or die is less than one Within a unit time.
Obliviously, those two inequalities ensure ti®an), | (n),R(n) > 0 for alln > 0 if (5) is satisfied.

Since the basic reproductive numisgg is one of the essential concepts in mathematical biologig known as the
average number of secondary infected individuals causealdiggle infectious individual during their whole infeai®
lifetime. We would like to pay attention thatg is a dimensionless number and not a rate which would have ohit
time™L. As it is mentioned in 41] about the importance oty “One of the foremost and most valuable ideas that
mathematical thinking has brought to epidemic théofjiy often used as a threshold that can predict whether a certain
disease dies out or persists in a population. We calculaebtsic reproductive number for modél) (following
instructions in #2]-[44] which is given by?Rg = %, In the next section, we analyze the local stability of guit of
model @) depending 0fRg.

3 Equilibria and Local Stability

Rewrite model 4) in terms ofRp we have

a

S1=S+ (1+a)(u—u31—[531ln),
|n+1:|n+m(u+y)(mosnln—|n), (7)
Roi1 = Rot g gy (= HR).
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Equilibria of the modelT) should satisfy the following set of algebraic equations

p—puS—BSl=0,
RoSI—1 =0,
VI - UR = 07
where,_d—i'm) > 0. Itis clear that model?) has two equilibria, the disease free equilibrigfh= (1,0,0) for all parameters

values and a unique endemic equilibrium wiép > 1 given byE* = (-, W, %). The local asymptotic
stability of the disease free equilibriuE? is discussed in the next theorem

Theorem 1The disease free equilibriunPBf model 8) is locally asymptotically stable @ < 9ig < 1, and E is unstable
if Ko > 1.

ProofThe local asymptotic stability &&° can be investigated by linearization. The Jacobian Matnixifodel @) is given

by
1-K(u+pBI) —KBSs 0
J=| K(H+Yy)Rol 1+K(u+y)(ReS-1) 0 ],
0 Ky 1-Ku
whereK = ,_d—ia) The jacobian matrix evaluated & is given by
1-Ku —Kg 0
J= 0 1+K(H+y)(PRo—-1) O .
0 Ky 1-Ku

We look for the necessary and sufficient conditions ESrto have all the eigenvalues ; roots of the characteristic
polynomial; less than one in modulus

F(A)=A%—(A+B+C)A2+ (AB+AC+BC+KBSD)A — ABC— KBSDC
whereA=1—-K(u+ 1), B=1+K(u+y)(:RS—1), C=1—Kpy, andD = K(u + y)%Rol. Following [45 the
eigenvalues of the polynomial given above have to satigyfahowing conditions:

1.1- (A+B+C)+AB+AC+ BC+KBSD— ABC—- KBSDC> 0,
2.1+ A+B+C+AB+AC+BC+KBSD+ABC+KBSDC> 0,
3.1— (AB+ AC+ BC+KBSD) + (A+ B+ C)(ABC+ KBSDC) + (ABC+ KBSDC)2 > 0,

4AB+AC+BC+KBSD< 3.

The eigenvalues associatedd@valuated aE® areA; , = 1 — Ky, andAz = 1+ K (i + y) (9o — 1). Now we have
|A12] < 1if 0 < Ku < 2, while [A3] < 1if 0 < K(u+y)(9o—1) < 2. The conditionu + y < 1 together withip < 1
guarantees thadi| < 1,i = 1,2,3 and henc&? is locally asymptotic stable. fRo > 1, we will have|A3| > 1 and hence
ECis unstable.

Next, we discuss the stability &™.
Theorem 2E* is locally asymptotically stable iR > 1.

ProofEvaluating J aE* gives

1—KuRo w2 0
I=| 1+ (u+y)(FRo-1) 1 0
0 Ky 1-Ku
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The characteristic equation of eigenvalues associaté@valuated aE* reads:
P(A) = (1-Ku—A)((1—Kpudo—A)(1-A) + K2u(u+y) (Ro— 1)) =0, (8)

with A3 = 1—Kpu, where|A;| < 1if 0 < Ku < 2. As a matter of fact, to discuss the stabilityEf, we should study the
roots of

F(A) = (1—KuRo—A)(1—-A) +KZ2u(k+y)(Ro— 1),

)
=A%+ A(KuRo—2) + 1 — KuRo+ K2p (i +y) (o — 1),

as follows:

Whenig > 1, we have

F(1) = K2u(Rop +Roy — i —y)
= K2(Rou? + uRoy — u? — uy)
= K2(Ro(U?+ py) — (4> + 1y))
= K3(p®+ py)(Ro—1) > 0.

F(—1) = 4— 2KuRo+K2u(u +y)Ro— K2u(p +y)
= 4— KuRo+ K2u?Ro+ K2uyRo — K22 —K?uy < 0.

Now we are left with the constant term (A ) which is given by
C=1-KuRo+ K2u(u+y)(Ro—1) < 1. Thus, the Jury criteria is satisfied for the characteristjuation 9) which
implies that|A,| < 1 and|A3| < 1. HenceE* is locally asymptotically stable.

Depending o, A, andAs, the three roots of the jacobian matdixwe have the following topological properties of the
equilibria of model 7) as follows:

(1) If [A1] < 1,]A2] < 1 and|Agz| < 1, then E(S, |, R) is a sink which is locally asymptotic stable

(2) If |A1] > 1,|A2| > L and|A3| > 1, then E(S, |, R) is a source which is unstable;

(3) If |A1] > 1,|A2| > Land|A3| < 1 (or|A1] < 1,]A2] > 1 and|A13| > 1), then E(S, |, R) is a saddle which is unstable;
(4) If [A1] =1 or|A2| = 1 or|A3| =1, then E(S, |, R) is non-hyperbolic.

According to these definitions, we can classify equilibfithe model ) topologically in the next propositions

Proposition 1 E° has the following properties:

E%is a sink if:

(i) 0< Ku < 2,and (i) 0 < K(u + y)(Ro— 1) < 2.

ECis a source if:

(i) Kpu > 2and (i) K( + y)(Ro— 1) € (—o0,—2]U[0, ), providedRg < 1.
E is a saddle if:

(i) 0< Ku <2, (i) K(U+y)(Ro—1) >0, and (jii) K(u + y)(Ro— 1) < —2.
Or

(i) K > 2, and (i) 0 < K (1 + y)(Fo— 1) < 2.

EC is a non-hyperbolic if:

() Ku =2, or (i)Ro= 1.

Proposition 2.The endemic equilibria Ehas the following properties:

E* is a sink if:

() Ro(Ku+Ky—1) <K(u+Yy), (i) Ro(Ku+Ky—2) < K+ y, and (iii) 0 < Ku < 2.
E* is a source if:

()Ro(Ku+Ky—2) <K+, (ii) Ro(Ku+Ky—1) > K(u+Y), and (jii) Ku > 2.

E* is a saddle if and only if:

(Ro(Ku+Ky—1DKu < K?(u+y)—4,and (i) 0 < Ku < 2.

E* is non-hyperbolic if:

() Ro(Ku+Ky—1) =K(u+Yy), (i) 4(u+y) < Ro(4y+3u), and (i) Ky = 2.
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4 Analytical Representation of Bifurcations of the Discreized Model

This section investigates the analytical representatiobifoircations of the model ) relaying on the bifurcation
parameters. A1, A2, andAz are the roots of the characteristic equation

A4+ A%+ oA +c3=0,

then as well known:
CL = —()\1+/\2—|—/\3), Co = A1A2 + A1A3+ AoA3,C3 = —A1A2A3. (10)

By the Von Neumann theorem of equilibria(S, I, R) is asymptotically stable iff for all eigenvaluesdive havelAi| < 1,
i =1,2,3. The latter condition defines the domain of attraction of Blojia.

4.1 Critical bifurcation surfaces at &
ForE® = (1,0,0), we find that

1 = 3K +Ky—3—KRo(U +Y),
C2 =2~ Ky+KRo(U +y) + (1= Kp)*+ (1= Kp) (1+ K (p+y) (Ro — 1)),
—C3 = (1 - Kp)*(1+K(K+y)(Ro—1)).
Introduce the new parameteyg by, by, bz such that:
bg=1+cy+cCr+C3 by =3+c1—co+3cz by =3c; —cp+3c3, b =1 —cq+Cy— c3. Thus we have
bo = 3Kp + (1 —Ku)(1+Ku(1+Ku(pu+y)(Ro—1)),
by = 3K+ 2Ky —2KRg(U +y) — 24 (1 — Ku) (=1 +Kpu+ (2—3Ku)1+K(u+y) (%o —1)),
by = (4—3Kp)(1— (1= Kp)(1+K(p+y)(FRo—- 1)) — (1-Kp)?,
bg = 6 — 3K — 2Ky + 2KRo(p +¥) + (1= Kp)? + (1 = Kp) (2 = Kp)(L+ K (U + y)(Fo— 1))

by bz O

bob, O |,

0 by bs
and its main minors

A1 = by, ANy =biby —bgbs, Az = bz/\,. The classical condition of asymptotic stability are
b > 0;b; > 0;b, > 0;bs > 0;byb, > bobz. The domain of attraction d&° is defined by three inequalities:
(1)3Kp+ (1K) (1+Kpu(l+Kp(p+y)(Ro—1)) >0,

By constructing the Routh-Hurwitz matrix

(2)6+2KRo(p +y) + (1= Kp)?+ (1= Kp) (2= Kp) (1 +K(u+y)(Ro— 1)) > 3Kp+ 2Ky,

(3)(BKH + 2Ky —2KRo(u +y) — 2+ (1 - Kp)(=1+Kp + (2—3Kp) 1+ K (U +y)(Ro — 1)) ((4 — 3Kp)(1— (1 -
KU)(L+K(p+y)(Ro - 1)) = (1 Ku)?) > (3Kp + (1 — Kp)(L+ Kp(1+Kp(p +y)(Ro —1)))(6 — 3Ku — 2Ky +
2KRo(H+Y) + (1 - Kp)?+ (1 - Kp)(2— Kp) (1+K(p+y)(Ro—1))).

The domain of attraction has boundaries which are given éywio planes,

L o 2Kp+l
() bo=0= (4 +y)(Ro—1) = 2,1

(i) b3 = 0= 6+ 2KRo(K +y) + (1 — Kp)*+ (1 - Kp)(2 — Kp) (L + K(p+ y)(Ro — 1)) = 3K + 2Ky,

and a saddlg3Kpu + 2Ky — 2KRo(U +y) =2+ (L - Kp) (=1 + Ky + (2= 3Ku) 1+ K(p + y)(Ro — 1)) ((4 —
BKH)(1— (1= Kp)(1+K(H+y)(Ro—1))) = (1 —Ku)?) = (3Kp + (1= Kp)(1+Kp(1+Kp(k+y)(Ro—1))) (6 -
3K — 2Ky +2KRo(p +y) + (1= Kp)?+ (1 - Kp) (2= Kp) (1+ K (1 + ) (Ro — 1))).

In Figure ()[46],the first plane intersects the saddle by the sides AD and@id;the second plane intersects the
saddle by the sides AC and BC; these two planes and the sadidbe walled critical bifurcation surfaces.

From @0) we can write
bo = (1—A1)(1—A2)(1-As),
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Flig plane
Divergence plane *

B1,-1.-1)

Al-1-1.1)

Fig. 1: Domain of attraction of modery.

bz = (1+2A1)(1+A2)(1+ A3).

Thusby = 0 is a divergence plane because at least one of the eigeavalegual to 1. That is, the dynamics are divergent.
Onbs = 0 at least one of the eigenvalues is equal to 1, that is, thardigs are oscillatory. Every point on the flip triangle
ABC matches two-periodic cycle. The periodic doubling sate is generated by the movements of the equilibria through
it leading to chaos.

5 Numerical simulations

This section is mainly devoted to perform some numericautations to illustrate our analytical results and to rextbel
complex dynamics of the discretized mod8l §uch as bifurcation, chaos, phase portrait. In all nuraésienulations we
taker =0.0L,u=1,y=1,andgB = 3.

With these parameters values, direct calculations fiye= 1.5. Figure ) shows the trajectories of the discretized SIR
model (7) for a = 0.80,0.85,0.90,0.95. Whena — 1, the number of infected individuals increases comparei thie
case whera = 0.80, while the number of recovered individuals decreaseswhes 1. Figure @) insures that taking
o smaller than 1, the number of infected individuals is beiegrdased while the number of recovered individuals is
being increased at the same time. Figufp ghows the phase portraits of mod#) for differenta. Theorem 1 and
Theorem 2 imply thaE® = (1,0,0) is locally asymptotically stable whe#tp < 1 and unstable whef&, > 1. On the
contrary,E* = (0.6667,0.1667,0.1667) is asymptotically stable whefiy > 1. This means that wheftg < 1, every
person contracts to the disease will infect less than oreopdyefore dying or recovering while whéty > 1, there will

be disease outbreak. This is clearly shown in FigGyed Figure §).

From the epidemiological point of view, we assume that tfwimlitiesmi—i'm) B+u <1 and,_(i—ia)(u +y) <1
hold. If they are hold, then all solutions of mod@) (vith positive initial conditions are non-negative, thée numerical
simulations show that model) does not show any complex dynamics at all. On the contiahgy are not satisfied, then
model () may exhibit more complex dynamics. The numerical simatatiillustrate that there exists a period-doubling
bifurcation sequence leads to chaos as shown in Figdeand 6). For small%Ry the endemic equilibrium is unique
and locally asymptotically stable (see Figus(é)). When%g ~ 99, the endemic equilibrium losses its stability, and a
stable periodic solution of period 2 appears (see Figh@) (WhenRg ~ 112, the periodic solution of period 2 losses
its stability, and a stable periodic solution of period 4 egs. IfRg is increased further, the periodic solution of period
4 becomes unstable, and a periodic solution of period 8 app&he numerical simulations illustrate that the period-
doubling bifurcation may continue and go to chaos (see Eigbjd)). From Figuresg) and @), we can see that the
chaotic behavior is being delayed when= 0.95 if compared witha = 0.85.
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6 Conclusion

The asymptotic behavior of a discrete SIR epidemic modelrffltuenza A viruses have been considered. The discrete
model is obtained by applying a discretization method factional-order differential equations with piecewise stant
arguments. Explicit conditions for local asymptotic sli#piof the disease free equilibrium and endemic equilibriare
given. Equations and inequalities of critical bifurcatenfaces at the disease free equilibrium are given. Indakuhg

the fractional-order parametar— 1, the number of infected individuals will be increased whi#ducing the value af
below 1, such asr = 0.95,090,85,80, gives better results. That is choosing @ < 1 decreases the number of infected
individuals and increases the number of recovered onesality, o should be chosen to be not less than 0.80 to better
simulate biological processes.
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