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Abstract: The present paper deals with classifying the real quadratiober fieldst = Q(+/d) having specific continued fraction
expansion of the integral basis element whéee 2, 3(mod4) is a square free positive integer. Certain parametric sgmtations are

determined to calculate fundamental unjt= (td + ud\/E) /2 ) 1 of such real quadratic number fields as well as the parareeltriz

forms ofd. Moreover, Yokoi'sd-invariantsn, andm, in the relation to continued fraction expansiomaf are mentioned by using
coefficients of fundamental unit for such real quadratiafelAll results are concluded in the tables.
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1 Introduction element is denoted by, = [ag, a1, ..., a;_1, 2a0] Where
ai, as, ...,a;q)—1 are partial quotients ant{d) is the
The unit group of real quadratic fields has got nontrivial P€riod length in simple continued fraction expansion of

structure. The fundamental urit = (f4 + ugv/d)/2)1 of algebraic integer forl = 2,3(mod4). Besides, Yokoi's

the ring of algebraic integers in a real quadratic numbepVarants mq aqd Nt are gxpressed by coefﬁments of
field Q(+/d) is a generator of the group of units. fundamental unit andS,,) is also a sequence which is

. defined in Section 2.
In[11], K.Tomita and K.Yamamuro gave some results for ! I !
fundamental unite; by using Fibonacci sequence and
continued fraction, and he also determined the continuedn this paper, the problem will be investigated of

fraction expansion ofw; where d = 1(mod4) for  determining systematically the continued fraction
I(d) = 3in [10].The theorem of C. Friesen iland F.  expansions which have constant elementsagexcept
Halter-Koch in P] was examined a construction of the last digit of the period) with a given period length.
infinite families of real quadratic fields with large There are infinitely many values of d having a# in the
fundamental units. In recent works, F.Kawamoto andsymmetric part of period length. We will classify them
K.Tomita determined minimal type of Continued fraction with regard to arbitrary period length where
for certain real quadratic fields i8], Moreover, R.Sasaki 4 = 2,3(mod4) is a square free positive integer.At the
[8] and R.A. Mollin [5] studied on lower bound of same time, another aim for this paper is to determine the
fundamental unite; of £ = Q(v/d) and got certain general forms of fundamental units; and 4, ug
important results. H.Yokoi defined two invariants coefficents of fundamental units by using this new
important for class number problem and solutions of Pellformulizations which have been unknown yet. The
equation by using coefficients of fundamental unit in fundamental unit and Yokoi's invariants are calculated
[13]-[16]. You can also see Perroid][ Sierpinski P] and  more easily for d square free integers by using these
Williams et al [12] references for getting more formulizations. Finally, some results such as Yokoi's
information about continued fraction expansions. invariantsn, andmyg, fundamental unit, and continued
Let k = Q(v/d) be a real quadratic number field where fraction expansion ofu; will be obtained with the tables

d > 0 is a positive square free integer. Integral basisin Section 3.
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2 Preliminaries ProofProof is omitted in 10].

We will begin by defining some fundamental concepts and-€Mma 2Let d be the square free positive integer
lemmas as follow. First, we need to define a recursivelyCongruent t0 2,3 modulo 4 and ao denote the
sequence which will be useful in our main results for the a0 = H\/E” the integer part ofw,. If we considernug

next section. which has got partial constant elements repeated 3s in the
case of period = [(d), then we have continued fraction

Definition 1.{.S;} is said to be a sequence defined by expansions

recurence relation

S =38, |+ S, wq = Vd=[ao; a1, a2, Ge@y—1, @) | = [ 053,38, ...,3, 2a0 |
fori > h q for guadratic irrational numbers and
ori>2,whereSp =0 and 51 = 1. wg = ao + Vd = [2a,3,3,...,3] for reduced
Definition 2.Letc,, = ac,_1 + be,—o recurrence relation — quadratic irrational numbers.
of {c,} sequence where, b are real numbers. The Furthermore,A; = aoS,,; + S; and B; = S, are
polynomial is called as a characteristic equation written yotermined in the coniinued fraction expansion waf
in the form: where{4;} and{B;} are two sequences defined by:

2 —ax—b=0
The solutions will depend on the nature of the roots of the A2=0, A=1 4j=adj-1+ 45,
characteristic equation for recurence relation. By using B,=1, B_.,=0, Bj=a;B;_ 1+ Bj a,
the definition, we can find characteristic equation as ) . .
for 0 < j < I(d) andi(d) is period length ofw,. Also,

2?3z -1=0 C; = A;/B;j is the j* convergent in the continued
: raction expansion of V. Moreover,
for {S,} sequence. So, we can write each element of o " ’
sequence as follows: Ay = QCLQSI + 3agS;—1 + S;—o and B; = 2a¢S; + Si—1
forj = I(d)
1 3+V13 g 3 V13 g Besides, in the continued fraction expansionugf =
Sk = V13 92 B ) ao—l—\/a:[bl,bg,...,bn,...]z[2&0,3,...,3,...],We
obtain P, = 2a0Sy; + Sk—1 and Qi = S where{P;}
for k> 0. and{Qy} are two sequences defined by:
RemarkL.et {5, } be the sequence defined as in Definition
1. Then, we state that: P_y1=0, RPh=1 Ppp1=bpt1.Px + Pr—,
0 (mod4) , n = 0 (mod6); RQ-1=1 Qo=0, Qp+1=>bp+1.Qr+ Qr—-1,
g = 1 (mod4), n=1,4,5(mod6); for k > 0.
"7 ) 3(modd), n =2 (mod6); ) o .
2 (mod4) , n = 3 (mod6). ProofWe can prove by using mathematical induction.
Using the following table which includes values 4,
wheren > 0. By, andaj, we can determine converge of
Lemma 1For a square-free positive integer congruent wq = [a0;3,3,..-,3, 2ao |

to 2,3 modulo4, we putw; = V/d, ag = [wg] into the _ o
wr = ag + wg. Thenwy ¢ R(d), butwy € R(d) holds.  for l(d) > 4 .So, we can easily say that this is true for
Moreover for the periodl = I(d) of wgr, we get =0.

WR = [20,0, Ay enennn s al,l] and
wa = [ag,a1, ... ,a;—1,2ap]. Furthermore, let _ Table 2.1
3 -2 | -1 0 1 2 3 4 5

WR = % = [2&0,&1, ....... ,al,l,wR] be a a ao 3 3 3 3

. . (ao) | (Bao+1) | (10ao +3) | (33ao + 10) | (109ag + 33)
modular automorphism afy, then the fundamental unit | 4« | 0 | 1 | 06 | a0+ 5 | aoSs+Ss | a0Si+Ss | anSs+ Se
€q 0f Q (\/E) is given by the following formula: Bl 1o g 5 5 5 5

tq + ud\/&
=% = (a0 + Vd)Quay + Qeay—1)1 Now, we suppose that the result is true fox i and0 <
1 < 1 —1 .Using the defined relations fdiS;} sequence,
and we obtain
ta = 2a0.Qua) + 2Qua)—1,  Ud = 2Qy(a)- A1 = app1Ar + Ag—1 = 3 (aoSk+1 + Sk) + (aoSk + Sk-1)

whereQ; is determined by)y = 0, Q; = 1 and Q1 = = ag (3Sk+1 + Sk) + (3Sk + Sk-1)
a;iQi + Qi—1, (i > 1). = agSk+2 + Sk41
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We can also get the following:

Biy1 = ag+1Br + Br—1 = 3Sk41 + Sk = Sk+42

Moreoever, since « = 2ap, Wwe obtain
A = 2a%5’l + 3a05;—1 + S;—2 andB; = 2aq.S; + S;_1

for k = I(d) in an easy way.

In a similar way in the continued fractiony + vVd =
[bl, bay ... by, ... ] = [2&0, 3,...,3, ... ], we obtainP, =
2a0Sk + Sk—1 andQy = Sy for k > 0. This completes
the proof.

3 Main Theorem and Results

First, we will give a main theorem allows us to determine

real guadratic fields which include
wg = Vd = [ap;3,3,...,3, 2a0 | wherel = ((d) is a
period length and = 2, 3(mod4) is square free integer.

Theorem 1L et d be the square free positive integer and

¢ > 1 be a positive integer holding thdtis not congruent
to 0(mod3). We assume that parametrizationdis

(3+(28+1)5,)?

d= 1

+ (264 1)Se-1) +1

for any 8 > 0 positive integer.Then following conditions
hold:

(1) If ¢ = 1(mod6
thend = 2(mod4
(2) If ¢ = 2(mod6
thend = 3(mod4
(3) If £ = 4(mod6
thend = 3(mod4
(4) If £ = 5(mod6
thend = 2(mod4
In real quadratic fields, we obtain

andg = 1(mod2) are positive integers
andg = 0(mod2) are positive integers
andg = 0(mod2) are positive integers

andg = 0(mod2) are positive integers

—_ e o

(26 + I)Sg + 3.
2 b

Wq

3,3,....3,28+1)S +3
~——

-1

and/ = ¢(d).Moreover, we have following equalities:

26+1)S? 38
€4 = (7( B_; )55 +7€+Se—1)+51z\/8

ta= (28+1)S7 +3S¢ + 25,1

for €4, tg andugy.

and ug =25,

Proofltis clear thatl is not integer fo = 0(mod3) since
Remark. That's why we assume that is not dividedlayd

¢ > 2. First of all, we should show that four conditions
hold as the followings:

(1) if ¢ = 1(mod6) andf is odd positive integer, thety =
1(mod4) andS,_1 = 0(mod4) hold. By substituting these
values into parametrization df we obtaind = 2(mod4).

(2)If £ = 2(mod6) and 8 is even positive integer, then
S¢ = 3(mod4) and S;—1 = 1(mod4). By substituting
these values into parametrization of d and rearranging, we
haved = 3(mod4).

(3)If £ = 4(mod6) andp is even positive integer, then we
have S, 1(mod4) and S;_; 2(mod4). By
substituting these values into parametrization of d and
rearranging, we havé = 3(mod4).

(4)If £ = 5(mod6) and is even positive integer then we
getS; = 1(mod4) andS,—1 = 1(mod4). By substituting
these values into parametrization of d and rearranging, we
haved = 2(mod4).

By using Lemma 1, we get

(2B+1)S;+3 | (B+1)S,+3
wpRp = + 33,3,...,3,(28+1)Sy + 3],
2 2 N
£—1
so we get

(28 )S ) ! ((28+1)S ) . -
wp = (28 + 1)S, + 3)+ = ((2B41)S,+3)+ — -
R ¢ P T ¢ 5+t wn

34— 1

R

Stog

Using Lemma 1, Lemma 2 and the properties of continued
fraction expansion, we obtain

Se—1wr + Se—2

=((2 1)Se+3
wn = (204 1)) +3) + gt T2l

3

By rearranging and using the Definition 1 into the above
equality, we have

wh — (264 1)Se +3) wr — (1 + (28 4+ 1)S,_1) = 0.

This requires thatvy = G293 4 /7 sincewp > 0.

If we consider Lemma 1, we get

(284 1)S,+ 3

wd:\/E: D) 3

3,3,...,3,(26+1)S,+ 3
N——

—1
and/¢ = ¢ (d). This shows that the part of first proof is
completed.

Now, we should determineg;, t; andu, using Lemmal,
we can get easily

Qi=1=51, Q2=01.Q1+ Qo= Q2=3= 05,
Q3 = a2Q24+Q1 = 35+S51 = 3°+1=10= 53, Q1 =S4, ...
So, this implies thaf); = S; for Vi > 0. If we substitute
these values of sequence into thye= M = (agp +
Vad)Quay + Qi(ay_1)1 and rearranged, we have
35

28+ 1)S2
€4 = <%+T+S[_1)+S/\/E
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tg = (Qﬁ + 1)5,? +3S,+25,; and wug =25,

for €4, tq4 anduy which complete the proof of Theorein

Besides, Table 3.1 is obtained as an illustrate of the
corollary.

RemarkWe should say that the present paper has got theorollary 2. Let d be the square free positive integer and
most general results for such type real quadratic fieldsy > 1 be a positive integer such that= 1(mod6).If we

Also, we can obtaine infinitely many values @fwhich

correspond to new real quadratic fiel@$v/d) by using

our results.

Corollary 1.Letd be the square free positive integér> 1

be a positive integer not divided BByand holding is not
congruent tol (mod6). Suppose that the parametrization

ofdis

(3 + Sy)?
4

then we obtainl = 2, 3(mod4) and

d= +Si1+1

Se+3
2

Wy = :3,3,...,3,5+3
———

-1

and/ = ¢(d).Additionaly, we get the fundamental unit and

ts coefficients as follows:

82 35
€4 = <7+7/+S/ 1>—|—Se\/a

tg = S,% + SéJrl +Se1 and wug =285,

as well as Yokoi’s invariant

_Life=2
Md =13, if¢>4.

suppose that parametrization @fs

(1+ 35@)2
4

then we obtainl = 2(mod4) and

d= + Sp41+2Si-1+3

35, +3

wg = |—;3,3,...,3,35+3
2 N——

-1

and/? = ¢(d).Moreover, we have following equalities:

352 | 3S
€4 = (T‘Z+Té+& 1>+Se\/3

tqg = 35,? + Si11+Si—1 and ug =25,

md=1

for ey, tq, ug and Yokoi's invariantng. Additionaly, we
state the following Table 3.2. where fundamental unit is
€4, integral basis element is; and Yokoi's invariant is
mq for 2 < £(d) < 13.

ProofThe corollary is obtained fof = 1 using Theorem
1. We should prove that; = 1 wherel = 1(mod6) for
such parametrization ef If we putt, and u, into themy

Furthermore we state the following Table 3.1 where and rearranged, then we obtain

fundamental unit is,4, integral basis element is; and
Yokoi's invariant ism, for 2 < ¢(d) < 14.

ProofThis corollary is obtained if we substitute= 0 into
Theorem 1. Now, we have to determine the valuengf

We know that
[T
d= td

since H.Yokoi references. If we substitug and v, into
themy and rearranged, then we get

o[ 2] - [t

Using above equality, we have,; = 1, for £ = 2. From
assumption and, is increasing sequence, we obtain

3 25,1\
4>4.11+ =
sa(1e g+ 55

for ¢ > 4.Therefore, we have

1
> 3,605

1,if =2
3,if > 4.

3 2501
2> 4. —
> <3+Se+ 2

—1
) > 1,331

for £ = 1(mod6) sinceS, is increasing sequence.By using

the above equality, we have,; = 1. Also, Table 3.2. is
given as an illustrate of this corollary.

Corollary 3.We assume thatis square free integer and
is different froml(mod6) defined as in Theorem 1. If we
choose the parametrization dfas

(1+58,)?
4

thend = 2, 3(mod4) and

d= +5S;+5Si-1+3

55y +3

wg=|—;3,3,...,3,55,+3
2 N——

-1

with ¢ = ¢(d).Moreover, we get following equalities:

mq = {
© 2016 NSP
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Table 3.1
d f(d) mgq Wy €d
11 2 1 [3;3,6] 10+3y/11
335 4 3 [18;3,3, 3, 36] 604+33/335
3170 5 3 [56;3,3,3,3,112] 6137+109/3170
3862415 8 3 [1965;3, 3, ...3, 3930 7717744+3927/3862415
458829371 10 | 3 [21420; 3,3, ..., 3, 42480] 917581510+42837 458829371
5004473402 11 3 [70742; 3,3, ..., 3,141484] 10008691739+1414815004473402
6495480739451 14 | 3 | [2548623;3,3, ..., 3,5097246] | 12990952289710+50972¢%495480739451
Table 3.2
d Z(d) mq Wq €q
3187306 7 1 [1785; 3,3, ...,3,3570] 2122725+1189/3187306
5359147692130 13 1 [2314982; 3, 3, ..., 3,4629966] | 3572762345823+15433R45359147692130

Table 3.3
d £d) | ng Wy €d
87 2 1 [9; 3, 18] 28+3/87
7107 4 |1 [84;3,3,3,168] 2782+33/7107
75242 5 1 [274;3,3, 3, 3, 548] 29899+109/75242
96418707 8 1 [9819;3,3, ..., 3, 19638] 38560402+392y/964187007
11469189687 10 | 1 | [107094;3,3, ..., 3,214188] 4587598648+42837 11469189687
125106733802 11 | 1 | [353704;3,3,...,3,707408] | 50042438461+141481125106733802
557 35, : : . . . :
€4 = (— + =+ Sg_1> + SpVd diophantine equations, discrete mathematic, algebraic
2 2 number theory, and even cryptography.
td:55€2+358+258_1 and wuy =25, In this paper, we interested in the concept of real
quadratic field structures such as continued fraction
ng =1 expansions, fundamental unit and Yokoi invariants.So, we

Also, we state the following Table 3.3. where fundamentaPPtained general interesting and important results fdr tha

unit is €4, integral basis element is;; and and Yokoi's  The results provide us a practical method so as to rapidly
invariantisn, for 2 < ¢(d) < 11. determine continued fraction expansion ofu,
fundamental unite;, Yokoi’s invariantsn, and m, for

ProofThis claim is obtained if we substitute = 2 into ~ Such real quadratic number fields.
Theorem 1. Now we have to prove that Yokoi's d- invariant v are sure that these results will help the researchers to

value isng = 1for £ > 2. enhance and promote their studies on quadratic fields to
We know from H. Yokoi's referenced B|,[14), [15], [16]  carry out a general framework for their applications in.life

thatn, = H Z—g H If we substitutet, andu, into ng,
d

then we get
. H ta ” [[553 +3S,+2S,1 H X References
d = o2 = 2 =1,
e 45 [1] C.Friesen, On continued fraction of given period, Proc.
. L . 1 3 g Amer. Math. Soc., 103)-14, 1988.
sinceS, is increasing and < + g5; + 55 < 0,56 [2] F.Halter-Koch, Continued fractions of given symmetric
for ¢ > 2. Therefore, we obtaing = 1 for ¢ > 2 which period, Fibonacci Quart., 29, 298-303, 1991.

Comp|etes the proof of the Coro”ary_ For the numerical [3] F.Kawamoto and K.Tomita, Continued fraction and certai
examples, we create Table 3.3. real quadratic fields of minimal type, J.Math.Soc. Japan, No
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