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Abstract: In this paper, we propose nonparametric locally and asymptotically optimal tests for the problem of detecting randomness
in the coefficient of a linear regression model (in the Le Cam and Hájek sense). That is, the problem of testing the null hypothesis
of a Standard Linear Regression (SLR) model against the alternative of a Random Coefficient Regression (RCR) model. A Local
Asymptotic Normality (LAN) property, which allows for constructing locally asymptotically optimal tests, is therefore established for
RCR models in the vicinity of SLR ones. Rank and signed-rank based versions of the optimal parametric tests are provided.These tests
are optimal, most powerful and valid under a wide class of densities. A Monte-Carlo study confirms the performance of the proposed
tests.
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1 Introduction and notations

Regression analysis has been investigated by many researchers and mainly used to explore the relationship between
dependent and independent variables. Random coefficient and varying parameter regression models are widely applied in
many areas such as social sciences, ecology, finance and econometrics (see e.g. [20] and [14]). Besides, it was
demonstrated in many applications that these models are superior to ordinary linear regression ones.

Earlier contributions to the study of these models are due toRaj and Ullah [18] and Nicholls and Pagan [15].
Consequently, there is a growing theoretical interest in these models. One such model is the Random Coefficient
Regression(RCR model)which is considered in this paper and defined by:

Yi = µ +(β + ξi)Xi + εi , i = 1, . . . ,n, (1)

where,

⊲ Yi is the observed response for individuali, Xi is a non-stochastic exogenous regressor, andµ and β are given
regression parameters;
⊲ (εi)1≤i≤n is a zero-meani.i.d. sequence of error terms with varianceσ2 and densityε 7→ f (ε) := (1/σ) f1(ε/σ);
⊲ (ξi)1≤i≤n is ani.i.d. sequence of random coefficients(0,σ2

ξ ) with densityξ 7→ h(ξ ) := (1/σξ )h1(ξ/σξ );
⊲ ξi andεi are independent for alli = 1, . . . ,n.

In this model, the regression slope varies randomly around its mean,β , according to a distribution whose standard
deviation isσξ .

Note that, ifσ2
ξ = 0, the RCR model reduces to the SLR one:

Yi = µ +βXi + εi , i = 1, . . . ,n. (2)
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It will be useful to have an available test of the null hypothesis that the fixed parameter model is appropriate against
the alternative of stochastic parameter. Ramanathan and Rajarshi [19] obtained a signed-rank-based (ranks of the squares
of residuals) version test by considering thatξi andεi have a symmetric logistic distribution.

In this paper, the main technical tool isLe Cam’s asymptotic theoryof statistical experiments and the properties of
locally asymptotically normal (LAN)families (see, for details, [12], [22, chapter 6 – 9] and [11]). This powerful method
has been used quite successfully in various inference problems (see, e.g., [4], [9], [3] and [13]). The logarithm of the

likelihood ratio in a LAN family with parameterθ admits local approximation of the formτ∆ (n)
θ − 1

2τ2γθ , where the

random variable∆ (n)
θ , called acentral sequence, is asymptotically normalN (τγθ ,γθ ) under sequences of parameter

values of the formθ +n−1/2τ (local alternatives). Let φ(∆) be an optimal test in theGaussian shift modeldescribing a
hypothetical observation∆ with distribution in the family{N (τγθ ,γθ )|τ ∈ R} (γθ specified). Then, the sequenceφ(∆θ )
is a sequence oflocally asymptotically optimal testsfor the original problem (optimality is based on the local convergence
of risk functions to the risk functions of Gaussian shift experiments). Furthermore, this procedure allows to provide a
class of rank and signed-rank tests which remain valid underarbitrary densities, without any moment assumption (see,
e.g., [8], [10] and [6]). Several arguments justify the use of rank tests: The vector of ranks (with the vector of signs for
the symmetric case) is amaximal invariantwith respect to the group oforder-preserving transformationsof residuals
for a broad class of densities; the rank (signed-rank) testsproduced are morerobust regarding some outliers than their
parametric counterparts and rank (signed-rank) based procedures areasymptotically powerfulcompared to parametric
ones.

The asymptotic behavior of these rank and signed-rank testsis studied under the null and sequences of local
alternatives. It is shown that the studied tests are most powerful and present a uniformly good power behavior, which is
demonstrated by a Monte-Carlo simulations.

The paper is organized as follows. In subsection2.1, the notation and main assumptions are provided. Subsection 2.2
establishes the LAN property. A rank and signed-rank version of the LAN result are established in section4 based on
the optimal procedure version obtained in section3. The van der Waerden and Wilcoxon versions of the rank and the
signed-rank test statistics are described in subsections4.1and4.2. Finally, section5 provides some simulation results of
the various proposed tests. The conclusion and perspectives appear in section6.

2 Local Asymptotic Normality

2.1 Notation and main assumptions

The null hypothesis, we are interested in, is the traditional standard linear regression (SLR) dependence (2) in which the

hypothesisP(ξi = 0) = 1 is equivalent to assume thatσ2
ξ = 0. In this case we denote byP(n)

0; f1
=: P(n)

f1
the probability

distribution under the null. Under the alternative,P(n)
σ2

ξ ; f1,h1
is the probability distribution of the observation

Y(n) :=
(
Y(n)

1 ,Y(n)
2 , . . . ,Y(n)

n

)′
generated by (1). Let’s consider the class of general standardized densities:

F0 :=

{
f1 :

∫ 1

−1
f1(z)dz= 0.5=

∫ 0

−∞
f1(z)dz

}

and the class of symmetric standardized densities:

F
+
0 :=

{
f1 : f1(−z) = f1(z) and

∫ 1

−1
f1(z)dz= 0.5=

∫ 0

−∞
f1(z)dz

}
.

Note that, underF0 andF
+
0 the median and median absolute deviation are respectively 0andσ . This standardization

which, contrary to the usual one based on the mean and the standard deviation, avoids all moment assumptions, plays the
role of an identification constraint and has no impact on subsequent results.

The main technical tool in our derivation of optimal tests isthe local asymptotic normality (LAN), with respect toσ2
ξ ,

of the families of distributions

P
(n)
f1,h1

:=

{
P
(n)
σ2

ξ ; f1,h1
: σ2

ξ ≥ 0

}
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at σ2
ξ = 01. Establishing the LAN requires some technical assumptions, which are about the densityf1, the asymptotic

behavior of the regressor and the densityh1.

Assumption (A)

(A.1) f1 ∈ F0 (resp.f1 ∈ F
+
0 for the symmetric distributions);

(A.2) f1(z)> 0 for all z∈ R;
(A.3) z 7→ f1(z) is C 2 onR, with second derivativëf1 and lettingψ f1 := f̈1/ f1, assume thatIψ ( f1) :=

∫
R ψ2

f1
(z) f1(z)dz is

finite.

Denote byFA (resp.F+
A for the symmetric distributions) the set of all densities satisfying Assumption (A). For instance,

⊲ the logistic distribution, with standardized density is given as

f1 = ℓ1 :=
√

bexp(−
√

bz)/(1+exp(−
√

bz))2, (3)

with b= (ln3)2 andIψ(ℓ1) = b2/5;
⊲ the Gaussian distribution, with standardized density takes the form

f1 = φ1 :=
√

a/2π exp(−az2/2), (4)

with a≈ 0.4549 andIψ(φ1) = 2a2

⊲ and the Student-tν distribution (withν > 0 degrees of freedom), with standardized density is formulated as

f1 = ftν :=

√
aν

(
ν

aν x2+ν

) ν+1
2

√
νB

( ν
2 ,

1
2

) , (5)

the normalizing constantaν > 0 is such thatftν ∈ F
+
0 . Iψ( ftν ) = 2a2

ν
(ν+1)(ν+2)(ν(ν+5)+10)

ν(ν+3)(ν+5)(ν+7) .

Assumption (B)
Suppose that the classical Noether condition hold ([16, p.501]):

lim
n→∞

max1≤i≤n

(
Xi −X

(n)
)2

∑n
i=1

(
Xi −X

(n)
)2 = 0,

whereX
(n)

:= n−1∑n
i=1Xi.

This condition originates from Noether (1949). It essentially keeps one of the constants from dominating the others
and allows to give the asymptotic behavior of a test statistic.

Assumption (C)

(C.1)
∫
R ξ h1(ξ )dξ = 0 and

∫
R ξ 2h1(ξ )dξ = 1;

(C.2) Denote byI x
ψψ ( f1;y) the Fisher information associated toσξ , such as

I
x

ψψ ( f1;y) :=

{
1
y2

∫ ∞
z=−∞

[
∫ y
w=0

∫
f̈1(z−xvw)x2v2h1(v)dvdw]

2

∫
f1(z−xyv)h1(v)dv dz if y> 0

x4Iψ ( f1) if y= 0

=





1
y2

∫ ∞
z=−∞

[ ∫
ḟ1(z−xyv)xvh1(v)dv

[
∫

f1(z−xyv)h1(v)dv]1/2

]2

dz if y> 0

x4Iψ ( f1) if y= 0
.

(6)

The functiony 7→ I x
ψψ( f1;y) is continuous from the right aty= 0, for all x.

Note that, assumption(C.2) is an assumption which involves the couple of densities( f1,h1).
Let FC| f1 := {h1|h1 and( f1,h1) satisfy Assumptions(C.1) and(C.2) , respectively} (resp.F+

C| f1 for f1 ∈ F
+
0 ).

1 This is a one-sided test and takes the following form:

{
H0 : σ2

ξ = 0

H1 : σ2
ξ > 0

.
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2.2 LAN

In the following, we establish thelocal asymptotic normality (LAN)result (on which optimal test will be based (section

3)) with respect toσ2
ξ for a fixed densityf1. Let’s consider a sequence of local alternatives of the form2

(
0+n−1/2K(n)τ

)
,

whereK(n) =
(
∑n

i=1X4
i

)−1/2
andτ ∈ R+. Define the standardized residuals as:Zi := σ−1(Yi − µ −βXi), for i = 1, ...,n

and note that these residuals coincide with
εi

σ
under the null hypothesisP(n)

f1
. We then have the following proposition.

Proposition 1(LAN). Let Assumptions (B) and (C) hold. Fix f1 ∈ FA and h1 ∈ FC| f1. Then, as n→ ∞,

(i) the familyP(n)
f1,h1

is LAN at0, with central sequence

∆ (n)
f1

:=
1

2σ2
√

n

n

∑
i=1

ψ f1(Zi)K
(n)X2

i (7)

and variance

γ f1 :=
1

4nσ4Iψ ( f1), (8)

(ii) for anyτ ∈ R+, we have, underP(n)
f1

,

Λ (n)

n−1/2K(n)τ/0; f1,h1
:= log




dP(n)

n−1/2K(n)τ; f1,h1

dP(n)
f1




=τ∆ (n)
f1

− 1
2

τ2γ f1 +oP(1),

(iii ) ∆ (n)
f1

L−→ N (0,γ f1), underP(n)
f1

.

Proof. (See appendix.)

Remark.The expressions ((7), (8)) of the central sequence∆ (n)
f1

and the varianceγ f1 do not depend on the densityh1 of
the random criterionξ . It has no influence and will not appear in the test statistics.

3 Optimal parametric test

For specifiedf1 ∈ FA, we consider the null hypothesis

H
(n)

0 :=
⋃

f1∈FA

P
(n)
f1

of non-randomness coefficient in model (1) (i.e.σ2
ξ = 0), against alternatives of the form

⋃

f1∈FA

⋃

σ2
ξ >0

⋃

h1∈FC| f1

{
P
(n)
σ2

ξ ; f1,h1

}
.

Recall that, based on Le Cam’s third lemma, one can give the distribution under the alternative hypothesis (see, e.g.,
[22, chapter 6]).

2 This is equivalent to test:





H0 : P(n)

f1
: τ = 0

H1 : P(n)
σ2

ξ ; f1,h1
: τ > 0

.
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Definition 1(Le Cam’s third lemma). Let S(n) be a measurable statistic andΛ (n) is a version oflog
dQ(n)

dP(n)
(P(n) andQ(n)

are respectively, the null and the local alternative hypothesis). Suppose that underP(n), as n→ ∞,

(
S(n)

Λ (n)

)
L−→ N

((
µ1
µ2

)
,

(
σ2

1 σ12

σ12 σ2
2

))
, with µ2 =−σ2

2/2. (9)

Then,

(i) P(n) andQ(n) are mutually contiguous;

(ii) underQ(n), S(n)
L−→ N

(
µ1+σ12,σ2

1

)
.

Applying definition1 yields

(
∆ (n)

f1

Λ (n)

n−1/2K(n)τ/0; f1,h1

)
L−→ N

((
0

− 1
2τ2γ f1

)
,

(
γ f1 τγ f1

τγ f1 τ2γ f1

))
, underP(n)

f1
. (10)

Therefore

∆ (n)
f1

L−→ N
(
τγ f1,γ f1

)
, underP(n)

n−1/2K(n)τ; f1,h1
. (11)

The LAN structure and the convergence of local experiments to the Gaussian shift experiment∆ ∼ N (γτ,γ), imply

that locally optimal inference onσ2
ξ should be based on∆ (n)

f1
, hence onT(n)

f1
with

T(n)
f1

:=
(
γ f1

)−1/2∆ (n)
f1

=
K(n)

√
Iψ ( f1)

n

∑
i=1

ψ f1(Zi)X
2
i .

(12)

Thus, we have the following result.

Proposition 2.Let Assumptions (B) and (C) hold. Fix f1 ∈ FA and h1 ∈ FC| f1. Then,

(i) T(n)
f1

is asymptotically normal, with mean zero underP
(n)
f1

, meanγ1/2
f1

τ underP(n)

n−1/2K(n)τ; f1,h1
and variance one under

both;
(ii) the sequence of tests rejecting the null hypothesisH

(n)
0 (with standardized density f1) whenever3

T(n)
f1

> z1−α ,

is locally asymptotically most powerful at asymptotic level α, against local alternatives hypothesis of the form
⋃

f1∈FA

⋃

σ2
ξ >0

⋃
h1∈FC| f1

{
P
(n)
σ2

ξ ; f1,h1

}
.

4 Optimal rank and signed-rank tests

The null hypothesisH (n)
0 of nullity of randomness criterion indeed is generated by the group

(
G

(n)
0 ,◦

)
of all

transformationsGl of Rn such thatGl(Y1, . . . ,Yn) := (l(Y1), . . . , l(Yn)), where limy→±∞ l(y) = ±∞ andl(y) is continuous
and monotone increasing.

3 z1−α is the(1−α)−standard normal quantile.
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4.1 Optimal rank test

A maximal invariant for the groupGl is known to be the vector(R(n)
1 ,R(n)

2 , ...,R(n)
n )′, whereR(n)

i denotes the rank of residual
Zi amongZ1,Z2, ...,Zn.

General results on semi-parametric efficiency (see, for details, [10]) indicate that, in such context, the expectation

of the efficient central sequence∆ (n)
f1

conditional on those ranks yields to a version of the semi-parametrically efficient

central sequence. The rank based version of the efficient central sequence∆ (n)
f1

is given as:

∆
˜
(n)
f1

:=
K(n)

2σ2
√

n

n

∑
i=1

X2
i

{
ψ f1

(
F−1

1

(
R(n)

i

n+1

))
−ψ(n)

f1

}
, (13)

with ψ(n)
f1

:=
1
n

∑n
i=1 ψ f1

(
F−1

1

(
i

n+1

))
.

Let

s2(n)
f1 := ψ2(n)

f1 −
(

ψ(n)
f1

)2

=
n−1

n2

n

∑
i=1

ψ2
f1

(
F−1

1

(
i

n+1

))

− 1
n2

n

∑
i=1

n

∑
j=1
i 6= j

ψ f1

(
F−1

1

(
i

n+1

))
ψ f1

(
F−1

1

(
j

n+1

))
,

(14)

with ψ2(n)
f1

:=
1
n

∑n
i=1 ψ2

f1

(
F−1

1

(
i

n+1

))
. The variance of∆

˜
(n)
f1

, is

Var(∆
˜
(n)
f1
) =

K(n)2 ∑n
i=1

(
X2

i −X2
)2

4(n−1)σ4 s2(n)
f1 . (15)

The proof of the next proposition is based on Hájek’s projection theorem, followed from Hallin et al. [7] and reinforced

by Hallin and Werker [10, proposition 3.1]; this result allows us to give the distribution underP(n)
g1 such thatg1 ∈ F0.

Proposition 3. Let assumption (B) hold, for all f1 ∈ FA and g1 ∈ F0, we have, underP(n)
g1 , as n→ ∞4,

∆
˜
(n)
f1

=
K(n)

2σ2
√

n

n

∑
i=1

(
X2

i −X2
)

ψ f1

(
F−1

1 (G1(Zi))
)
+oP(1). (16)

Then, from Le Cam’s third lemma, we have




K(n)

2σ2
√

n
∑n

i=1

(
X2

i −X2
)

ψ f1

(
F−1

1 (G1(Zi))
)

τ∆ (n)
g1 − 1

2
τ2γg1


 L−→ N

((
0

−1
2

τ2γg1

)
,

(
γ∗(n)f1

τγ
˜
(n)
f1,g1

τγ
˜
(n)
f1,g1

τ2γg1

))
, underP(n)

g1 . (17)

Therefore
∆
˜
(n)
f1

L−→ N

(
τγ
˜
(n)
f1,g1

,γ∗(n)f1

)
, underP(n)

n−1/2K(n)τ;g1,h1
, (18)

with

γ
˜
(n)
f1,g1

:=
K(n)2 ∑n

i=1

(
X2

i −X2
)2

4nσ4 Iψ( f1,g1), Iψ ( f1,g1) :=
∫ 1

0
ψ f1

(
F−1

1 (u)
)

ψg1

(
G−1

1 (u)
)

du (19)

4 G1 is the distribution function associated withg1
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and

γ∗(n)f1
:=

K(n)2 ∑n
i=1

(
X2

i −X2
)2

4nσ4 Iψ ( f1). (20)

From proposition3 and17, asn→ ∞, we have:Var(∆
˜
(n)
f1
) = γ∗(n)f1

+o(1).

Local asymptotic optimality at densityf1 is achieved by the test based onT
˜
(n)
f1

, where

T
˜
(n)
f1

:= ∆
˜
(n)
f1
/

√
Var(∆

˜
(n)
f1
) =




1− 1
n

s2(n)
f1 ∑n

i=1

(
X2

i −X2
)2




1/2
n

∑
i=1

X2
i

{
ψ f1

(
F−1

1

(
R(n)

i

n+1

))
−ψ(n)

f1

}
. (21)

More precisely, we have the following proposition.

Proposition 4.Let Assumptions (B) and (C) hold and fix f1 ∈ FA. Then,

(i) for any g1 ∈ FA, T
˜
(n)
f1

is asymptotically normal, with mean zero underP(n)
g1 , mean τγ

˜
(n)
f1,g1

/γ∗(n)f1
under

P
(n)

n−1/2K(n)τ;g1,h1
(h1 ∈ FC|g1

) and variance one under both;

(ii) the sequence of tests rejecting the null hypothesis whenever

T
˜
(n)
f1

> z1−α ,

is locally asymptotically most powerful, at asymptotic level α, against local alternatives.

The two most important particular cases for the test statistic presented in proposition4, are thevan der Waerden
(normal scores)and theWilcoxon (logistic scores)test statistics, which are respectively optimal at normal and logistic
distributions.

• The van der Waerden test statistic is defined in a Gaussian case (f1 = φ1), with ψ f1

(
F−1

1 (x)
)
= a

[(
Φ−1 (x)

)2−1
]

(Φ is the standard normal distribution function) and the test statistic becomes

T
˜
(n)
vdW =




1− 1
n

s2(n)
vdW∑n

i=1

(
X2

i −X2
)2




1/2
n

∑
i=1

X2
i





(
Φ−1

(
R(n)

i

n+1

))2

−ψ(n)
vdW



 , (22)

with ψ(n)
vdW :=

1
n

∑n
i=1

(
Φ−1

(
i

n+1

))2

and

s2(n)
vdW :=

n−1
n2

n

∑
i=1

[(
Φ−1

(
i

n+1

))2

−1

]2

− 1
n2

n

∑
i=1

n

∑
j=1
i 6= j

[(
Φ−1

(
i

n+1

))2

−1

][(
Φ−1

(
j

n+1

))2

−1

]
.

• The Wilcoxon test statistic is defined in a logistic case (f1 = ℓ1) with ψ f1

(
F−1

1 (x)
)
= b

(
6x2−6x+1

)
and the test

statistic is writing under the following form

T
˜
(n)
W =




1− 1
n

s2(n)
W ∑n

i=1

(
X2

i −X2
)2




1/2
n

∑
i=1

X2
i




6

(
R(n)

i

n+1

)2

−6

(
R(n)

i

n+1

)
−ψ(n)

W




 , (23)

with ψ(n)
W =− n+2

n+1 ands2(n)
W =

(n−2)(n−1)(n+2)
5(n+1)3

.
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4.2 Optimal signed-rank test

In this subsection, we focus on symmetric densities and we assume thatf1 ∈F
+
0 . A maximal invariant for the groupGl is

known to be the vector of signs(s1,s2, . . . ,sn)
′, along with the vector of ranks(R(n)

+,1,R
(n)
+,2, ...,R

(n)
+,n)

′, wheresi is the sign

of Zi andR(n)
+,i the rank of|Zi | among|Z1|, |Z2|, . . . , |Zn|. Knowing thatψ f1 is even, then the sign have no impact on the

signed-rank based version of the efficient central sequence∆ (n)
f1

. We have then

∆
˜
+(n)
f1

:=
K(n)

2σ2
√

n

n

∑
i=1

X2
i

{
ψ f1

(
F−1

1,+

(
R(n)
+,i

n+1

))
−ψ+(n)

f1

}
, (24)

with ψ+(n)
f1

:=
1
n

∑n
i=1 ψ f1

(
F−1

1,+

(
i

n+1

))
. Let

s2+(n)
f1

:= ψ2+(n)
f1

−
(

ψ+(n)
f1

)2

=
n−1

n2

n

∑
i=1

ψ2
f1

(
F−1

1,+

(
i

n+1

))

− 1
n2

n

∑
i=1

n

∑
j=1
i 6= j

ψ f1

(
F−1

1,+

(
i

n+1

))
ψ f1

(
F−1

1,+

(
j

n+1

))
,

(25)

with ψ2+(n)
f1

:=
1
n

∑n
i=1 ψ2

f1

(
F−1

1,+

(
i

n+1

))
andF1,+ is such that:

⊲ F1 is a cumulative distribution function(cdf.)of the random variableZ, F1,+ : x 7→ 2F1(x)−1 is acdf.of |Z|;
⊲ F−1

1,+(v) = F−1
1

(
v+1

2

)
for all v∈ [0,1].

The proof of the next proposition is an immediate consequence of proposition3, knowing thatψ f1

(
F−1

1,+ (G1,+(Zi))
)
=

ψ f1

(
F−1

1 (G1(Zi))
)
.

Proposition 5. Let assumption (B) hold, for all f1 ∈ F
+
A and g1 ∈ F

+
0 , we have, underP(n)

g1 , as n→ ∞,

∆
˜
+(n)
f1

=
K(n)

2σ2
√

n

n

∑
i=1

(
X2

i −X2
)

ψ f1

(
F−1

1,+ (G1,+(Zi))
)
+oP(1). (26)

In this case, local asymptotic optimality at densityf1 is achieved by the test based onT
˜
+(n)
f1

, where

T
˜
+(n)
f1

:=




1− 1
n

s2+(n)
f1 ∑n

i=1

(
X2

i −X2
)2




1/2
n

∑
i=1

X2
i

{
ψ f1

(
F−1

1,+

(
R(n)
+,i

n+1

))
−ψ+(n)

f1

}
. (27)

Then, the result given in the next proposition is followed from proposition5 and the Le Cam’s third lemma.

Proposition 6.Let Assumptions (B) and (C) hold and fix f1 ∈ F
+
A . Then,

(i) for any g1 ∈ F
+
A , T

˜
+(n)
f1

is asymptotically normal, with mean zero underP(n)
g1 , mean τγ

˜
(n)
f1,g1

/γ∗(n)f1
under

P
(n)

n−1/2K(n)τ;g1,h1
(h1 ∈ F

+
C|g1

) and variance one under both;

(ii) the sequence of tests rejecting the null hypothesis whenever

T
˜
+(n)
f1

> z1−α ,

is locally asymptotically most powerful, at asymptotic level α, against local alternatives.
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• The signed van der Waerden test statistic (normal scores) : given for f1 = φ1, where

ψ f1

(
F−1

1,+ (x)
)
= a

[(
Φ−1

(
x+1

2

))2−1
]

and

T
˜
+(n)
vdW =




1− 1
n

s2+(n)
vdW ∑n

i=1

(
X2

i −X2
)2




1/2
n

∑
i=1

X2
i






(
Φ−1

(
1
2
+

R(n)
+,i

2(n+1)

))2

−ψ+(n)
vdW




 , (28)

with ψ+(n)
vdW =

1
n

∑n
i=1

(
Φ−1

(
1
2
+

i
2(n+1)

))2

and

s2+(n)
vdW :=

n−1
n2

n

∑
i=1

[(
Φ−1

(
1
2
+

i
2(n+1)

))2

−1

]2

− 1
n2

n

∑
i=1

n

∑
j=1
i 6= j

[(
Φ−1

(
1
2
+

i
2(n+1)

))2

−1

][(
Φ−1

(
1
2
+

j
2(n+1)

))2

−1

]
.

• The signed Wilcoxon test statistic (logistic scores) : given for f1 = ℓ1, whereψ f1

(
F−1

1,+ (x)
)
= b

2

(
3x2−1

)
and the

test statistic is writing under the form

T
˜
+(n)
W = 3




1− 1
n

s2+(n)
W ∑n

i=1

(
X2

i −X2
)2




1/2
n

∑
i=1

X2
i






(
R(n)
+,i

n+1

)2

−ψ+(n)
W




 , (29)

with ψ+(n)
W = 2n+1

6(n+1) ands2+(n)
W =

(n−1)(2n+1)(8n+11)
20(n+1)3

.

Remark

Due to the expressions ofs(n)vdW ands(n)W for the rank tests (respectively tos+(n)
vdW ands+(n)

W for the signed-rank tests), the
scale factorsa for van der Waerden andb for Wilcoxon are simplified in the final expressions of the rank (respectively
signed-rank) test statistics. This confirms that the choiceof the median of absolute deviation as a scale parameter in the
definition ofF0 (respectivelyF+

0 ) has no impact on the results.

5 Simulation

The purpose of this section is to evaluate the performance ofthe proposed tests, in propositions4 and6, at asymptotic
levelα. Let’s consider the model

Yi = µ +βXi + ξiXi + εi , i = 1, . . . ,n= 100, (30)

where,

(a) µ = 1 andβ = 10;
(b) theXi ’s arei.i.d. uniform(0,10);
(c) theξi ’s arei.i.d. Gaussian with mean zero and standard deviationσξ = 0 (for null hypothesis),= 0.1, 0.2, 0.3, 0.4

or 0.5 (for increasing alternatives). When asymmetric densities are used, the non null values ofσξ considered are
0.05, 0.1, 0.15, 0.2 and 0.25;

(d) theεi ’s are i.i.d. with a symmetric density – Gaussian (φ1), logistic (ℓ1), Student withν = 1, 3 and 5 degrees of
freedom (tν ) – or with an asymmetric density – the skew normal(sN ) or skew Studentt5 (st5) densities5 (both with
skewness parameter valueδ = 10).

5 for example, the skew-normal distribution with shape parameterδ 6= 0 is defined asfsN (z) := 2φ1(z)Φ(δz) whereΦ stands for
the standard normal distribution function. See, for details, [2].
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We generatedN = 2500 independent samples of sizen= 100 from (30).

For symmetric densities, table1 and2 show the rejection frequencies for the van der Waerden (TvdW+), the Wilcoxon
(TW+), the Student (Tt+ν

, with ν = 1, 3, 5) and the Ramanathan and Rajarshi [19] (TRR) tests. Furthermore, when the
densities are asymmetric, we present in table3 the rejection frequencies, for the van der Waerden (TvdW), the Wilcoxon
(TW), the Student (Ttν , with ν = 1, 3, 5) and the Ramanathan and Rajarshi [19] (TRR) tests. The six tests are performed at
asymptotic levelsα = 1%, 5% and 10%.

Table 1: Rejection frequencies (out of 2500 replications), at asymptotic levelsα = 1%, 5% and 10%, forσξ = 0 (null hypothesis),
0.1, 0.2, 0.3, 0.4, 0.5 (alternative hypotheses), with error densityg1 that is Gaussian (φ1) and logistic (ℓ1), of the van der Waerden test
(TvdW+ ), the Wilcoxon test (TW+ ), the StudentTtν+ tests (tν -score withν = 1,3,5) and Ramanathan and Rajarshi test (TRR), for n= 100.

g1 Test α σξ
0 0.1 0.2 0.3 0.4 0.5

1% 0.0092 0.0652 0.4440 0.8184 0.9460 0.9808
TvdW+ 5% 0.0468 0.2260 0.6928 0.9440 0.9900 0.9996

10% 0.0920 0.3480 0.7968 0.9764 0.9980 0.9988
1% 0.0096 0.0568 0.3628 0.7412 0.9100 0.9688

TW+ 5% 0.0492 0.1876 0.6132 0.9072 0.9756 0.9940
10% 0.0960 0.2988 0.7308 0.9572 0.9912 0.9968
1% 0.0084 0.0124 0.0248 0.0656 0.1016 0.1516

Tt+1
5% 0.0516 0.0672 0.1164 0.1992 0.2992 0.4044

φ1 10% 0.1016 0.1408 0.2096 0.3308 0.4568 0.5460
1% 0.0084 0.0456 0.3120 0.6844 0.8884 0.9592

Tt+3
5% 0.0452 0.1652 0.5772 0.8932 0.9712 0.9920
10% 0.1008 0.2800 0.7016 0.9472 0.9924 0.9980
1% 0.0104 0.0532 0.3108 0.6872 0.8824 0.9560

Tt+5
5% 0.0456 0.1740 0.5588 0.8748 0.9632 0.9908
10% 0.0932 0.2784 0.6848 0.9392 0.9836 0.9956
1% 0.0104 0.0560 0.3588 0.7384 0.9072 0.9680

TRR 5% 0.0488 0.1852 0.6072 0.9052 0.9748 0.9936
10% 0.0988 0.2948 0.7276 0.9572 0.9912 0.9964

1% 0.0096 0.0504 0.3396 0.7264 0.9108 0.9700
TvdW+ 5% 0.0496 0.1560 0.5860 0.8912 0.9804 0.9928

10% 0.0936 0.2556 0.7112 0.9412 0.9920 0.9968
1% 0.0096 0.0476 0.3112 0.6816 0.8904 0.9640

TW+ 5% 0.0492 0.1568 0.5812 0.8768 0.9704 0.9928
10% 0.0956 0.2620 0.7172 0.9372 0.9872 0.9972
1% 0.0064 0.0168 0.0364 0.0648 0.1224 0.1612

Tt+1
5% 0.0444 0.0840 0.1588 0.2428 0.3340 0.4136

ℓ1 10% 0.0940 0.1708 0.2640 0.3748 0.4904 0.5832
1% 0.0088 0.0496 0.2836 0.6436 0.8544 0.9428

Tt+3
5% 0.0456 0.1596 0.5420 0.8516 0.9608 0.9900
10% 0.0968 0.2552 0.6848 0.9188 0.9836 0.9952
1% 0.0104 0.0460 0.2796 0.6296 0.8516 0.9460

Tt+5
5% 0.0456 0.1540 0.5524 0.8504 0.9600 0.9896
10% 0.0932 0.2524 0.6900 0.9216 0.9836 0.9952
1% 0.0096 0.0460 0.3064 0.6780 0.8888 0.9632

TRR 5% 0.0488 0.1548 0.5792 0.8752 0.9696 0.9924
10% 0.0968 0.2584 0.7144 0.9368 0.9872 0.9972
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Table 2: Rejection frequencies (out of 2500 replications), at asymptotic levelsα = 1%, 5% and 10%, forσξ = 0 (null hypothesis),
0.1, 0.2, 0.3, 0.4, 0.5 (alternative hypotheses), with error densityg1 that is Student (tν , with ν = 1, 3 and 5) of the van der Waerden
test (TvdW+ ), the Wilcoxon test (TW+ ), the StudentTt+ν

tests (tν -score withν = 1,3,5) and theTRRone, forn= 100.

g1 Test α σξ
0 0.1 0.2 0.3 0.4 0.5

1% 0.0100 0.0236 0.0712 0.1480 0.2512 0.3700
TvdW+ 5% 0.0444 0.0904 0.2012 0.3524 0.5096 0.6364

10% 0.0888 0.1680 0.3180 0.4836 0.6500 0.7708
1% 0.0084 0.0376 0.1576 0.3472 0.5384 0.7028

TW+ 5% 0.0480 0.1388 0.3700 0.6072 0.7800 0.8852
10% 0.0904 0.2252 0.5036 0.7464 0.8688 0.9448
1% 0.0072 0.0484 0.1616 0.2756 0.3100 0.3924

Tt+1
5% 0.0432 0.1744 0.3928 0.5412 0.6040 0.6840

t1 10% 0.0936 0.2812 0.5408 0.6852 0.7464 0.8000
1% 0.0084 0.0396 0.1888 0.3748 0.5600 0.6860

Tt+3
5% 0.0504 0.1452 0.4204 0.6528 0.8112 0.8824
10% 0.1048 0.2464 0.5668 0.7792 0.8956 0.9372
1% 0.0088 0.0408 0.1796 0.3936 0.5940 0.7436

Tt+5
5% 0.0484 0.1456 0.4040 0.6584 0.8164 0.9116
10% 0.0936 0.2316 0.5420 0.7920 0.8984 0.9584
1% 0.00800 0.0356 0.1532 0.3432 0.5328 0.6960

TRR 5% 0.0472 0.1384 0.3644 0.6036 0.7772 0.8824
10% 0.0900 0.2248 0.4996 0.7456 0.8688 0.9436

1% 0.0104 0.0328 0.2060 0.5288 0.7576 0.9080
TvdW+ 5% 0.0500 0.1300 0.4512 0.7552 0.9192 0.9764

10% 0.0996 0.2112 0.5764 0.8464 0.9600 0.9900
1% 0.0112 0.0416 0.2596 0.5976 0.8176 0.9304

TW+ 5% 0.0488 0.1512 0.5268 0.8148 0.9448 0.9832
10% 0.0968 0.2524 0.6588 0.8900 0.9740 0.9920
1% 0.0084 0.0236 0.0508 0.1044 0.1548 0.1924

Tt+1
5% 0.0492 0.0992 0.1896 0.2948 0.3868 0.4656

t3 10% 0.1048 0.1840 0.3180 0.4440 0.5376 0.6080
1% 0.0104 0.0436 0.2464 0.5672 0.7968 0.9116

Tt+3
5% 0.0440 0.1464 0.5060 0.7976 0.9360 0.9784
10% 0.0936 0.2560 0.6456 0.8804 0.9680 0.9908
1% 0.0116 0.0424 0.2640 0.5772 0.8060 0.9144

Tt+5
5% 0.0472 0.1568 0.5260 0.8148 0.9380 0.9796
10% 0.0968 0.2628 0.6616 0.8864 0.9676 0.9904
1% 0.0108 0.0400 0.2552 0.5924 0.8152 0.9284

TRR 5% 0.0472 0.1480 0.5212 0.8144 0.9440 0.9832
10% 0.0948 0.2488 0.6572 0.8888 0.9736 0.9920

1% 0.0084 0.0476 0.2868 0.6612 0.8692 0.9524
TvdW+ 5% 0.0492 0.1544 0.5436 0.8640 0.9668 0.9908

10% 0.0968 0.2544 0.6824 0.9204 0.9856 0.9968
1% 0.0084 0.0428 0.3000 0.6524 0.8612 0.9524

TW+ 5% 0.0480 0.1740 0.5628 0.8604 0.9616 0.9896
10% 0.1016 0.2832 0.7040 0.9228 0.9840 0.9964
1% 0.0088 0.0200 0.0444 0.0736 0.1288 0.1840

Tt+1
5% 0.0500 0.0776 0.1676 0.2616 0.3492 0.4480

t5 10% 0.0988 0.1556 0.2896 0.3972 0.4976 0.5968
1% 0.0104 0.0476 0.2520 0.6212 0.8356 0.9188

Tt+3
5% 0.0576 0.1520 0.5032 0.8400 0.9504 0.9844
10% 0.0960 0.2604 0.6520 0.9140 0.9736 0.9916
1% 0.0084 0.0424 0.2832 0.6216 0.8364 0.9324

Tt+5
5% 0.0460 0.1716 0.5460 0.8384 0.9524 0.9860
10% 0.1028 0.2796 0.6848 0.9120 0.9812 0.9956
1% 0.0084 0.0412 0.2948 0.6484 0.8600 0.9512

TRR 5% 0.0444 0.1720 0.5588 0.8584 0.9612 0.9896
10% 0.1012 0.2800 0.7016 0.9224 0.9836 0.9952
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Table 3: Rejection frequencies (out of 2500 replications), at asymptotic levelsα = 1%, 5% and 10%, forσξ = 0 (null hypothesis),
0.05, 0.1, 0.15, 0.2, 0.25 (alternative hypotheses), with error densityg1 that is skew-normal density (fsN ) and skew-Student density
with 5 d. f (st5), of the van der Waerden test (TvdW), the Wilcoxon test (TW), the StudentTtν tests (tν -score withν = 1,3,5) and the
Ramanathan and Rajarshi test (TRR), for n= 100.

g1 Test α σξ
0 0.05 0.1 0.15 0.2 0.25

1% 0.0084 0.0696 0.3180 0.6840 0.8588 0.9468
TvdW 5% 0.0468 0.2032 0.5804 0.8720 0.9624 0.9900

10% 0.0956 0.3280 0.7100 0.9332 0.9824 0.9964
1% 0.0064 0.0420 0.2420 0.5896 0.8072 0.9264

TW 5% 0.0436 0.1392 0.4808 0.8132 0.9348 0.9804
10% 0.0872 0.2440 0.6152 0.8936 0.9672 0.9912
1% 0.0076 0.0068 0.0116 0.0336 0.0696 0.1160

Tt1 5% 0.0444 0.0400 0.0692 0.1476 0.2248 0.3148
sN 10% 0.0976 0.0916 0.1320 0.2656 0.3620 0.4552

1% 0.0092 0.0368 0.1980 0.5208 0.7800 0.9012
Tt3 5% 0.0508 0.1336 0.4348 0.7680 0.9228 0.9748

10% 0.1052 0.2180 0.5668 0.8600 0.9668 0.9904
1% 0.0072 0.0324 0.2144 0.5372 0.7696 0.9044

Tt5 5% 0.0420 0.1208 0.4420 0.7876 0.9168 0.9768
10% 0.0860 0.2212 0.5756 0.8756 0.9548 0.9876
1% 0.0088 0.0140 0.0488 0.1536 0.3568 0.5708

TRR 5% 0.0500 0.0728 0.1600 0.3776 0.6116 0.8108
10% 0.1008 0.1364 0.2540 0.5088 0.7428 0.8916

1% 0.0088 0.0680 0.3444 0.6664 0.8580 0.9456
TvdW 5% 0.0484 0.2088 0.6092 0.8660 0.9596 0.9924

10% 0.1024 0.3208 0.7268 0.9248 0.9820 0.9964
1% 0.0100 0.0388 0.2688 0.5768 0.8000 0.9192

TW 5% 0.0500 0.1392 0.4900 0.8056 0.9380 0.9848
10% 0.1040 0.2308 0.6344 0.8844 0.9692 0.9928
1% 0.0088 0.0068 0.0172 0.0360 0.0748 0.1148

Tt1 5% 0.0520 0.0392 0.0800 0.1388 0.2380 0.3224
st5 10% 0.0988 0.0888 0.1456 0.2420 0.3752 0.4740

1% 0.0096 0.1692 0.1656 0.4248 0.6688 0.8316
Tt3 5% 0.0500 0.3980 0.3856 0.6792 0.8596 0.9432

10% 0.1028 0.5260 0.5224 0.7952 0.9180 0.9732
1% 0.0104 0.0344 0.2304 0.5256 0.7652 0.9020

Tt5 5% 0.0484 0.1192 0.4508 0.7700 0.9216 0.9772
10% 0.1036 0.2072 0.5916 0.8600 0.9604 0.9900
1% 0.0120 0.0144 0.0484 0.1640 0.3604 0.5864

TRR 5% 0.0552 0.0760 0.1632 0.3740 0.6132 0.8072
10% 0.1024 0.1464 0.2712 0.5092 0.7332 0.8812

6 Conclusion and perspectives

The approach used in this paper allows detecting a randomness criterion in the regression model. It is shown that the
distribution of the random criterion (h1) has no influence on the test statistics (which justifies the only choice of the
densityh1 as Gaussian in the simulation section).

It is clearly seen that all the considered tests here are extremely conservatives. It is explained by the fact that the
considered tests do not get the nominal rejection frequencies under the null and their powers are increasing with respect
to σξ under the alternatives. The power of the Studenttν -score rank and signed-rank tests are increasing as much asν
increases. The simulation results show that the Wilxoxon signed-rank test given in (29) is equivalent to the Ramanathan
and Rajatchi test (table1 and2). It also appears from the skew-normal and the skew-Studentsimulations (table3) that
asymmetry significantly improves the superiority of rank tests over Ramanathan and Rajarshi procedure.

The developed work shows its power in the case of non symmetric distribution and it could be extended to the case of
unknown regression parameters. Future investigations will be devoted to this goal and also to a large class of stochastic
parameter regression models.
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A Appendix (Proof of proposition 1)

The proof relies on Swensen’s conditions 1.2 to 1.7 of [21, lemma 1]. More precisely, the only delicate one is the condition
1.2. This condition is a direct consequence of thequadratic mean differentiability, atσξ = 0 of

g1/2
σξ (ξ ) :=

{∫

R
f
(
ε −σξ ξ x

)
h(ξ )dξ

}1/2

However, this quadratic mean differentiability is somewhat non standard, as it involves the second-order derivativesf̈ of
the densityf . As in Akharif and Hallin [1], the proof is decomposed into the following three parts.

(i) y2 7→ g(y) =
∫
R f (ε − xyv)h(v) dv is absolutely continuous in a right-neighborhood ofy= 0, with a.e. derivative

1
2y

∫ y

w=0

∫

R
f̈ (ε − xwv)x2v2h(v) dv dw. (31)

Indeed, from the absolutely continuity off and ḟ , and Fubini’s theorem, we obtain

g(y)−g(0) =
∫

R
[ f (ε − xyv)− f (ε)]h(v) dv

=−
∫

R

∫ y

a=0
ḟ (ε − xav)xv da h(v) dv

=

∫

R

∫ y

a=0

∫ a

w=0
f̈ (ε − xwv)x2v2 dw da h(v) dv

g(y)−g(0) =
1
2

∫ y2

b=0
b−

1
2

∫ b
1
2

w=0

∫ +∞

v=−∞
f̈ (ε − xwv)x2v2 h(v) dv dw db. (32)

The value of the a.e. derivative in (31) follows for eachy> 0. At y= 0, the right derivative is defined as the limit, as
y→ 0, of [g(y)−g(0)]/y2, (32) yields 0

0, but by applying L’Hospital’s rule, it leads to12 f̈ (ε)x2 ∫
R v2h(v) dv= 1

2 f̈ (ε)x2.

(ii) It follows thaty2 7→ sε,x(y) := [g(y)]1/2 is absolutely continuous in a neighborhood ofy= 0, with a.e. derivative

ṡε,x(y) =
1
4y

∫ y

w=0

∫
R f̈ (ε − xwv)x2v2 h(v) dv

[
∫
R f (ε − xyv) h(v) dv]

1
2

dw. (33)

L’Hospital’s rule aty= 0 yieldsṡε,x(0) = 1
4 f−

1
2 (ε) f̈ (ε)x2. Hence, for allε,

lim
y→0

[sε,x(y)− sε,x(0)]/y2 = ṡε,x(0). (34)

(iii ) The partial quadratic mean differentiability property to be proved takes the form

lim
y→0

∫

R

{
1
y2 [sε,x(y)− sε,x(0)]− ṡε,x(0)

}2

dε = 0. (35)

From(ii) above,

{
1
y2 [sε,x(y)− sε,x(0)]

}2

=

(
1
y2

)2
(∫ y2

λ=0
ṡε,x(

√
λ) dλ

)2

≤ 1
y2

∫ y2

λ=0

(
ṡε,x(

√
λ )
)2

dλ ,

(36)
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for all ε. Fubini’s theorem and (33) yields

∫

R

{
1
y2 [sε,x(y)− sε,x(0)]

}2

dε ≤ 1
y2

∫ y2

λ=0

∫

R

(
ṡε,x(

√
λ)
)2

dε dλ

=
1

16y2

∫ y2

λ=0
I

x
ψψ ( f ;

√
λ) dλ ,

(37)

with I x
ψψ defined in (6) and from the continuity assumption in(C.2) , this latter quantity converges, asy → 0, to

I x
ψψ ( f ;0)/16=

∫
R (ṡε,x(0))

2 dε. Which, together with (37), entails that

limsup
y−→0

∫

R

{
1
y2 [sε,x(y)− sε,x(0)]

}2

dε ≤
∫

R
(ṡε,x(0))

2 dε. (38)

In view of Theorem V.I.3 of Hájek anďSidák [5] [also in Hájek et al. [6]], (34) and (38) jointly imply (35). This
completes the proof.
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[5] J. Hájek and Z.̌Sidák.Theory of Rank Tests. Academic Press, New York-London, 1967.
[6] J. Hájek, Z.Šidák, and P.K. Sen.Theory of Rank Tests. Academic Press, New York-London, 2nd edition, 1999.
[7] M. Hallin, J.-F. Ingenbleek, and M.L. Puri. Linear serial rank tests for randomness against arma alternatives.The

Annals of Statistics, pages 1156–1181, 1985.
[8] M. Hallin, Y. Swan, Th. Verdebout, and D. Veredas. Rank-based testing in linear models with stable errors.J.

Nonparametr. Stat., 23(2):305–320, 2011.
[9] M. Hallin, R. van den Akker, and B.J.M. Werker. Semiparametric error-correction models for cointegration with

trends: Pseudo-gaussian and optimal rank-based tests of the cointegration rank.Journal of Econometrics, 2015.
[10] M. Hallin and B.J.M. Werker. Semi-parametric efficiency, distribution-freeness and invariance.Bernoulli, 9(1):137–

165, 2003.
[11] L.M. Le Cam.Asymptotic Methods in Statistical Decision Theory. Springer series in statistics. Springer-Verlag, New

York, 1986.
[12] L.M. Le Cam and G.L. Yang.Asymptotics in Statistics: Some Basic Concepts. Springer-Verlag, New York, 2nd

edition, 2000.
[13] Ch. Ley and D. Paindaveine. Le cam optimal tests for symmetry against ferreira and steel’s general skewed

distributions.Journal of nonparametric statistics, 21(8):943–967, 2009.
[14] P. Newbold and Th. Bos. Stochastic parameter regression models. 1985.
[15] D.F. Nicholls and A.R. Pagan. 16 varying coefficient regression.Handbook of statistics, 5:413–449, 1985.
[16] A.M. Polansky.Introduction to statistical limit theory. CRC Press, 2011.
[17] M.L. Puri and P.K. Sen.Nonparametric methods in general linear models. Wiley New York, 1985.
[18] B. Raj and A. Ullah.Econometrics, A Varying Coefficents Approach. Croom-Helm, London, 1981.
[19] T. Ramanathan and M. Rajarshi. Rank tests for testing randomness of a regression coefficient in a linear regression

model.Metrika, 39(1):113–124, 1992.
[20] P.A.V.B. Swamy.Statistical inference in random coefficient regression models. Springer-Verlag, New York, 1971.
[21] A.R. Swensen. The asymptotic distribution of the likelihood ratio for autoregressive time series with a regression

trend.Journal of Multivariate Analysis, 16:54 – 70, 1985.
[22] A.W. van der Vaart.Asymptotic statistics. Cambridge university press, Cambridge, 1998.

c© 2016 NSP
Natural Sciences Publishing Cor.



J. Stat. Appl. Pro.5, No. 2, 233-247 (2016) /www.naturalspublishing.com/Journals.asp 247

Mohamed Fihri received his Engineering Diploma in Statistic and BI (Business Intelligence) from Faculty of
Sciences and Techniques, Abdelmalek Essaadi University, Tangier. He is a PhD Student at Mathematics and
Applications Laboratory, Faculty of Sciences and Techniques, Abdelmalek Essaadi University, Tangier.

Amal Mellouk is a Professor of Probability and Statistics at Department of Mathematics, Centre Régional des
Métiers de l’Education et de la Formation, Tangier, Morocco, since 2010. She received her Phd degree from Faculty of
Sciences Dhar Mahraz, Sidi Mohammed Ben Abdellah University, Fès, Morocco, in 1999. Between 2001 and 2010 she
was Administrator at Délégation de l’Enseignement Fahs Anjra Tangier. Her research areas of interest are: Hájek’s
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