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Abstract: In this paper, we have introduced Transmuted Weighted Exponential Distribution (TWED) and investigated its 

different characteristic as well as structural properties. Expressions for the Renyi entropy, Bonferroni curve and Lorenz 

curve have also been derived. In addition to it, we have also derived expressions for the PDF of first order, 
thn order and thr

order statistics. Two types of data sets are considered for making the comparison between special cases of TWED in terms 

of fitting. 

Nomenclature: 

TWED: Transmuted Weighted Exponential distribution  

TED: Transmuted Exponential distribution 

TLBED: Transmuted Length Biased Exponential distribution 

TABED: Transmuted Area Biased Exponential distribution 

WED: Weighted Exponential distribution  

ED: Exponential distribution 

LBED: Length Biased Exponential distribution 

ABED: Area Biased Exponential distribution 

MRL: Mean Residual Life 

QRTM: Quadratic Rank Transmutation Map 

AIC Akaike information criterion 

AICC Akaike information criterion corrected 

BIC Bayesian information criterion 

Keywords: Transmuted Weighted Exponential Distribution, Descriptive Statistics, Reliability, Entropy, Bonferroni and 

Lorenz Curve, Order Statistics, AIC, AICC, BIC. 

 

 

1 Introduction 

Statistics is the science of drawing inferences about random phenomena in which chances play a major role. Being a 

statistician, the first and foremost concern is to predict some future events with much higher accuracy and the accuracy of 

which can be guaranteed only by using the flexible and suitable models for modelling. In day-to-day life, the applicability 

of statistics, particularly statistical modelling is so vast that there is merely any field where statistics can’t be used. Use of 

statistics as a whole and statistical modeling in particular in different disciplines is meaningful only if it can be used the 

right way. Since for carrying out any type of statistical analysis, sampling techniques plays the fundamental role. Quite 

often people don’t contemplate on the type of sampling technique used in collecting the data due to which, most of the 

assumptions get violated and accordingly the results drawn do not seem to be valid anymore in real life. Thus, it is very 

imperative to look into the ways of sampling techniques used in extracting the part (sample) from the whole (population), 

before we go for statistical modelling. Sometimes, situations arise in real life where observations get selected with 

probabilities proportional to some function, usually known as weight function e.g. PPS (probability proportional to size) 
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and size biased sampling. It will not be genuine to carry out statistical modelling without taking into consideration the 

consequences of such situations. We sometimes require different types of model for fitting purpose. These models already 

do not exist. So to overcome such requirements, we use to develop some new models. These newly developed classes of 

distributions provide greater flexibility in modeling complex data and the results drawn from them seems quite sound and 

genuine. Thus our main concern becomes, to give importance especially to model specification and the data interpretation. 

Some of the unifying approaches for the development of new class of distributions are Transmutation, Truncation, 

Kumaraswamy-G, Marshall and Olkin-G, exponentiated-G, construction of weighted model etc. Weighted models take into 

consideration the method of ascertainment, by adjusting the probabilities of actual occurrence of events to arrive at a 

specification of the probabilities of those events as observed and recorded. We may arrive at the wrong conclusions, while 

failing to make such adjustment. The concept of weighted distributions can be traced to the work of Fisher [5], in 

connection with his studies, on how methods of ascertainment can influence the form of distribution of recorded 

observations. Later it was introduced and formulated in general terms by Rao[14]. In Rao’s paper [14], he identified 

various situations that can be modeled by weighted distributions. The concept of weighted distribution is also evident from 

the study of the effect of methods of ascertainment upon estimation of frequencies by Fisher [5]. L.L. Macdonald [12] 

showed the need for teaching weighted distribution theory. It is necessary to use the concept of weighted distribution while 

dealing with a stochastic process in which probability of generating an observation varies from observation to observation.  

The concept of weighted distributions attracted a lot of researchers to contemplate on and to carry out research on same. 

Van Deusen [19] arrived at size biased distribution theory independently and applied it to fitting distributions of diameter at 

breast height (DBH), data arising from horizontal point sampling (HPS) (Grosenbaugh) inventories. Subsequently, Lappi 

and Bailey [10] used weighted distributions to analyze HPS diameter increment data. In fisheries, Taillieet al.[17] modeled 

populations of fish stocks using weights. In ecology, Dennis and Patil [4] used stochastic differential equations to arrive at 

a weighted gamma distribution as the stationary probability density function for the stochastic population model with 

predation effects. Warren [20] was first to apply size biased distributions in connection with sampling wood cells. Jing [8] 

introduced the weighted inverse Weibull distribution and beta-inverse Weibull distribution. Gove [6] reviewed some of the 

more recent results on size-biased distributions pertaining to parameter estimation in forestry. Kvam, P [9] studied Length 

bias in the measurements of Carbon Nanotubes. Ahmed et al. [2] worked on new moment method of estimation of 

parameters of size-biased classical gamma distribution and its characterization. Reshi et al. [15] worked on new moment 

method of estimation of parameters of size-biased classical gamma distribution and its characterization. 

There exist a lot of model construction techniques in statistical literature. Herein, we are going to use the technique of 

transmutation and the concept of weighted distributions for introducing the transmuted weighted Exponential distribution 

(TWED). The motive behind the construction of TWED is to assess its potentiality and flexibility in modelling a particular 

data set. Quadratic Rank Transmutation Map (QRTM) has been used for transmutation. Researchers have studied 

transmuted versions of so many already existing distributions. Ahmad et al.[1] studied the Transmuted model of the Inverse 

Raleigh Distribution. Aryalet al.[3] studied the Transmuted Extreme Value Distribution. Hussainet al.[7] studied the 

Transmuted Exponentiated Gamma Distribution. Merovciet al. [13] studied the Transmuted Lindley Distribution. Now we 

are going to investigate different characteristic as well as structural properties of TWED. 

2 Derivation of Transmuted Weighted Exponential Distribution 

In this section, we have introduced TWED with the help of QRTM. QRTM was introduced by Shaw and Buckley [16], for 

developing the transmuted version of a particular distribution. QRTM is given by: 
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2
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Where  xFT and  xF  are respectively the distribution functions of Transmuted random variable and original random 

variable. 
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Substituting (2.3) as the base line distribution in (2.1), we will obtain the CDF of TWED as: 
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PDF of TWED will be given by differentiating (2.4) as: 
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Table 1: Some special cases of TWED. 
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3 Structural Properties of TWED 

In this section, various structural properties of TWED are discussed. Expressions for 
thr  non-central moment, mgf, 

Characteristic function, mean, variance, coefficient of variation, skewness and kurtosis are given. 

Theorem 3.1: If a random variable X follows TWED with the following PDF. 
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Then its thr  moment about zero i.e. r  is given by: 
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Where  zcbaF ;;,12  is known as hyper geometric function. 

Proof: 

        
  

dx
xxe

x
x

r
r 2

0
1

,1211








 






 

  
     )1.3(211

1
212

1

IIr 













 

Where, 

 

 
   

 
)3.3(

1

1;2;22,122
,1

)2.3(
1

1

12

0

2

1

0

1

























r

rx

r

rx

r

rrrFr
dxxxeI

r
dxxeI


















 

Now, using (3.2) & (3.3) in (3.1) we get: 
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a. Descriptive Statistics: 

a) Moments: 

First four moments about origin can be respectively obtained by substituting 4,3,2,1r  in equation (3.4) and are given as 

below:  
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b) Variance , coefficient of variation, Skewness and kurtosis: 

Variance is given by: 
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Coefficient of variation is given by: 
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Table 2: Characteristics of TWED at different value of ,  and  . 
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5 0.520 0.0896 1.178813 5.250957 0.5756396 

10 0.260 0.0224 1.178813 5.250957 0.5756396 

T
A

B
E

D
  

 

 

 

2 

0.8 
5 0.450 0.0675 1.411301 6.679012 1.2909940 

10 0.225 0.0169 1.411301 6.679012 1.2909940 

0.4 
5 0.525 0.0994 1.349684 5.862941 1.3119030 

10 0.262 0.0248 1.349684 5.862941 1.3119030 

0  (ABED) 
5 0.600 0.1200 1.154701 5.000000 1.2909940 

10 0.300 0.0300 1.154701 5.000000 1.2909940 

-0.4 
5 0.675 0.1294 1.009331 4.595043 1.2521590 

10 0.337 0.0323 1.009331 4.595043 1.2521590 

-0.8 
5 0.750 0.1275 0.971959 4.584775 1.2055430 

10 0.375 0.0319 0.971959 4.584775 1.2055430 

 

Coefficient of skewness is given by: 
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Coefficient of kurtosis is given by: 
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Where,  
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From table-2, it can be observed that: 
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a) With the increase in weight parameter, mean and variance increase whereas the coefficient of variation, skewness and 

kurtosis decrease. 

b) With the increase in transmutation parameter, mean and variance decrease whereas the coefficient of variation, 

skewness and kurtosis increase. 

c) With the increase in rate parameter, mean and variance decrease whereas the coefficient of variation, skewness and 

kurtosis remain constant. 

Theorem 3.2: If a random variable X follows TWED with the following PDF. 
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Then its moment generating function and characteristic function are respectively given by: 
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Proof: 
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Now, by using equation (3.4) we get: 
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Also we have: 
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4 Quartile and Random Number Generation 

Inverse CDF Method is one of the methods used for generation of random numbers from a particular distribution. In this 

method, random numbers from a particular distribution are generated by solving the equation obtained on equating CDF of 

a distribution to a number p . The number p  is itself being generated from  1,0U . Thus following the same method for the 

generation of random numbers from TWED we will proceed as: 
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On solving equation (4.1) for x  at fixed values of parameters (  &, ), we will obtain the random number from the 

TWED. If 25.0p , 5.0p  and 75.0p  the resulting solutions will be the first quartile  1Q , Median  2Q and third 

quartile  3Q  respectively. Equation (4.1) is complex and can’t be solved manually. We used R software for solving it.  

5 Reliability Analysis of TWED 

a. Reliability Function 

Reliability of a system is defined as the probability that it will survive beyond a specified time T  based on a particular 

distribution. By definition, Reliability function (Survival function) is given by: 

   tFtR 1
 

Thus, Reliability function of TWED is: 
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b. Hazard rate is: 
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c. Mean Residual Life of TWED is: 

The mean residual life function is widely used in the field of reliability. MRL of a product having age t  is defined as the 

life to be expected for which a product survives after the age t . MRL is a conditional concept similar to that of failure rate 

and is conditioned on survival to time t . The main difference between MRL and failure rate function is that MRL provides 

information about the whole interval after t , whereas hazard rate provides information just after time t .   

Let )(tF  be the distribution function of a life time T of a component (i.e. 0)( tF , for 0t ) with finite first order 

moment, then mean residual life function is given by: 
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Thus, MRL for TWED will be given by: 
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Figure 2 

From fig. 2(c) it can be observed that, in case of TED, hazard rate is very high at the beginning then stars decreasing and 

becomes constant after some period of time. Whereas, for LBED, ABED, TLBED and TABED hazard rate is very low at 

the beginning, starts increasing and becomes asymptotically parallel to the hazard of Exponential distribution which is 

constant (i.e.   th ). 

6 Information Measures of TWED 

Renyi-Entropy 

The Renyi entropy of a random variable X  with PDF  xf is given by: 
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2(a) - CDF curves of TWED at different values of parameters
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2(b) - Reliability of TWED at different values of parameters
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7 Statistical properties of TWED 

a. Order Statistics 

The formal investigation of order statistics dates back to 1925 when Tippet [18] derived the CDF of largest order statistics 

from standard normal distribution and found the mean of sample range. Order statistics has a lot of applications in the field 

of reliability and life testing. There is also an extensive role of order statistics in several aspects of statistical inference. 

Let      nxxx ,..., 21  be an ordered sample of size n  from TWED. Then the PDF of        11 &,, mrn XXXX are respectively 

given as below: 

PDF of first order statistics (i.e.  1X  ) is given by: 
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PDF of largest order statistics (i.e.  nX  ) is given by: 
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PDF of  rX  (i.e. thr  order statistics) is given by: 
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And the PDF of Median  1m
X


 order statistics is given by: 

 
 

 
       xfxFxF

mm

m
xf T

m
T

m
TX nm







1
!!

!12
:1

 

 
 

           

  

         

  

        

  


























































22

2

1

,1211

1

,11,11

)4.7(
1

,11,11
1

!!

!12

:1













 xxexx

xx

mm

m

xf
x

m

m

X nm

 

b. Bonferroni and Lorenz curves 

Bonferroni and Lorenz curves are not only used in economics in order to study the relation between income and poverty, it 

is also being used in reliability, medicine, insurance and demography. The Bonferroni and Lorenz curve for the probability 

model with PDF  xf are respectively given by: 
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Thus, the Bonferroni curve for TWED will be given by: 
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Lorenz curve for the same distribution will be given as below: 
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8 Parameter Estimation 

In this section we have estimated the parameters of TWED by applying the method of Moments and Maximum Likelihood 

technique. 

a. Method of Moments 

In the method of moments, parameters are estimated on solving the system of equations, obtained on equating sample 

moments to the corresponding population moments. 

Let nxxx ,..., 21  be a random sample of size n  from the TWED. Thus on applying the method of moments we will have the 

following system of equations: 
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From (8.1) & (8.2) we will have: 
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Where,          11222211 &!,! SGSGsSGxqSGxp 
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Solving (8.3) for  we get: 
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Substituting the value of mm



  in (8.1) and solving for  we get: 
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b. Maximum Likelihood Method 

Let nxxx ,..., 21  be a random sample of size n  from TWED. Therefore the log Likelihood function will be given by: 
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On differentiating log likelihood function with respect to  ,&, and equating them to zero, we get the system of 

nonlinear equations. Manually solving the system of nonlinear equations is very tedious and cumbersome.  Therefore, we 

used R and Wolfram Mathematica for estimating the required parameters. 

9 Application 

In this section, we considered both a real life and a simulated data set. The real life data set is regarding remission times (in 

months) of 128 Bladder cancer patients reported in Lee and Wang [11]. Another data set is of size 100, simulated from 

TWED with weight parameter = 5, rate parameter = 5 and transmutation parameter = 0.5. The data set is simulated by using 

the Inverse CDF method discussed in section 4. The two data sets are given in table-3. 

Table 3 

Remission times (in months) of 128 patients of Bladder cancer. 

00.08   02.09   03.48   04.87   06.94   08.66   13.11   23.63   00.20   02.23   03.52   04.98   06.97   09.02  13.29   00.40   

02.26   03.57   05.06   07.09   09.22   13.80   25.74   00.50   02.46   03.64   05.09   07.26  09.47   14.24   25.82   00.51   

02.54   03.70   05.17   07.28   09.74   14.76   26.31   00.81   02.62   03.82 05.32   07.32   10.06   14.77   32.15   02.64   

03.88   05.32   07.39   10.34   14.83   34.26   00.90   02.69  04.18   05.34   07.59   10.66   15.96   36.66   01.05   02.69   

04.23   05.41   07.62   10.75   16.62   43.01  01.19   02.75   04.26   05.41   07.63   17.12   46.12   01.26   02.83   04.33   

07.66   11.25   17.14   79.05 01.35   02.87   05.62   07.87   11.64   17.36   01.40   03.02   04.34   05.71   07.93   11.79   

18.10   01.46 04.40   05.85   08.26   11.98   19.13   01.76   03.25   04.50   06.25   08.37  12.02   02.02   03.31   04.51 

06.54   08.53   12.03   20.28   02.02   03.36   06.76   12.07   21.73    02.07    03.36   06.93   08.65  12.63 22.69   05.49 

Simulated Data with 5, 5&, 0.5      

0.7660047  0.8714411  1.0745434  1.6769609   0.6980330  1.6408911  1.8529212 1.1779769  1.1389445  0.4992584  

0.7028155  0.6691981  1.2122347  0.8830980  1.3368963  0.9952879  1.2548992  2.4773397  0.8791312  1.3500543  

1.7959703  0.7095993  1.1664939  0.6044246  0.7677531  0.8850589  0.3484649  0.8814487  1.5512946  0.8404961  

0.9794871  1.1044428  0.9910676  0.6804794  1.4473096  1.1877950  1.3804932  0.5791565  1.2638212  0.9095389  

1.4335328  1.1607653  1.3597828  1.0530266  1.0283234  1.3714341  0.3947548  0.9746090  1.2766828  1.2199635  

0.9749995  1.5282523  0.9357897  0.7445966  0.5168388  0.5662155  0.8168929  1.0167819  1.1795122  0.9052107  

1.6953802  0.7944229  0.9565079  0.8327373  1.1654927  0.7583114  0.9759282  1.3309074  0.5413254  1.5673491  

0.8392720  1.4744349  0.8467040  0.8340901  0.9737287  1.6197623  1.5366055  0.8888257  1.3498358  1.9680565  

0.9324155  1.2475378  0.8985552  0.8258312  1.3156029  0.6991609  1.2455452  0.5990663  0.7453259  0.6281841  

0.7391544 0.4932884  1.1548928  1.5701163   1.3526397  1.3862791  0.9527287  0.9083808  1.4127727  1.1105903 

 

The motive behind considering these two data sets is to assess the potentiality and flexibility of TWED and its special cases 

in modelling. TWED and its special cases are fitted to the data sets given in table-3. MLE’s and different comparison 

criteria are given in table-4, after the fitting of TWED and its special cases to the data sets considered.    

 
 

Figure 3 
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Table 4:  MLE’s and different comparison criteria. 

 

Data 

 

Distn. 

MLE’s  

 llog2
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
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em
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 T
im

es
  

in
 

M
o

n
th
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TWED 0.270039  0.7111254 0.09362 822.282  833.1389 828.283 828.4764 

TED 0 (known) -0.253742   0.12098 828.463  838.1673 832.463 832.5592 

TLBED 1 (known) 0.5811125  0.17429 843.465  853.1695 847.465 847.5614 

TABED 2 (known) 0.529122 0.28140 908.769 918.4730 912.769 912.8648 

WED 0.172346 0 (known) 0.12518 826.736 836.4390 830.736 830.8316 

ED 0 (known) 0 (known) 0.10677 828.684 833.5360 830.684 830.7155 

LBED 1 (known) 0 (known) 0.21357 853.593 858.4450 855.593 855.6247 

ABED 2 (known) 0 (known) 0.32031 921.996 926.8480 923.996 924.0281 

S
im

u
la

te
d

  
D

a
ta

 TWED 5.000380  0.499712 5.00070 82.4099  96.22547 88.4099 88.65996 

TED 0 (known) -1.000000 1.26465 155.304  164.5152 159.305 159.4285 

TLBED 1 (known) -0.999997 2.49925 106.107  115.3181 110.108 110.2315 

TABED 2 (known) -0.999996 3.67172 87.0788  96.28916 91.0788 91.20253 

WED 5.168760 0 (known) 5.83644 87.4070 96.61740 91.4070 91.53077 

ED 0 (known) 0 (known) 0.93582 213.266  217.8717 215.267 215.3074 

LBED 1 (known) 0 (known) 1.72475 149.663  154.2685 151.663 151.7042 

ABED 2 (known) 0 (known) 2.71132 117.799  122.4045 119.799 119.8401 

10 Conclusion 

In this paper, we have introduced Transmuted Weighted Exponential distribution (TWED), which acts as a generalization 

to so many distributions viz. TED, TLBED, TABED, WED, LBED, ABED and classical ED. After introducing TWED, we 

investigated its different characteristic as well as structural properties. Two types of data sets have been considered in order 

to make comparison between special cases of TWED in terms of fitting. The data sets considered in this paper are both a 

real life and a simulated one. After the fitting of TWED and its special cases to the data sets considered, the results are 

given in Table-4. It is evident from the table-4 that, TWED possesses least values of AIC, AICC and BIC on its fitting, to 

both real life and simulated data set. Hence TWED will be treated as a best fitted distribution to the data sets given in table-

3 as compared to its other special cases. Therefore, for the two data sets, distributions in the order of best fit are. 

For Remission-times: 

(Best) TWED→ED→WED→TED→TLBED→LBED→TABED→ABED (Good) 

For Simulated Data: 

(Best) TWED→TABED→WED→TLBED→ABED→LBED→TED→ED (Good) 
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