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Abstract: In this paper, we propose nonparametric locally and asyticptly optimal tests for the problem of detecting randosme
in the coefficient of a linear regression model (in the Le Camd Hajek sense). That is, the problem of testing the nullottypsis
of a Standard Linear Regression (SLR) model against thenatiee of a Random Coefficient Regression (RCR) model. Aaloc
Asymptotic Normality (LAN) property, which allows for cotracting locally asymptotically optimal tests, is thenef@stablished for
RCR models in the vicinity of SLR ones. Rank and signed-readel versions of the optimal parametric tests are provitieese tests
are optimal, most powerful and valid under a wide class ofiiers. A Monte-Carlo study confirms the performance of treppsed
tests.
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1 Introduction and notations

Regression analysis has been investigated by many researahd mainly used to explore the relationship between
dependent and independent variables. Random coefficidniaaing parameter regression models are widely applied in
many areas such as social sciences, ecology, finance andneeuits (see e.g.2P] and [14]). Besides, it was
demonstrated in many applications that these models asgisupo ordinary linear regression ones.

Earlier contributions to the study of these models are duRapand Ullah 18] and Nicholls and Pagarl§|.
Consequently, there is a growing theoretical interest Es¢hmodels. One such model is the Random Coefficient
RegressiofRCR modelyvhich is considered in this paper and defined by:

Yi=u+(B+&)X+&, i=1,...,n, ()

where,

> Y; is the observed response for individaalX; is a non-stochastic exogenous regressor, jarahd 3 are given
regression parameters;

> (&)1<i<n iS @ zero-meani.d. sequence of error terms with variane and density — f(¢) := (1/0)f1(g/0);

> (&)1<i<n IS ani.i.d. sequence of random coefficieri@ 052) with densityé — h(&) := (1/as)hi(&/05);

> & andg are independentforall=1,...,n.

In this model, the regression slope varies randomly arotsdnean,3, according to a distribution whose standard
deviation isog.

Note that, ifa'f2 =0, the RCR model reduces to the SLR one:

Yi=u+BX+s, i=1....n 2)
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It will be useful to have an available test of the null hypaiisehat the fixed parameter model is appropriate against
the alternative of stochastic parameter. Ramanathan gadsRe[19] obtained a signed-rank-based (ranks of the squares
of residuals) version test by considering thaande; have a symmetric logistic distribution.

In this paper, the main technical toollie Cam’s asymptotic theowyf statistical experiments and the properties of
locally asymptotically normal (LANfamilies (see, for details1p], [22, chapter 6 — 9] andlf1]). This powerful method
has been used quite successfully in various inference gmub(see, e.g.4], [9], [3] and [13]). The logarithm of the

likelihood ratioin a LAN family with parameter® admits local approximation of the forrMén) — %sze, where the
random variableﬁé”), called acentral sequenceas asymptotically normal# (tys, ys) under sequences of parameter

values of the forn® + n—1/21 (local alternative$. Let ¢(A) be an optimal test in th€aussian shift modelescribing a
hypothetical observatiof with distribution in the family{_.4"(tys, yo)|T € R} (y» specified). Then, the sequenpy)

is a sequence dbcally asymptotically optimal tesfsr the original problem (optimality is based on the locaheergence

of risk functions to the risk functions of Gaussian shift epents). Furthermore, this procedure allows to provide a
class of rank and signed-rank tests which remain valid uadgtrary densities, without any moment assumption (see,
e.g., Bl, [10] and [6]). Several arguments justify the use of rank tests: Theoreamftranks (with the vector of signs for
the symmetric case) is maximal invariantwith respect to the group afrder-preserving transformationsf residuals

for a broad class of densities; the rank (signed-rank) mstduced are mormbustregarding some outliers than their
parametric counterparts and rank (signed-rank) basedg@uves arasymptotically powerfutompared to parametric
ones.

The asymptotic behavior of these rank and signed-rank tesssudied under the null and sequences of local
alternatives. It is shown that the studied tests are mosedahand present a uniformly good power behavior, which is
demonstrated by a Monte-Carlo simulations.

The paper is organized as follows. In subsecfidh the notation and main assumptions are provided. Subsez:2o
establishes the LAN property. A rank and signed-rank versiothe LAN result are established in sectidtbased on
the optimal procedure version obtained in secBoMhe van der Waerden and Wilcoxon versions of the rank and the
signed-rank test statistics are described in subsedlidrend4.2 Finally, sectiorb provides some simulation results of
the various proposed tests. The conclusion and perspgetppear in sectiod.

2 Local Asymptotic Normality

2.1 Notation and main assumptions

The null hypothesis, we are interested in, is the tradifistendard linear regression (SLR) depende@ién(which the
hypothesisP(& = 0) = 1 is equivalent to assume tha’(? = 0. In this case we denote hf%”%l =: IE"(frl‘) the probability

distribution under the null. Under the alternativé'”)

b2 iy is the probability distribution of the observation
E! kl

!
Y — (Yl(m,Yz(”), . ,Yn(m) generated byl). Let’s consider the class of general standardized degsiti

Fo = {fl : /_11 f1(z)dz= 0.5:/_(1° fl(z)dz}

and the class of symmetric standardized densities:
1 0
T = {fl fi(—2) = f1(2) and/ f1(2)dz= 0.5 = / fl(z)dz} .
-1 J—o0

Note that, underZ, and.#;" the median and median absolute deviation are respectivahyd@. This standardization
which, contrary to the usual one based on the mean and thaesthdeviation, avoids all moment assumptions, plays the
role of an identification constraint and has no impact onegbent results.

The main technical tool in our derivation of optimal testthis local asymptotic normality (LAN), with respectag,
of the families of distributions
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at 052 0. Establishing the LAN requires some technical assumptiahich are about the densitly, the asymptotic
behavior of the regressor and the denkity

Assumption (A)
(A1) f1 € Fo (resp.fy € Z4 for the symmetric distributions);
(A.2) fi(z) >0forallze R; ) )
(A.3) z— fi(2) is €% onR, with second derivativé; and lettingyr, := f1/f1, assume thawy (f1) := [ 7 (2) f1(2)dzis
finite.
Denote byZ (resp.Z, for the symmetric distributions) the set of all densitieiséging Assumption (A). For instance,
> the logistic distribution, with standardized density igagi as

f1 = ¢1:= vVbexp(—vb2) /(1 +exp(—Vb2))?, (3)
with b = (In3)2 and.7(¢1) = b?/5;
> the Gaussian distribution, with standardized densityddke form
f1 = @ := \/a/2mexp(—aZ/2), (4)

with a ~ 0.4549 and sy (@) = 2a2
> and the Studerti; distribution (withv > 0 degrees of freedom), with standardized density is fortadlas

VA ()
VA (5.5)

202 (WHL(VI2)(V(V45)110)
V(v+3)(v+5)(v+7)

v+1
2

fy=f, =

()

the normalizing constam, > 0 is such thafy, € 75 . .7y (f;,) =

Assumption (B)
Suppose that the classical Noether condition hdlé, ({.501]):

o Masin (% —7<">)2

" (x-x") -

whereX™ :=n-1yn X,

This condition originates from Noether (1949). It essdlytikeeps one of the constants from dominating the others
and allows to give the asymptotic behavior of a test statisti
Assumption (C)

(C.1) [réhi(&)dE =0 and g %M (&)dE =1,
(C.2) Denote byﬁﬁw(fl;y) the Fisher information associateddp, such as

130 f1(z—xvw)x®v2hy (v)dvd
Tsu(f13y) ::{ 7 )7 [ico =TI idv Ci y>0

x4f¢,(f1) ify=0
[ fy(zxyety v ] > ©
1 (oo 1(z—=xyv)xvhy (v)dv .
:{ 2 — [[f 2 (2 gy (a2 dz ify>0
x4f¢,(f1) ify=0

The functiony — fjw(fl;y) is continuous from the right at= 0, for all x.

Note that, assumptiofC.2) is an assumption which involves the couple of densitigsh; ).
Let Zj1, ‘= {ha|hy and(fy,hy) satisfy Assumption¢C.1) and(C.2) , respectively (resp..#, qf for f1 € 7).

My ag =0
1 This is a one-sided test and takes the following fofm
%ﬁ a >0
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2.2 LAN

In the following, we establish thiecal asymptotic normality (LAN)esult (on which optimal test will be based (section
3)) with respect tas? for a fixed densityfy. Let's consider a sequence of local alternatives of the?t(rmk n-1/2K (M r) ,

whereK (M = (z{‘:lxi“)*l/z andt € R*. Define the standardized residuals as= o~ (Y, — u — BX), fori =1,...,n
and note that these residuals coincide v@&mnder the null hypothesIB?l‘). We then have the following proposition.

Proposition 1(LAN). Let Assumptions (B) and (C) hold. Fix ¢ % and hy € Z¢jf,. Then, as n— o,

(i) the familyﬁgf?hl is LAN at0, with central sequence

m._ 1 g _ 2
8% = gor s 3, Wn(@KOX W)
and variance
1
Vi, = lell(fl)a (8)

(ii) for anyt € R*, we have, undd]”(fT,
(n)
A =lo dPWl/ZK(")T;thl
n~Y2KM1/0;f1,hy 9 T(ff;)
a1
=TAq " = 5TV +0e(1),
(i) A" %5 ¥(0,y1,), underP!.
Proof. (See appendix.)

Remark.The expressionsTJ, (8)) of the central sequendeg]) and the variancg;, do not depend on the density of
the random criteriod . It has no influence and will not appear in the test statistics

3 Optimal parametric test

For specifiedf; € .#a, we consider the null hypothesis

A= U E

fleﬁA
of non-randomness coefficient in mod#) (i.e. 62 = 0), against alternatives of the form
(n)
U U U {23}
f1€7n a§>0 hieZqt,

Recall that, based on Le Cam’s third lemma, one can give stelition under the alternative hypothesis (see, e.g.,
[22, chapter 6]).

70
2 This is equivalent to tes{
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(n)
e (@ andQ”

Definition 1(Le Cam’s third lemma). Let S" be a measurable statistic and" is a version ofog 3

are respectively, the null and the local alternative hymsit). Suppose that undgf", as n— o,

s 2 _

Then,

(i) P(M andQ™ are mutually contiguous;
(i) under@™, S Zs ¥ (1 + 012, 02).

Applying definition1 yields
(n)
A p
( (n) i ) ﬁh/V((_;Sz >,(Tyf1 Trzyf1>> , under}P’(f'l‘). (10)
AT AN Ve, T2V

Therefore

b
A]ET = N (Vi V1) s under]Pf]'l)l/zK(n)r;thl, (11)

The LAN structure and the convergence of local experimentisé Gaussian shift experimefit~ 4" (y1,y), imply
that locally optimal inference oa? should be based oA, hence orT{"” with

. ~1/2
'f(ln> =) A%T)
(12)

- K (M n .
- fﬂq;(fl) i;qul(zl)xi .

Thus, we have the following result.

Proposition 2. Let Assumptions (B) and (C) hold. Fix¢ #a and h. € Zjt,. Then,

(n)

(i) TV is asymptotically normal, with mean zero uncﬂ‘é’f, meanyfll/zr underP % o s h
FANE)

f

both;
(i) the sequence of tests rejecting the null hypothéﬂg) (with standardized density fwhenevet

and variance one under
1

Tf(ln) > q,

is locally asymptotically most powerful at asymptotic leae against local alternatives hypothesis of the form

J u U {P(nz):fl,m}'

fieFaoZ>0meF )y %

4 Optimal rank and signed-rank tests

The null hypothesis%%(”) of nullity of randomness criterion indeed is generated by troup (%(”),o) of all

transformations of R" such that4(Y1,...,Yn) := (1(Y1),...,1(Yn)), where lim_ 1o | (y) = £ andl(y) is continuous
and monotone increasing.

8 71_q is the(1— a)—standard normal quantile.
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4.1 Optimal rank test

A maximal invariant for the groug; is known to be the vectc(Rg”), R(zm, Ry, WhereRf”) denotes the rank of residual
Zi amongZy, 2y, ..., Zn.
General results on semi-parametric efficiency (see, failde{10]) indicate that, in such context, the expectation

of the efficient central sequenﬂ{) conditional on those ranks yields to a version of the seméupatrically efficient
(n
f1

. KM 0 - (1) |
a8 =5y ﬁ_;%{wﬁ <F1 L (%)) —w&l’}, (13)

. 1 _ i
with w(fr;) - Sty <F1 ' (—n+ 1) )
Let

central sequence. The rank based version of the efficiettatsequencé is given as:

n —(n m 2
& <f1) = lﬂZ(fl) - (W(fl>)
on-18 o (e 0
EPAL (Fl (n+1>> (14)
1 non . i 9 J
- ﬁi;;q’fl (Fl (m)) Ys, <F1 (m))
i

! 1 . .
with wZE(:) = S W (Fll (Fl)) . The variance og?l]), is

< 51 (e
= Q)
4(n—1)o4 S (13)

var(a{)) =

The proof of the next proposition is based on Hajek’s pribpetheorem, followed from Hallin et al7] and reinforced
by Hallin and Werker 10, proposition 3.1]; this result allows us to give the distitibn undeﬂP’gP such thag; € Fp.

Proposition 3. Let assumption (B) hold, for alk fe . and g € %y, we have, unddPSP, as n— oo?,

(n) n _
47 = oz 3, (8 3) wi (7 (G(2)) +or(d) (16)

Then, from Le Cam’s third lemma, we have

ﬂz”ﬂ (2 =X2) g, (Fr* (Gu(2) 0 Yo gy
205/n 7T 1 1 e ((—}rzy ) ' (r f<1”> T~2f1791>> . underPy . (17)
TAé]?) - Erzygl 2 9 Xfl,gl You
Therefore
(n) & (n ) (n)
éfl — N (TXfl,gl’Vfl )a undel'Pnfl/zK(n)T;thl, (18)
with
K“‘)ZZ-” (Xiz—ﬁ)z 1
o - T Syt Fy(fr,00) = F Gt () d 19
Yho = ang* w(fo),  Ay(fe)i= | o (FH(W) e (G (W) du - (29)

4 Gy is the distribution function associated with
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and

(6 R

Vi, = v Fy(f1). (20)
From propositior8 and17, asn — o, we haveVar(A A" )) yf( ) +0o(1).

Local asymptotic optimality at densitfy is achieved by the test based'gﬁ”, where

1/2
T =4/ Var@al)) = Lo X2 w | Fr (R —p\" b, (21)
~f1 =f1 Szm) zin:]_ ()(12 - ﬁ) 2 Z 1 1 n+1 f1

f1
More precisely, we have the following proposition.
Proposition 4. Let Assumptions (B) and (C) hold and fixd .#a. Then,

(i) for any g € .Za, TE‘T) is asymptotically normal, with mean zero undgf), mean rz(f:?gl/y]ff”) under

(n) i .
n*1/2K<”)r;gl,h1(h1 € J¢jg,) and variance one under both;
(i) the sequence of tests rejecting the null hypothesis wheneve

IE‘T) > Zl—G7
is locally asymptotically most powerful, at asymptoticelev, against local alternatives.

The two most important particular cases for the test siatsesented in propositiof, are thevan der Waerden
(normal scoresyand theWilcoxon (logistic scoresfest statistics, which are respectively optimal at nornmal Egistic
distributions.

e Thevan der Waerden test statistic is defined in a Gaussian cade € @1), with @5, (F; (x)) =a {(dfl (x))2 - }

(@ is the standard normal distribution function) and the testistic becomes

Tiow= an szEjz—ﬁ)z le {( < rlﬁr)l))irp%,}, (22)
with g = %zi”:l (@1 (ﬁ))z and
sigyv::”n%li: l((bl(ﬁ))Z_ r
w55 () ()

e The Wilcoxon test statistic is defined in a logistic casef{ = ¢1) with @, (F{ ™ (x)) = b(6x>—6x+ 1) and the test
statistic is writing under the following form

n 2 n
Tw = S Zx ( )> —6<—R<)>—w§c> , (23)
S‘%n) D, (Xi2 B XZ) n+1 n+1

with Ty = — 22 andsy” =
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4.2 Optimal signed-rank test

In this subsection, we focus on symmetric densities and w@nas thaff; € .7, A maximal invariant for the groug is

known to be the vector of sigr(s;,s,...,S)’, along with the vector of rank( + l, T>2,...,R<+’)n) , Wheres is the sign

of Z; and R( i the rank of|Z;| among|Z1|,|Z2|,...,|Za|. Knowing thatys, is even then the sign have no impact on the
S|gned—rank based version of the efficient central sequAHl‘&eWe have then

+(n) K R(m
i b o (2 (7)) o) &
with @ == 2] lwf1< ( 4'_1)>.Let

Sfl llfzfl (T’J?l(n)) ’

i 1in1< (n+1)> (25)
e () )m (e ()

L o——+m 1 L : )
with @2¢ = - s q,/f21 (FLJr (Fl)) andFy . is such that:

> Fyp is a cumulative distribution functiofcdf.) of the random variablg&, F; ; : x — 2F(x) — 1 is acdf.of |Z|;
> FrH(v)=F 1 (42) forallve [0,1].

The proof of the next proposition is an immediate consega@h@ropositior8, knowing thatyy, (Ff,i (Gl7+(Zi))) =
W, (T (Ga(2)).

Proposition 5. Let assumption (B) hold, for alk fe .# and g € .7, we have, unddPgP, asn— oo,
KM n — B
é;rl(n) = 207 Zi (Xiz - XZ) Y, (Fl,j (G1,+(Zi))) +0p(1). (26)
1=
In this case, local asymptotic optimality at dendfityis achieved by the test based'g‘ﬁl("), where

T Lo X {w ( <R(+n) )) w*“‘)} (27)
L T N <n —\2 f1 1 R :
S?:r( )Eizl (xiz_xz) 21 n+

Then, the result given in the next proposition is followeshfrpropositiorb and the Le Cam'’s third lemma.

Proposition 6.Let Assumptions (B) and (C) hold and fix<f.#,. Then,

(i) for any g € Z, T+("> is asymptotically normal, with mean zero undef’, mean rx(f?gl/y;‘l(") under
]Pf]rl)l/sz)T,gl hl(hl € ‘/C\g ) and variance one under both;

(i) the sequence of tests rejecting the null hypothesis wheneve

+(n
Ifl( ) >7-q,

is locally asymptotically most powerful, at asymptoticlew, against local alternatives.
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e The signed van der Waerden test datistic (normal scores) : given for f; = @, where
_ _ 2
v, (FE(0) =al(@ 2 (32))* - 1] and

12 5
— 1-3 0 ol (o1, R ) 08
VAW 2y s, (Xiz _ﬁ)z izixi 27" 2(n+1) ~Puaw (- (28)
=

S
ot _LTon (oL i ’

Gl =23 (0 (3 o 1)))2_1]2
_n_lzzl,zl (wl(%+2<ni+1>>>2‘ (wl@*zmjﬂ)))z‘l]'
i£]

e The signed Wilcoxon test statistic (logistic scores) : given for f; = /1, wheresy, (Fljj (x)) = g (3x2 —1) and the
test statistic is writing under the form

1/2 5
(n) 1-3 S (n)
Ty =3 . > X; ( : ) Py ) (29)
N 2 vl & n+1
s, (Xiz - XZ) ';
; +(N) _ 2nt1 2+(n) _ (n—1)(2n+1)(8n+11)
with Py, = gy andsy = 5500
Remark

Due to the expressions eﬁﬂw and$> for the rank tests (respectively E@f&‘& and s:,(,m) for the signed-rank tests), the
scale factors for van der Waerden anlfor Wilcoxon are simplified in the final expressions of thekdrespectively
signed-rank) test statistics. This confirms that the chofdbe median of absolute deviation as a scale parameteein th
definition of %, (respectivelyZ, ) has no impact on the results.

5 Simulation

The purpose of this section is to evaluate the performantleeoproposed tests, in propositiohsnd6, at asymptotic
levela. Let's consider the model

Yi=pu+BX+&EX+¢&, i=1..,n=100 (30)

where,

(8 u=1andp =10;

(b) theX’s arei.i.d. uniform (0, 10);

(c) theéj’s arei.i.d. Gaussian with mean zero and standard deviatios O (for null hypothesis), = 0.1, 0.2, 0.3, 04
or 0.5 (for increasing alternatives). When asymmetric densities are used, the non null valueg abnsidered are
0.05, 01, 015, 02 and 025;

(d) theg’s arei.i.d. with a symmetric density — Gaussiag), logistic (1), Student withv = 1, 3 and 5 degrees of
freedom {,) — or with an asymmetric density — the skew norrfgal”) or skew Studerts (sts) densitie$ (both with
skewness parameter valde= 10).

5 for example, the skew-normal distribution with shape patamd =+ 0 is defined ads 4 (2) := 2¢1(2) ®(5z) where ® stands for
the standard normal distribution function. See, for detd].
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We generatetll = 2500 independent samples of size- 100 from @0).

For symmetric densities, tableand2 show the rejection frequencies for the van der Waerdgg ), the Wilcoxon
(Tw+), the Student'l;v+, with v =1, 3, 5) and the Ramanathan and Rajarstfl] [(Trg) tests. Furthermore, when the
densities are asymmetric, we present in tébthe rejection frequencies, for the van der Waerdggy(), the Wilcoxon
(Tw), the StudentT;,, with v =1, 3, 5) and the Ramanathan and Rajardi§] [ TrRr) tests. The six tests are performed at
asymptotic levelsr = 1%, 5% and 10%.

Table 1: Rejection frequencies (out of 2500 replications), at adpiiplevelsa = 1%, 5% and 10%, fooz = 0 (null hypothesis),
0.1, 0.2, 0.3, 0.4, 0.5 (alternative hypotheses), with error dengjitythat is Gaussiang) and logistic (1), of the van der Waerden test
(Tygw+), the Wilcoxon testTy+), the StudenT; , tests {y-score withv = 1,3,5) and Ramanathan and Rajarshi tdgg], for n=100.

O1 Test a O¢
0 | of | 02 | 03 [ 04 | 05

1% | 0.0092 || 0.0652 | 0.4440 | 0.8184 | 0.9460 | 0.9808
Tugw+ | 5% | 0.0468 || 0.2260 | 0.6928 | 0.9440 | 0.9900 | 0.9996
10% | 0.0920 || 0.3480 | 0.7968 | 0.9764 | 0.9980 | 0.9988

1% | 0.0096 || 0.0568 | 0.3628 | 0.7412 | 0.9100 | 0.9688
Tw+ 5% | 0.0492 || 0.1876 | 0.6132 | 0.9072 | 0.9756 | 0.9940
10% | 0.0960 || 0.2988 | 0.7308 | 0.9572 | 0.9912 | 0.9968

1% | 0.0084 || 0.0124 | 0.0248 | 0.0656 | 0.1016 | 0.1516
T 5% | 0.0516 || 0.0672 | 0.1164 | 0.1992 | 0.2992 | 0.4044
[0 10% | 0.1016 || 0.1408 | 0.2096 | 0.3308 | 0.4568 | 0.5460
1% | 0.0084 || 0.0456 | 0.3120 | 0.6844 | 0.8884 | 0.9592
Tir 5% | 0.0452 || 0.1652 | 0.5772| 0.8932 | 0.9712 | 0.9920
10% | 0.1008 || 0.2800 | 0.7016 | 0.9472 | 0.9924 | 0.9980

1% | 0.0104 || 0.0532 | 0.3108 | 0.6872 | 0.8824 | 0.9560
Tir 5% | 0.0456 || 0.1740 | 0.5588 | 0.8748 | 0.9632 | 0.9908
10% | 0.0932 || 0.2784 | 0.6848 | 0.9392 | 0.9836 | 0.9956

1% | 0.0104 || 0.0560 | 0.3588 | 0.7384 | 0.9072 | 0.9680
TrrR 5% | 0.0488 || 0.1852 | 0.6072 | 0.9052 | 0.9748 | 0.9936
10% | 0.0988 || 0.2948 | 0.7276 | 0.9572 | 0.9912 | 0.9964

1% | 0.0096 || 0.0504 | 0.3396 | 0.7264 | 0.9108 | 0.9700
Toaw+ | 5% | 0.0496 || 0.1560 | 0.5860 | 0.8912 | 0.9804 | 0.9928
10% | 0.0936 || 0.2556 | 0.7112 | 0.9412 | 0.9920 | 0.9968

1% | 0.0096 || 0.0476 | 0.3112 | 0.6816 | 0.8904 | 0.9640
Tw+ 5% | 0.0492 || 0.1568 | 0.5812 | 0.8768 | 0.9704 | 0.9928
10% | 0.0956 || 0.2620 | 0.7172 | 0.9372 | 0.9872 | 0.9972

1% | 0.0064 || 0.0168 | 0.0364 | 0.0648 | 0.1224 | 0.1612
T+ 5% | 0.0444 || 0.0840 | 0.1588 | 0.2428 | 0.3340 | 0.4136
l 10% | 0.0940 || 0.1708 | 0.2640 | 0.3748 | 0.4904 | 0.5832
1% | 0.0088 || 0.0496 | 0.2836 | 0.6436 | 0.8544 | 0.9428
Tir 5% | 0.0456 || 0.1596 | 0.5420 | 0.8516 | 0.9608 | 0.9900
10% | 0.0968 || 0.2552 | 0.6848 | 0.9188 | 0.9836 | 0.9952

1% | 0.0104 || 0.0460 | 0.2796 | 0.6296 | 0.8516 | 0.9460
T 5% | 0.0456 || 0.1540 | 0.5524 | 0.8504 | 0.9600 | 0.9896
10% | 0.0932 || 0.2524 | 0.6900 | 0.9216 | 0.9836 | 0.9952

1% | 0.0096 || 0.0460 | 0.3064 | 0.6780 | 0.8888 | 0.9632
TrR 5% | 0.0488 || 0.1548 | 0.5792 | 0.8752 | 0.9696 | 0.9924
10% | 0.0968 || 0.2584 | 0.7144 | 0.9368 | 0.9872 | 0.9972
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Table 2: Rejection frequencies (out of 2500 replications), at adptiplevelsa = 1%, 5% and 10%, foog = 0 (null hypothesis),
0.1, 0.2, 0.3, 0.4, 0.5 (alternative hypotheses), with error dengjiythat is Studentt(,, with v =1, 3 and 5) of the van der Waerden
test (Tygw+ ), the Wilcoxon testTy+), the Studeml't; tests {,-score withv = 1,3,5) and thelgrg one, forn = 100.

g1 | Test a Og
0 [ 01 ] 02 | 03 | 04 | 05
1% | 0.0100 || 0.0236 | 0.0712 | 0.1480 | 0.2512 | 0.3700
Toaw+ | 5% | 0.0444 || 0.0904 | 0.2012 | 0.3524 | 0.5096 | 0.6364
10% | 0.0888 || 0.1680 | 0.3180 | 0.4836 | 0.6500 | 0.7708
1% | 0.0084 || 0.0376 | 0.1576 | 0.3472 | 0.5384 | 0.7028
Tw+ 5% | 0.0480 || 0.1388 | 0.3700 | 0.6072 | 0.7800 | 0.8852
10% | 0.0904 || 0.2252 | 0.5036 | 0.7464 | 0.8688 | 0.9448
1% | 0.0072 || 0.0484 | 0.1616 | 0.2756 | 0.3100 | 0.3924
Tq 5% | 0.0432 || 0.1744 | 0.3928 | 0.5412 | 0.6040 | 0.6840
t1 10% | 0.0936 || 0.2812 | 0.5408 | 0.6852 | 0.7464 | 0.8000
1% | 0.0084 || 0.0396 | 0.1888 | 0.3748 | 0.5600 | 0.6860
Tt3+ 5% | 0.0504 || 0.1452 | 0.4204 | 0.6528 | 0.8112 | 0.8824
10% | 0.1048 || 0.2464 | 0.5668 | 0.7792 | 0.8956 | 0.9372
1% | 0.0088 || 0.0408 | 0.1796 | 0.3936 | 0.5940 | 0.7436
Ttg 5% | 0.0484 || 0.1456 | 0.4040 | 0.6584 | 0.8164 | 0.9116
10% | 0.0936 || 0.2316 | 0.5420 | 0.7920 | 0.8984 | 0.9584
1% | 0.00800 || 0.0356 | 0.1532 | 0.3432 | 0.5328 | 0.6960
TrR 5% | 0.0472 || 0.1384 | 0.3644 | 0.6036 | 0.7772 | 0.8824
10% | 0.0900 || 0.2248 | 0.4996 | 0.7456 | 0.8688 | 0.9436
1% | 0.0104 || 0.0328 | 0.2060 | 0.5288 | 0.7576 | 0.9080
Tyaw+ | 5% | 0.0500 || 0.1300 | 0.4512 | 0.7552 | 0.9192 | 0.9764
10% | 0.0996 || 0.2112 | 0.5764 | 0.8464 | 0.9600 | 0.9900
1% | 0.0112 || 0.0416 | 0.2596 | 0.5976 | 0.8176 | 0.9304
Tw+ 5% | 0.0488 || 0.1512 | 0.5268 | 0.8148 | 0.9448 | 0.9832
10% | 0.0968 || 0.2524 | 0.6588 | 0.8900 | 0.9740 | 0.9920
1% | 0.0084 || 0.0236 | 0.0508 | 0.1044 | 0.1548 | 0.1924
Tq 5% | 0.0492 || 0.0992 | 0.1896 | 0.2948 | 0.3868 | 0.4656
t3 10% | 0.1048 || 0.1840 | 0.3180 | 0.4440 | 0.5376 | 0.6080
1% | 0.0104 || 0.0436 | 0.2464 | 0.5672 | 0.7968 | 0.9116
Tt3+ 5% | 0.0440 || 0.1464 | 0.5060 | 0.7976 | 0.9360 | 0.9784
10% | 0.0936 || 0.2560 | 0.6456 | 0.8804 | 0.9680 | 0.9908
1% | 0.0116 || 0.0424 | 0.2640 | 0.5772 | 0.8060 | 0.9144
Tt; 5% | 0.0472 || 0.1568 | 0.5260 | 0.8148 | 0.9380 | 0.9796
10% | 0.0968 || 0.2628 | 0.6616 | 0.8864 | 0.9676 | 0.9904
1% | 0.0108 || 0.0400 | 0.2552 | 0.5924 | 0.8152 | 0.9284
TrR 5% | 0.0472 || 0.1480 | 0.5212 | 0.8144 | 0.9440 | 0.9832
10% | 0.0948 || 0.2488 | 0.6572 | 0.8888 | 0.9736 | 0.9920
1% | 0.0084 || 0.0476 | 0.2868 | 0.6612 | 0.8692 | 0.9524
Togw | 5% | 0.0492 || 0.1544 | 0.5436 | 0.8640 | 0.9668 | 0.9908
10% | 0.0968 || 0.2544 | 0.6824 | 0.9204 | 0.9856 | 0.9968
1% | 0.0084 || 0.0428 | 0.3000 | 0.6524 | 0.8612 | 0.9524
Tw+ 5% | 0.0480 || 0.1740 | 0.5628 | 0.8604 | 0.9616 | 0.9896
10% | 0.1016 || 0.2832 | 0.7040 | 0.9228 | 0.9840 | 0.9964
1% | 0.0088 || 0.0200 | 0.0444 | 0.0736 | 0.1288 | 0.1840
Tq 5% | 0.0500 || 0.0776 | 0.1676 | 0.2616 | 0.3492 | 0.4480
ts 10% | 0.0988 || 0.1556 | 0.2896 | 0.3972 | 0.4976 | 0.5968
1% | 0.0104 || 0.0476 | 0.2520 | 0.6212 | 0.8356 | 0.9188
Tt3+ 5% | 0.0576 || 0.1520 | 0.5032 | 0.8400 | 0.9504 | 0.9844
10% | 0.0960 || 0.2604 | 0.6520 | 0.9140 | 0.9736 | 0.9916
1% | 0.0084 || 0.0424 | 0.2832 | 0.6216 | 0.8364 | 0.9324
Tt; 5% | 0.0460 || 0.1716 | 0.5460 | 0.8384 | 0.9524 | 0.9860
10% | 0.1028 || 0.2796 | 0.6848 | 0.9120 | 0.9812 | 0.9956
1% | 0.0084 || 0.0412 | 0.2948 | 0.6484 | 0.8600 | 0.9512
TrRR 5% | 0.0444 || 0.1720 | 0.5588 | 0.8584 | 0.9612 | 0.9896
10% | 0.1012 || 0.2800 | 0.7016 | 0.9224 | 0.9836 | 0.9952
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Table 3: Rejection frequencies (out of 2500 replications), at adgtiplevelsa = 1%, 5% and 10%, foog = 0 (null hypothesis),
0.05, 0.1, 0.15, 0.2, 0.25 (alternative hypotheses), with error dengjythat is skew-normal densityf{ ;) and skew-Student density
with 5d.f (sts), of the van der Waerden tesk,§y), the Wilcoxon testTy), the Studenty, tests {y-score withv = 1,3,5) and the
Ramanathan and Rajarshi teggg), for n = 100.

o1 Test a O¢

0 J 005 ] 01 J 015 ] 02 [ 025

1% | 0.0084 || 0.0696 | 0.3180 | 0.6840 | 0.8588 | 0.9468
Twaw | 5% | 0.0468 || 0.2032 | 0.5804 | 0.8720 | 0.9624 | 0.9900
10% | 0.0956 || 0.3280 | 0.7100 | 0.9332 | 0.9824 | 0.9964

1% | 0.0064 || 0.0420 | 0.2420 | 0.5896 | 0.8072 | 0.9264
Tw 5% | 0.0436 || 0.1392 | 0.4808 | 0.8132 | 0.9348 | 0.9804
10% | 0.0872 || 0.2440 | 0.6152 | 0.8936 | 0.9672 | 0.9912

1% | 0.0076 || 0.0068 | 0.0116 | 0.0336 | 0.0696 | 0.1160
T, 5% | 0.0444 || 0.0400 | 0.0692 | 0.1476 | 0.2248 | 0.3148
s 10% | 0.0976 || 0.0916 | 0.1320 | 0.2656 | 0.3620 | 0.4552
1% | 0.0092 || 0.0368 | 0.1980 | 0.5208 | 0.7800 | 0.9012
Tty 5% | 0.0508 || 0.1336 | 0.4348 | 0.7680 | 0.9228 | 0.9748
10% | 0.1052 || 0.2180 | 0.5668 | 0.8600 | 0.9668 | 0.9904

1% | 0.0072 || 0.0324 | 0.2144 | 0.5372 | 0.7696 | 0.9044
Ttg 5% | 0.0420 || 0.1208 | 0.4420 | 0.7876 | 0.9168 | 0.9768
10% | 0.0860 || 0.2212 | 0.5756 | 0.8756 | 0.9548 | 0.9876

1% | 0.0088 || 0.0140 | 0.0488 | 0.1536 | 0.3568 | 0.5708
Trr | 5% | 0.0500 || 0.0728 | 0.1600 | 0.3776 | 0.6116 | 0.8108
10% | 0.1008 || 0.1364 | 0.2540 | 0.5088 | 0.7428 | 0.8916

1% | 0.0088 || 0.0680 | 0.3444 | 0.6664 | 0.8580 | 0.9456
Twaw | 5% | 0.0484 || 0.2088 | 0.6092 | 0.8660 | 0.9596 | 0.9924
10% | 0.1024 || 0.3208 | 0.7268 | 0.9248 | 0.9820 | 0.9964

1% | 0.0100 || 0.0388 | 0.2688 | 0.5768 | 0.8000 | 0.9192
Tw 5% | 0.0500 || 0.1392 | 0.4900 | 0.8056 | 0.9380 | 0.9848
10% | 0.1040 || 0.2308 | 0.6344 | 0.8844 | 0.9692 | 0.9928

1% | 0.0088 || 0.0068 | 0.0172 | 0.0360 | 0.0748 | 0.1148
Ty, 5% | 0.0520 || 0.0392 | 0.0800 | 0.1388 | 0.2380 | 0.3224
sts 10% | 0.0988 || 0.0888 | 0.1456 | 0.2420 | 0.3752 | 0.4740
1% | 0.0096 || 0.1692 | 0.1656 | 0.4248 | 0.6688 | 0.8316
Tty 5% | 0.0500 || 0.3980 | 0.3856 | 0.6792 | 0.8596 | 0.9432
10% | 0.1028 || 0.5260 | 0.5224 | 0.7952 | 0.9180 | 0.9732

1% | 0.0104 || 0.0344 | 0.2304 | 0.5256 | 0.7652 | 0.9020
Tt 5% | 0.0484 || 0.1192 | 0.4508 | 0.7700 | 0.9216 | 0.9772
10% | 0.1036 || 0.2072 | 0.5916 | 0.8600 | 0.9604 | 0.9900

1% | 0.0120 || 0.0144 | 0.0484 | 0.1640 | 0.3604 | 0.5864
Trr | 5% | 0.0552 || 0.0760 | 0.1632 | 0.3740 | 0.6132 | 0.8072
10% | 0.1024 || 0.1464 | 0.2712 | 0.5092 | 0.7332 | 0.8812

6 Conclusion and perspectives

The approach used in this paper allows detecting a randamamigsrion in the regression model. It is shown that the
distribution of the random criteriorh{) has no influence on the test statistics (which justifies thig ohoice of the
densityh; as Gaussian in the simulation section).

It is clearly seen that all the considered tests here aremely conservatives. It is explained by the fact that the
considered tests do not get the nominal rejection freqasnaider the null and their powers are increasing with respec
to oz under the alternatives. The power of the Studgrdcore rank and signed-rank tests are increasing as mueh as
increases. The simulation results show that the Wilxoxgnedi-rank test given ir2Q) is equivalent to the Ramanathan
and Rajatchi test (tablé and?2). It also appears from the skew-normal and the skew-Stuglanilations (table3) that
asymmetry significantly improves the superiority of ranétseover Ramanathan and Rajarshi procedure.

The developed work shows its power in the case of non symeraiigiribution and it could be extended to the case of
unknown regression parameters. Future investigationdwitlevoted to this goal and also to a large class of stochasti
parameter regression models.
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A Appendix (Proof of proposition 1)

The proofrelies on Swensen’s conditions 1.2 to 1.724f [emma 1]. More precisely, the only delicate one is the ctowli
1.2. This condition is a direct consequence ofgadratic mean differentiabilityat oz = 0 of

90, (£) = { /R f (e— 0g&X) h(E)dE}l/Z

However, this quadratic mean differentiability is sometuian standard, as it involves the second-order derivafivefs
the densityf As in Akharif and Hallin [L], the proof is decomposed into the following three parts.

(i) y? —gly r T(€ —xyv)h(v) dvis absolutely continuous in a right-neighborhoogef 0, with a.e. derivative

1y .

- / / f (& — xwv)x®v?h(v) dv dw (31)

2y Jw=0Jr
Indeed, from the absolutely continuity 6fand f, and Fubini's theorem, we obtain

9(y) ~9(0) = | [(e—xyv) — ()] (v) dv
y .
—/ / f(e —xav)xv da hv) dv
R.Ja=0

= /R /io /io f (e — xwv)x?v? dw da Hv) dv

2/b0 /b_z/ (& —xwvpA2 h(v) dv dw db (32)

The value of the a.e. derivative |B:() follows for eachy > 0. Aty = 0, the right derivative is defined as the limit, as
y— 0, of [g(y) — 9(0)] /y?, (32) yields 3, but by applying L'Hospital's rule, it leads %f (¢£)x? [ v2h(v) dv= 3 f (&)x?

(ii) It follows thaty? — s¢ x(y) := [g(y)]l/2 is absolutely continuous in a neighborhood/ef 0, with a.e. derivative
i T(€ —xwv)x2v2 h(v) dv

Sex(y) = 4y/w 0 [fx f(e—xyv) h(v) d\ﬁ%

dw (33)

L'Hospital's rule aty = 0 yieldss; x(0) = 2 2 (&) f (€)x2. Hence, for al,
)I/ [Sex(y) /y2 $x(0 (34)

(iii ) The partial quadratic mean differentiability property ®roved takes the form

. 1 ) 2
)l,m) R {F [Sex(Y) —Sex(0)] — S&x(o)} de =0. (35)

From(ii) above,

(36)
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for all €. Fubini's theorem and3@) yields

A{ylz[%7x(y)—&,x(0)]}2 de <%/)\y20/R($s,x(\/X))2 de da
1

y2
= X .
~Toy A:ofw(f,ﬁ) da,

(37)

with f&jw defined in 6) and from the continuity assumption (€.2) , this latter quantity converges, gs— 0, to
Fpy(£,0)/16= [ (%:x(0))? de. Which, together with%7), entails that

2 .
imsup [ { % 5e4() - sx0) | de < [ (8(0)% . (38)

y—0 JR

In view of Theorem V.1.3 of Hajek an®idak B] [also in Hajek et al. §]], (34) and @8) jointly imply (35). This
completes the proof.
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