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Abstract: In this paper the problem of estimating finite population variance under measurement errors is discussed. Some estimators
based on arithmetic mean, geometric mean and harmonic mean under measurement errors are proposed. Biases and mean square errors
of proposed estimators are calculated to the first order of approximation. A comparative study is made among the usual unbiased
estimator, usual ratio estimator and Kadilar and Cingi(2006a) estimator. Hypothetical study is also given at the end ofthe paper to
support the theoretical findings.
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1 Introduction

Generally in statistical analysis it is assumed that observations are recorded without any error. However, in practice,
this assumption may not be true and the data may be influenced by measurement errors due to various reasons, Cochran
[1], Sukhatme et. al.[9] and Biemer et.al. (1991)[7]. When the observations are influenced by measurement errors then
the estimates of population parameters (Mean, Variance, Total etc.) based on that values leeds to the incorrect estimates.
So the study of these effects is essential.

Measurement errors are generally taken as the difference between true and observed values on any desirable
Characteristic. Measurement errors are generally taken asnormally distributed with mean zero implies that average
effect of measurement errors on respondents answer is zero,chapter1 by Robert M. Groves(Measurement Errors in
Surveys)[7]. But it will increase the Variability, so estimation of effect of these errors needs attention. Many authors
including Das and Tripathi (1978) [2], Srivastava and Jhajj(1980)[15], Singh and Karpe (2009)[12], [13],[14] and Diana
and Giordan(2012)[3], studied the effect of measurement errors on estimation ofpopulation parameters. In the present
article we study the estimation of finite population variance in the presence of measurement errors.

2 Notations

Let us considerY andX are the study and auxiliary variables defined on a finite populationU = (U1,U2, ........UN) of size
N and a sample of size n is taken by simple random sampling without replacement(SRSWOR) on these two characteristics
Y and X. Here it is assumed thatyi andxi are recorded instead of true valuesYi andXi respectively. The observational
errors /measurement errors are defined as

ui = yi −Yi (1)

vi = xi −Xi (2)
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ui andvi are random in nature with mean zero and different variancesσ2
u andσ2

v respectively. It is assumed thatu′is and
v′is are uncorrelated althoughY ′

i s andX ′
i s are correlated. It is also assumed thatu′is andv′is are uncorrelated withY ′

i s and
X ′

i s respectively.
Let (µY ,µX ) and (σ2

Y ,σ2
X ) are mean and variances of(Y,X) ,i.e, study and auxiliary variables.ρ is the correlation

coefficient between X and Y. Let ¯y = 1
n ∑n

i=1 yi ,x̄ = 1
n ∑n

i=1 xi be the unbiased estimators of the population meansµY and
µX respectively.

s2
y =

1
n−1

n

∑
i=1

(yi − ȳ)2

and

s2
x =

1
n−1

n

∑
i=1

(xi − x̄)2

are the expected values ofs2
y ands2

x under measurement errors are
E(s2

y)= σ2
Y +σ2

u andE(s2
x)= σ2

X+ σ2
v

Let error variancesσ2
u andσ2

v are known a prior than unbiased estimators of population variance under measurement
errors are

σ̂2
y = s2

y −σ2
u > 0

σ̂2
x = s2

x −σ2
v > 0

Now, let us define

σ̂2
y = σ2

Y (1+ e0)

σ̂2
x = σ2

X (1+ e1)

E(e0) = E(e1) = 0

E(e2
0) =

Ay

n
,

E(e2
1) =

Ax

n

E(e0e1) =
δ −1

n

Where,

Ay = γ2Y + γ2u
σ2

u

σ2
Y

+2(1+
σ2

u

σ2
Y

)2

Ax = γ2X + γ2v
σ2

v

σ2
X

+2(1+
σ2

v

σ2
X

)2

δ =
µ22(X ,Y )

σ2
X σ2

Y

γ2z = β2z −3

,
β2z = µ4z/(µ2

2z)

and

µrz = E(zi − µz)
2;z = X ,Y,U,V
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µ22(XY ) = E{(Xi − µX)
2(Yi − µY )

2}

And

B =
σ2

X

σ2
X −CX

The usual unbiased estimator of the population variance of the study variable Y under measurement errors is defined
by

t0 = σ̂2
y (3)

=
1

n−1

n

∑
i=1

(yi − ȳ)2

Bias(t0) = 0 (4)

MSE(t0) = σ4
Y

Ay

n
(5)

Isaki (1983)[5] estimator under measurement errors

t1 = σ̂2
y

(

σ2
X

σ̂2
x

)

(6)

Bias(t1) =
σ2

Y

n
(1+Ax− δ ) (7)

MSE(t1) =
σ4

Y

n
(2+Ay+Ax −2δ ) (8)

Kadilar and Cingi (2006a)[6] estimator under measurement errors is

t2 = σ̂2
y

(

σ2
X −CX

σ̂2
x −CX

)

(9)

Bias(t2) =
σ2

Y

n
B(1+BAx− δ ) (10)

MSE(t2) =
σ4

Y

n
[Ay +B2Ax −2B(δ −1)] (11)

where,

B =
σ2

X

σ2
X −CX

3 Suggested Estimations

3.1 The Estimator Based on t0 and t1

Taking the arithmetic mean (AM), geometric mean(GM) and harmonic mean(HM) of the estimatorst0 andt1 we get the
following estimator of the population variance under measurement errors respectively as

t3 =
1
2
(t0+ t1) =

σ̂2
y

2

(

1+
σ2

X

σ̂2
x

)

(12)

t4 = (t0t1)
1
2 = σ̂2

y

(

σ2
X

σ̂2
x

)

1
2

(13)
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t5 =
2

1
t0
+ 1

t1

=
2σ̂2

y

1+ σ̂2
x

σ2
X

(14)

The biases and mean squared errors oft3, t4 andt5 up to first degree of approximation are given by

Bias(t3) =
σ2

Y

2n
[AX − (δ −1)] (15)

Bias(t4) =
σ2

Y

8n
[3AX −4(δ −1)] (16)

Bias(t5) =
σ2

Y

4n
[AX −2(δ −1)] (17)

MSE(t3) = MSE(t4) = MSE(t5) =
σ4

Y

4n
[AX +4(AY − (δ −1))] (18)

3.2 The Estimator Based on t0 and t2

The estimators of population variance under measurement errors based on arithmetic mean (AM), geometric mean (GM)
and harmonic mean(HM) of the estimatorst0 andt2 are respectively defined as

t6 =
t0+ t2

2
=

σ̂2
y

2

[

1+
σ2

X −CX

σ̂2
x −CX

]

(19)

t7 = (t0t1)
1
2 = σ̂2

y

[

σ2
X −CX

σ̂2
x −CX

]

1
2

(20)

t8 =
2

1
t0
+ 1

t2

=
2σ̂2

y

1+ σ̂2
x −CX

σ2
X−CX

(21)

The biases and mean squared errors oft6, t7 andt8 up to first degree of approximation are given by

Bias(t6) =
σ2

Y

2n
[B2AX −B(δ −1)] (22)

Bias(t7) =
Bσ2

Y

8n
[3BAX −4(δ −1)] (23)

Bias(t8) =
Bσ2

Y

4n
[BAX −2(δ −1)] (24)

MSE(t6) = MSE(t7) = MSE(t8) =
σ4

Y

4n
[4AY +B{BAX −4(δ −1)}] (25)

3.3 The estimators based on t1 and t2

We proposed the following estimators of population variance based on arithmetic mean (AM), geometric mean (GM) and
harmonic mean (HM) of the estimatorst1 andt2 are respectively defined as

t9 =
1
2
(t1+ t2) =

σ̂2
y

2

[

σ2
X

σ̂2
x
+

σ2
X −CX

σ̂2
x −CX

]

(26)
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t10 = (t1t2)
1
2 = σ̂2

y

(

σX

σ̂x

)(

σ2
X −CX

σ̂2
x −CX

)

1
2

(27)

t11 =
2

(

1
t1
+ 1

t2

) =
2σ̂2

y
(

σ̂2
x

σ2
X

)

+
(

σ̂2
x −CX

σ2
X−CX

) (28)

The biases and mean squared errors oft9, t10 andt11 up to first degree of approximation are given by

Bias(t9) =
(1+B)σ2

Y

2n
[1+(1+B)AX − δ ] (29)

Bias(t10) =
σ2

Y

64n
[41AX −32(1+B)(δ −1)] (30)

Bias(t11) =
(1+B)σ2

Y

4n
[4+(1+B)−4δ ] (31)

MSE(t9) = MSE(t10) = MSE(t11) =
σ4

Y

4n
[4AY +(1+B){4+(1+B)AX −4δ}] (32)

3.4 The estimators based on t1, t2 and t3

We define the following estimators of population variance based on arithmetic mean (AM), geometric mean (GM) and
harmonic mean (HM) of the estimatorst1, t2 andt3 (to the first degree of approximation) are respectively as

t12 =
1
3
(t0+ t1+ t2) =

σ̂2
y

3

[

1+
σ2

X

σ̂2
x
+

σ2
X −CX

σ̂2
x −CX

]

(33)

t13 = (t0t1t2)
1
3 = σ̂2

y

[(

σ2
X

σ̂2
x

)(

σ2
X −CX

σ̂2
x −CX

)]

1
3

(34)

t14 =

(

3
1
t0
+ 1

t1
+ 1

t2

)

=
3σ̂2

y

1+ σ̂2
x

σ2
X
+ σ̂2

x −CX

σ2
X−CX

(35)

The biases and mean squared errors oft12, t13 andt14 up to first degree of approximation are given by

Bias(t12) =
σ2

Y

3n
(1+B)[1+(1+B)AX − δ ] (36)

Bias(t13) =
σ2

Y

9n
(1+B)[3+5(1+B)AX −3δ ] (37)

Bias(t14) =
σ2

Y

9n
(1+B)[3+(1+B)AX −3δ ] (38)

MSE(t12) = MSE(t13) = MSE(t14) =
σ4

Y

9n
[9AY +(1+B){6− (1+B)AX −6δ}] (39)
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4 Efficiency Comparisons

The efficiency comparison oft1, t2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13 andt14 with respect tot0 respectively are given by

MSE(t1)−MSE(t0)< 0
σ4

Y
n (2+AY +AX −2δ )− σ4

Y
n AY < 0

2δ −AX > 2 (40)

MSE(t2)−MSE(t0)< 0 σ4
Y

n [AY +B2AX −2B(δ −1)]− σ4
Y
n AY < 0

2δ −BAX > 2 (41)

MSE(t3)−MSE(t0) = MSE(t4)−MSE(t0) = MSE(t5)−MSE(t0)< 0
σ4

Y
4n [AX +4{AY − (δ −1)}]− σ4

Y
n AY < 0

4δ −AX > 4 (42)

MSE(t6)−MSE(t0) = MSE(t7)−MSE(t0) = MSE(t8)−MSE(t0)< 0
σ4

Y
4n [4AY +B{BAX −4(δ −1)}]− σ4

Y
n AY < 0

4δ −BAX > 4 (43)

MSE(t9)−MSE(t0) = MSE(t10)−MSE(t0) = MSE(t11)−MSE(t0)< 0
σ4

Y
4n [4AY +(1+B){4+(1+B)AX −4δ}]− σ4

Y
n AY < 0

4δ − (1+B)AX > 4 (44)

MSE(t12)−MSE(t0) = MSE(t13)−MSE(t0) = MSE(t14)−MSE(t0)< 0
σ4

Y
9n [9AY +(1+B){6− (1+B)AX −6δ}]− σ4

Y
n AY < 0

6δ − (1+B)AX > 6 (45)

The efficiency comparison oft2, t3, t4, t5, t6, t7, t8, t9, t10, t11, t12, t13 andt14with respect tot1 respectively are given by

MSE(t2)−MSE(t1)< 0
σ4

Y
n [AY +B2AX −2B(δ −1)]− σ4

Y
n (2+AY +AX −2δ )< 0

2δ − (1+B)AX > 2 (46)

MSE(t3)−MSE(t1) = MSE(t4)−MSE(t1) = MSE(t5)−MSE(t1)< 0
σ4

Y
4n [AX +4{AY − (δ −1)}]− σ4

Y
n (2+AY +AX −2δ )< 0

4δ −3AX > 4 (47)

MSE(t6)−MSE(t1) = MSE(t7)−MSE(t1) = MSE(t8)−MSE(t1)< 0
σ4

Y
4n [4AY +B{BAX −4(δ −1)}]− σ4

Y
n (2+AY +AX −2δ ) < 0

4δ − (B+2)AX > 4 (48)

MSE(t9)−MSE(t1) = MSE(t10)−MSE(t1) = MSE(t11)−MSE(t1)< 0
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σ4
Y

4n [4AY +(1+B){4+(1+B)AX −4δ}]− σ4
Y

n (2+AY +AX −2δ )< 0

4δ − (3+B)AX > 4 (49)

MSE(t12)−MSE(t1) = MSE(t13)−MSE(t1) = MSE(t14)−MSE(t1)< 0
σ4

Y
9n [9AY +(1+B){6− (1+B)AX −6δ}]− σ4

Y
n (2+AY +AX −2δ )< 0

18δ − (4+B)AX > 6 (50)

The efficiency comparison oft3, t4, t5, t6, t7, t8, t9, t10,t11, t12,t13 andt14 with respect tot2 respectively are given by

MSE(t3)−MSE(t2) = MSE(t4)−MSE(t2) = MSE(t5)−MSE(t2)< 0
σ4

Y
4n [AX +4{AY − (δ −1)}]− σ4

Y
n [AY +B2AX −2B(δ −1)]< 0

4δ − (1−2B)AX > 4 (51)

MSE(t6)−MSE(t2) = MSE(t7)−MSE(t2) = MSE(t8)−MSE(t2)< 0
σ4

Y
4n [4AY +B{BAX −4(δ −1)}]− σ4

Y
n [AY +B2AX −2B(δ −1)]< 0

4δ −3BAX > 4 (52)

MSE(t9)−MSE(t2) = MSE(t10)−MSE(t2) = MSE(t11)−MSE(t2)< 0
σ4

Y
4n [4AY +(1+B){4+(1+B)AX −4δ}]− σ4

Y
n [AY +B2AX −2B(δ −1)]< 0

4δ −AX (1+3B) > 4 (53)

MSE(t12)−MSE(t2) = MSE(t13)−MSE(t2) = MSE(t14)−MSE(t2)< 0
σ4

Y
9n [9AY +(1+B){6− (1+B)AX −6δ}]− σ4

Y
n [AY +B2AX −2B(δ −1)]< 0

6δ −AX (1+4B) > 6 (54)

The efficiency comparison oft6, t7, t8, t9, t10, t11, t12, t13 andt14 with respect tot3, t4, t5 respectively are given by

MSE(t6)/MSE(t7)/MSE(t8)−MSE(t3)/MSE(t4)/MSE(t5)< 0
σ4

Y
4n [4AY +B{BAX −4(δ −1)}]− σ4

Y
4n [AX +4{AY − (δ −1)}]< 0

4δ − (1+B)AX > 0 (55)

MSE(t9)/MSE(t10)/MSE(t11)−MSE(t3)/MSE(t4)/MSE(t5)< 0
σ4

Y
4n [4AY +(1+B){4+(1+B)AX −4δ}]− σ4

Y
4n [AX +4{AY − (δ −1)}]< 0

4δ − (2+B)AX > 4 (56)

MSE(t12)/MSE(t13)/MSE(t14)−MSE(t3)/MSE(t4)/MSE(t5)< 0
σ4

Y
9n [9AY +(1+B){6− (1+B)AX −6δ}]− σ4

Y
4n [AX +4{AY − (δ −1)}]< 0

12δ − (5+2B)AX > 12 (57)

The efficiency comparison oft9, t10, t11, t12,t13 andt14 with respect tot6, t7, andt8 respectively are given by
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MSE(t9)/MSE(t10)/MSE(t11)−MSE(t6)/MSE(t7)/MSE(t8)< 0

σ4
Y

4n [4AY +(1+B){4+(1+B)AX −4δ}]− σ4
Y

4n [4AY +B{BAX −4(δ −1)}]< 0

16δ − (1+2B)AX > 16 (58)

MSE(t12)/MSE(t13)/MSE(t14)−MSE(t6)/MSE(t7)/MSE(t8)< 0

σ4
Y

9n [9AY +(1+B){6− (1+B)AX −6δ}]− σ4
Y

4n [4AY +B{BAX −4(δ −1)}]< 0

12δ −AX (2+5B) > 12 (59)

The efficiency comparison oft12, t13 andt14 with respect tot9, t10 andt11 respectively are given by

MSE(t12)/MSE(t13)/MSE(t14)−MSE(t9)/MSE(t10)/MSE(t11)< 0

σ4
Y

9n [9AY +(1+B){6− (1+B)AX −6δ}]− σ4
Y

4n [4AY +(1+B){4+(1+B)AX −4δ}]< 0

12δ −5(1+B)AX > 12 (60)

Conditions in which proposed estimators are efficient than others are defined in(40)− (60).

5 Simulation Study

In this section, we demonstrate the performance of adopted estimators over other competitors, generating population from normal
distribution by using R programme. The description of this data is as followsX = N(5,10),Y = X +N(0,1),y = Y +N(1,3),x =
X +N(1,3),n = 5000,µX = 4.95,µY = 4.93,σ2

X = 99.38,σ2
Y = 100.12,σ2

u = 25.57,σ2
v = 24.28,ρXY = 0.99

Table 1: MSE’s of estimators (with and without measurement errors)
Estimator MSE with measurement errors MSE without measurement errors
MSE (t0) 6.25 3.93
MSE(t1) 4.60 0.97
MSE(t2) 4.68 0.09

MSE(t3)/MSE(t4)/MSE(t5) 3.90 1.02
MSE(t6)/MSE(t7)/MSE(t8) 3.88 0.98

MSE(t9)/MSE(t10)/MSE(t11) 4.78 2.02
MSE(t12)/MSE(t13)/MSE(t14) 3.85 0.473
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Fig. 1: Bar Graph showing MSEs of estimators

6 Conclusion

In this article we have suggested some estimators of population variance under measurement errors which are based on arithmetic mean,
geometric mean and harmonic mean of the usual unbiased, usual ratio and Kadilar and Cingi(2006a) estimators. The expressions of
bias and mean squared error of proposed estimators have beenderived up to first degree of approximation. The theoreticalconditions
under which the proposed estimators are more efficient than usual unbiased usual ratio and Kadilar and Cingi(2006a) estimators have
been obtained in section 4.Proposed estimators are better than the previous estimators if the dataset satisfies the condition obtained in
equations(40)−(60) under section 4. In numerical findings the data set does not satisfies the conditions derived in equations(49), (53)
and(58) hence the performance of estimator(t9), (t10) and(t11) are unsatisfactory. And performance of Estimators(t3), (t4), (t5), (t6),
(t7), (t8), (t12), (t13) and(t14) are better than the(t0), (t1) and(t2). Thus the proposed estimators have been recommended for itsuse
in practice if the data is satisfying the condition mentioned in section 4. Since the estimators are based on Arithmetic mean, Geometric
Mean and Harmonic Mean of estimatorst0, t1 andt2. Hence if the Characteristic understudy is normally distributed then the estimator
based on Arithmetic Mean should be used, when the distribution of Population is skewed then the estimators based on Geometric Mean
must be used and if the observations are skewed and are of per unit change type then the estimators based on Harmonic Mean must be
used.
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