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Abstract: The present paper deals with classifying the real quadraticnumber fieldsk = Q(
√
d) having specific continued fraction

expansion of the integral basis element whered ≡ 2, 3(mod4) is a square free positive integer. Certain parametric representations are

determined to calculate fundamental unitǫd =
(

td + ud

√
d
)

/2 〉 1 of such real quadratic number fields as well as the parametrized

forms ofd. Moreover, Yokoi’sd-invariantsnd andmd in the relation to continued fraction expansion ofwd are mentioned by using
coefficients of fundamental unit for such real quadratic fields. All results are concluded in the tables.
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1 Introduction

The unit group of real quadratic fields has got nontrivial
structure. The fundamental unitǫd = (td + ud

√
d)/2〉1 of

the ring of algebraic integers in a real quadratic number
fieldQ(

√
d) is a generator of the group of units.

In [11], K.Tomita and K.Yamamuro gave some results for
fundamental unitǫd by using Fibonacci sequence and
continued fraction, and he also determined the continued
fraction expansion ofwd where d ≡ 1(mod4) for
l(d) = 3 in [10].The theorem of C. Friesen in [1] and F.
Halter-Koch in [2] was examined a construction of
infinite families of real quadratic fields with large
fundamental units. In recent works, F.Kawamoto and
K.Tomita determined minimal type of Continued fraction
for certain real quadratic fields in [3]. Moreover, R.Sasaki
[8] and R.A. Mollin [5] studied on lower bound of
fundamental unitǫd of k = Q(

√
d) and got certain

important results. H.Yokoi defined two invariants
important for class number problem and solutions of Pell
equation by using coefficients of fundamental unit in
[13]-[16]. You can also see Perron [7], Sierpinski [9] and
Williams et al [12] references for getting more
information about continued fraction expansions.
Let k = Q(

√
d) be a real quadratic number field where

d > 0 is a positive square free integer. Integral basis

element is denoted byωd = [a0, a1, ..., al−1, 2a0] where
a1, a2, . . . ,al(d)−1 are partial quotients andl(d) is the
period length in simple continued fraction expansion of
algebraic integer ford ≡ 2, 3(mod4). Besides, Yokoi’s
invariantsmd and nd are expressed by coefficients of
fundamental unit and(Sn) is also a sequence which is
defined in Section 2.

In this paper, the problem will be investigated of
determining systematically the continued fraction
expansions which have constant elements as3s (except
the last digit of the period) with a given period length.
There are infinitely many values of d having all3s in the
symmetric part of period length. We will classify them
with regard to arbitrary period length where
d ≡ 2, 3(mod4) is a square free positive integer.At the
same time, another aim for this paper is to determine the
general forms of fundamental unitsǫd and td , ud

coefficents of fundamental units by using this new
formulizations which have been unknown yet. The
fundamental unit and Yokoi’s invariants are calculated
more easily for d square free integers by using these
formulizations. Finally, some results such as Yokoi’s
invariantsnd andmd, fundamental unitǫd and continued
fraction expansion ofwd will be obtained with the tables
in Section 3.
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2 Preliminaries

We will begin by defining some fundamental concepts and
lemmas as follow. First, we need to define a recursively
sequence which will be useful in our main results for the
next section.

Definition 1.{Si} is said to be a sequence defined by
recurence relation

Si = 3Si−1 + Si−2

for i ≥ 2, whereS0 = 0 and S1 = 1.

Definition 2.Let cn = acn−1 + bcn−2 recurrence relation
of {cn} sequence wherea, b are real numbers. The
polynomial is called as a characteristic equation written
in the form:

x2 − ax− b = 0

The solutions will depend on the nature of the roots of the
characteristic equation for recurence relation. By using
the definition, we can find characteristic equation as

x2 − 3x− 1 = 0

for {Sk} sequence. So, we can write each element of
sequence as follows:

Sk =
1√
13





(

3 +
√
13

2

)k

−
(

3−
√
13

2

)k




for k ≥ 0.

Remark.Let {Sn} be the sequence defined as in Definition
1. Then, we state that:

Sn ≡







0 (mod4) , n ≡ 0 (mod6);
1 (mod4) , n ≡ 1, 4, 5 (mod6);
3 (mod4) , n ≡ 2 (mod6);
2 (mod4) , n ≡ 3 (mod6).

wheren ≥ 0.

Lemma 1.For a square-free positive integerd congruent
to 2, 3 modulo4, we putωd =

√
d, a0 = [ωd] into the

ωR = a0 + ωd. Thenωd /∈ R(d), butωR ∈ R(d) holds.
Moreover for the periodl = l(d) of ωR, we get
ωR = [2a0, a1, ......., al−1] and
ωd = [a0, a1, ......., al−1, 2a0]. Furthermore, let
ωR =

(PlωR+Pl−1)
(QlωR+Ql−1)

= [2a0, a1, ......., al−1, ωR] be a
modular automorphism ofωR, then the fundamental unit

ǫd ofQ
(√

d
)

is given by the following formula:

ǫd =
td + ud

√
d

2
= (a0 +

√
d)Qℓ(d) +Qℓ(d)−1〉1

and

td = 2a0.Qℓ(d) + 2Qℓ(d)−1, ud = 2Qℓ(d).

whereQi is determined byQ0 = 0, Q1 = 1 andQi+1 =
aiQi +Qi−1, (i ≥ 1).

Proof.Proof is omitted in [10].

Lemma 2.Let d be the square free positive integer
congruent to 2, 3 modulo 4 and a0 denote the

a0 =
[[√

d
]]

the integer part ofwd. If we considerwd

which has got partial constant elements repeated 3s in the
case of periodl = l(d), then we have continued fraction
expansions

wd =
√
d=

[
a0; a1, a2, . . . , aℓ(d)−1, aℓ(d)

]
=

[
a0; 3, 3, . . . , 3, 2a0

]

for quadratic irrational numbers and
wR = a0 +

√
d =

[
2a0, 3, 3, . . . , 3

]
for reduced

quadratic irrational numbers.

Furthermore,Aj = a0Sj+1 + Sj andBj = Sj+1 are
determined in the continued fraction expansion ofwd

where{Aj} and{Bj} are two sequences defined by:

A−2 = 0, A−1 = 1, Aj = ajAj−1 +Aj−2,

B−2 = 1, B−1 = 0, Bj = ajBj−1 +Bj−2,

for 0 ≤ j < l(d) and l(d) is period length ofwd. Also,
Cj = Aj/Bj is the jth convergent in the continued
fraction expansion of

√
d. Moreover,

Al = 2a20Sl + 3a0Sl−1 + Sl−2 andBl = 2a0Sl + Sl−1

for j = l(d)

Besides, in the continued fraction expansion ofwR =
a0 +

√
d = [b1, b2, . . . , bn, ... ] = [2a0, 3, . . . , 3, ... ], we

obtainPk = 2a0Sk + Sk−1 andQk = Sk where{Pk}
and{Qk} are two sequences defined by:

P−1 = 0, P0 = 1, Pk+1 = bk+1.Pk + Pk−1,

Q−1 = 1, Q0 = 0, Qk+1 = bk+1.Qk +Qk−1,

for k ≥ 0.

Proof.We can prove by using mathematical induction.
Using the following table which includes values ofAk,
Bk andak we can determine converge of

wd =
[
a0; 3, 3, . . . , 3, 2a0

]

for l(d) > 4 .So, we can easily say that this is true for
k = 0.

Table 2.1
k −2 −1 0 1 2 3 4 5
ak a0 3 3 3 3 ....

Ak 0 1
(a0) (3a0 + 1) (10a0 + 3) (33a0 + 10) (109a0 + 33) ....
a0S1 a0S2 + S1 a0S3 + S2 a0S4 + S3 a0S5 + S4 ....

Bk 1 0
1 3 10 33 109 ....
S1 S2 S3 S4 S5 ....

Now, we suppose that the result is true fork < i and0 <
i ≤ l − 1 .Using the defined relations for{Si} sequence,
we obtain

Ak+1 = ak+1Ak +Ak−1 = 3 (a0Sk+1 + Sk) + (a0Sk + Sk−1)

= a0 (3Sk+1 + Sk) + (3Sk + Sk−1)

= a0Sk+2 + Sk+1
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We can also get the following:

Bk+1 = ak+1Bk +Bk−1 = 3Sk+1 + Sk = Sk+2

Moreoever, since al = 2a0, we obtain
Al = 2a20Sl + 3a0Sl−1 + Sl−2 andBl = 2a0.Sl + Sl−1

for k = l(d) in an easy way.

In a similar way in the continued fractiona0 +
√
d =

[b1, b2, . . . , bn, ... ] = [2a0, 3, . . . , 3, ... ], we obtainPk =
2a0Sk + Sk−1 andQk = Sk for k ≥ 0. This completes
the proof.

3 Main Theorem and Results

First, we will give a main theorem allows us to determine
real quadratic fields which include
wd =

√
d =

[
a0; 3, 3, . . . , 3, 2a0

]
wherel = ℓ(d) is a

period length andd ≡ 2, 3(mod4) is square free integer.

Theorem 1.Let d be the square free positive integer and
ℓ > 1 be a positive integer holding thatℓ is not congruent
to 0(mod3). We assume that parametrization ofd is

d =
(3 + (2β + 1)Sℓ)

2

4
+ ((2β + 1)Sℓ−1) + 1

for anyβ ≥ 0 positive integer.Then following conditions
hold:

(1) If ℓ ≡ 1(mod6) andβ ≡ 1(mod2) are positive integers
thend ≡ 2(mod4).
(2) If ℓ ≡ 2(mod6) andβ ≡ 0(mod2) are positive integers
thend ≡ 3(mod4).
(3) If ℓ ≡ 4(mod6) andβ ≡ 0(mod2) are positive integers
thend ≡ 3(mod4).
(4) If ℓ ≡ 5(mod6) andβ ≡ 0(mod2) are positive integers
thend ≡ 2(mod4).
In real quadratic fields, we obtain

wd =





(2β + 1)Sℓ + 3

2
; 3, 3, . . . , 3
︸ ︷︷ ︸

ℓ−1

, (2β + 1)Sℓ + 3






andℓ = ℓ(d).Moreover, we have following equalities:

ǫd =

(
(2β + 1)S2

ℓ

2
+

3Sℓ

2
+ Sℓ−1

)

+ Sℓ

√
d

td = (2β + 1)S2
ℓ + 3Sℓ + 2Sℓ−1 and ud = 2Sℓ

for ǫd, td andud.

Proof.It is clear thatd is not integer forℓ ≡ 0(mod3) since
Remark. That’s why we assume that is not divided by3 and
ℓ ≥ 2. First of all, we should show that four conditions
hold as the followings:

(1) if ℓ ≡ 1(mod6) andβ is odd positive integer, thenSℓ ≡
1(mod4) andSℓ−1 ≡ 0(mod4) hold. By substituting these
values into parametrization ofd, we obtaind ≡ 2(mod4).
(2)If ℓ ≡ 2(mod6) andβ is even positive integer, then
Sℓ ≡ 3(mod4) andSℓ−1 ≡ 1(mod4). By substituting
these values into parametrization of d and rearranging, we
haved ≡ 3(mod4).
(3)If ℓ ≡ 4(mod6) andβ is even positive integer, then we
have Sℓ ≡ 1(mod4) and Sℓ−1 ≡ 2(mod4). By
substituting these values into parametrization of d and
rearranging, we haved ≡ 3(mod4).
(4)If ℓ ≡ 5(mod6) andβ is even positive integer then we
getSℓ ≡ 1(mod4) andSℓ−1 ≡ 1(mod4). By substituting
these values into parametrization of d and rearranging, we
haved ≡ 2(mod4).
By using Lemma 1 , we get

wR =
(2β + 1)Sℓ + 3

2
+








(β + 1)Sℓ + 3

2
; 3, 3, . . . , 3
︸ ︷︷ ︸

ℓ−1

, (2β + 1)Sℓ + 3








,

so we get

wR = ((2β + 1)Sℓ + 3)+
1

3 + 1

3+ 1

.
.
.

+ 1

3+ 1
wR

= ((2β+1)Sℓ+3)+
1

3 + · · ·+

1

wR

Using Lemma 1, Lemma 2 and the properties of continued
fraction expansion, we obtain

wR = ((2β + 1)Sℓ + 3) +
Sℓ−1wR + Sℓ−2

SℓwR + Sℓ−1
,

By rearranging and using the Definition 1 into the above
equality, we have

w2
R − ((2β + 1)Sℓ + 3)wR − (1 + (2β + 1)Sℓ−1) = 0.

This requires thatwR = (2β+1)Sℓ+3
2 +

√
d sincewR > 0.

If we consider Lemma 1, we get

wd =
√
d =





(2β + 1)Sℓ + 3

2
; 3, 3, . . . , 3
︸ ︷︷ ︸

ℓ−1

, (2β + 1)Sℓ + 3






and ℓ = ℓ (d). This shows that the part of first proof is
completed.

Now, we should determineǫd, td andud using Lemma1,
we can get easily

Q1 = 1 = S1, Q2 = a1.Q1 +Q0 ⇒ Q2 = 3 = S2,

Q3 = a2Q2+Q1 = 3S2+S1 = 32+1 = 10 = S3, Q4 = S4, . . .

So, this implies thatQi = Si for ∀i ≥ 0. If we substitute

these values of sequence into theǫd = td+ud

√
d

2 = (a0 +√
d)Ql(d) +Ql(d)−1〉1 and rearranged, we have

ǫd =

(
(2β + 1)S2

ℓ

2
+

3Sℓ

2
+ Sℓ−1

)

+ Sℓ

√
d
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td = (2β + 1)S2
ℓ + 3Sℓ + 2Sℓ−1 and ud = 2Sℓ

for ǫd, td andud which complete the proof of Theorem1.

Remark.We should say that the present paper has got the
most general results for such type real quadratic fields.
Also, we can obtaine infinitely many values ofd which
correspond to new real quadratic fieldsQ(

√
d) by using

our results.

Corollary 1.Letd be the square free positive integer,ℓ > 1
be a positive integer not divided by3 and holdingℓ is not
congruent to1(mod6). Suppose that the parametrization
of d is

d =
(3 + Sℓ)

2

4
+ Sℓ−1 + 1

then we obtaind ≡ 2, 3(mod4) and

wd =





Sℓ + 3

2
; 3, 3, . . . , 3
︸ ︷︷ ︸

ℓ−1

, Sℓ + 3






andℓ = ℓ(d).Additionaly, we get the fundamental unit and

ts coefficients as follows:

ǫd =

(
S2
ℓ

2
+

3Sℓ

2
+ Sℓ−1

)

+ Sℓ

√
d

td = S2
ℓ + Sℓ+1 + Sℓ−1 and ud = 2Sℓ

as well as Yokoi’s invariant

md =

{
1, if ℓ = 2;
3, if ℓ ≥ 4.

.
Furthermore, we state the following Table 3.1 where
fundamental unit isǫd, integral basis element iswd and
Yokoi’s invariant ismd for 2 ≤ ℓ(d) ≤ 14.

Proof.This corollary is obtained if we substituteβ = 0 into
Theorem 1. Now, we have to determine the value ofmd.
We know that

md =

[[
u2
d

td

]]

since H.Yokoi references. If we substituetd andud into
themd and rearranged, then we get

md =

[[
u2
d

td

]]

=

[[
4S2

ℓ

S2
ℓ + 3Sℓ + 2Sℓ−1

]]

Using above equality, we havemd = 1, for ℓ = 2. From
assumption andSℓ is increasing sequence, we obtain

4 > 4.

(

1 +
3

Sℓ

+
2Sℓ−1

S2
ℓ

)−1

> 3, 605

for ℓ ≥ 4.Therefore, we have

md =

{
1, if ℓ = 2;
3, if ℓ ≥ 4.

Besides, Table 3.1 is obtained as an illustrate of the
corollary.

Corollary 2.Let d be the square free positive integer and
ℓ > 1 be a positive integer such thatℓ ≡ 1(mod6).If we
suppose that parametrization ofd is

d =
(1 + 3Sℓ)

2

4
+ Sℓ+1 + 2Sℓ−1 + 3

then we obtaind ≡ 2(mod4) and

wd =





3Sℓ + 3

2
; 3, 3, . . . , 3
︸ ︷︷ ︸

ℓ−1

, 3Sℓ + 3






andℓ = ℓ(d).Moreover, we have following equalities:

ǫd =

(
3S2

ℓ

2
+

3Sℓ

2
+ Sℓ−1

)

+ Sℓ

√
d

td = 3S2
ℓ + Sℓ+1 + Sℓ−1 and ud = 2Sℓ

md = 1

for ǫd, td, ud and Yokoi’s invariantmd. Additionaly, we
state the following Table 3.2. where fundamental unit is
ǫd, integral basis element iswd and Yokoi’s invariant is
md for 2 < ℓ(d) ≤ 13.

Proof.The corollary is obtained forβ = 1 using Theorem
1. We should prove thatmd = 1 whereℓ ≡ 1(mod6) for
such parametrization ofd. If we puttd and ud into themd

and rearranged, then we obtain

2 > 4.

(

3 +
3

Sℓ

+
2Sℓ−1

S2
ℓ

)−1

> 1, 331

for ℓ ≡ 1(mod6) sinceSℓ is increasing sequence.By using

the above equality, we havemd = 1. Also, Table 3.2. is
given as an illustrate of this corollary.

Corollary 3.We assume thatd is square free integer andℓ
is different from1(mod6) defined as in Theorem 1. If we
choose the parametrization ofd as

d =
(1 + 5Sℓ)

2

4
+ 5Sℓ + 5Sℓ−1 + 3

thend ≡ 2, 3(mod4) and

wd =





5Sℓ + 3

2
; 3, 3, . . . , 3
︸ ︷︷ ︸

ℓ−1

, 5Sℓ + 3






with ℓ = ℓ(d).Moreover, we get following equalities:
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Table 3.1
d ℓ(d) md wd ǫd
11 2 1 [3; 3, 6] 10+3

√
11

335 4 3 [18; 3, 3, 3, 36] 604+33
√
335

3170 5 3 [56; 3, 3, 3, 3, 112] 6137+109
√
3170

3862415 8 3 [1965; 3, 3, ...3, 3930] 7717744+3927
√
3862415

458829371 10 3 [21420; 3, 3, ..., 3, 42480] 917581510+42837
√
458829371

5004473402 11 3 [70742; 3, 3, ..., 3, 141484] 10008691739+141481
√
5004473402

6495480739451 14 3 [2548623; 3, 3, ..., 3, 5097246] 12990952289710+5097243
√
6495480739451

Table 3.2
d ℓ(d) md wd ǫd

3187306 7 1 [1785; 3, 3, ..., 3, 3570] 2122725+1189
√
3187306

5359147692130 13 1 [2314982; 3, 3, ..., 3, 4629966] 3572762345823+1543321
√
5359147692130

Table 3.3
d ℓ(d) nd wd ǫd
87 2 1 [9; 3, 18] 28+3

√
87

7107 4 1 [84; 3, 3, 3, 168] 2782+33
√
7107

75242 5 1 [274; 3, 3, 3, 3, 548] 29899+109
√
75242

96418707 8 1 [9819; 3, 3, ..., 3, 19638] 38560402+3927
√
964187007

11469189687 10 1 [107094; 3, 3, ..., 3, 214188] 4587598648+42837
√
11469189687

125106733802 11 1 [353704; 3, 3, ..., 3, 707408] 50042438461+141481
√
125106733802

ǫd =

(
5S2

ℓ

2
+

3Sℓ

2
+ Sℓ−1

)

+ Sℓ

√
d

td = 5S2
ℓ + 3Sℓ + 2Sℓ−1 and ud = 2Sℓ

nd = 1

Also, we state the following Table 3.3. where fundamental
unit is ǫd, integral basis element iswd and and Yokoi’s
invariant isnd for 2 ≤ ℓ(d) ≤ 11.

Proof.This claim is obtained if we substituteβ = 2 into
Theorem 1. Now we have to prove that Yokoi’s d- invariant
value isnd = 1 for ℓ ≥ 2.
We know from H. Yokoi’s references [13],[14], [15], [16]

that nd =
[[

td
u2
d

]]

. If we substitutetd andud into nd,

then we get

nd =

[[
td
u2
d

]]

=

[[
5S2

ℓ + 3Sℓ + 2Sℓ−1

4S2
ℓ

]]

= 1,

sinceSℓ is increasing and0 < 1
4 + 3

4Sℓ
+ Sℓ−1

2S2
ℓ

< 0, 56

for ℓ ≥ 2. Therefore, we obtainnd = 1 for ℓ ≥ 2 which
completes the proof of the corollary. For the numerical
examples, we create Table 3.3.

4 Conclusion

Quadratic fields have applications in different areas of
mathematics such as quadratic forms, algebraic
geometry,analytic number theory, computer science,

diophantine equations, discrete mathematic, algebraic
number theory, and even cryptography.

In this paper, we interested in the concept of real
quadratic field structures such as continued fraction
expansions, fundamental unit and Yokoi invariants.So, we
obtained general interesting and important results for that.

The results provide us a practical method so as to rapidly
determine continued fraction expansion ofwd,
fundamental unitǫd, Yokoi’s invariantsnd and md for
such real quadratic number fields.

We are sure that these results will help the researchers to
enhance and promote their studies on quadratic fields to
carry out a general framework for their applications in life.
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