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Abstract: In this paper, we present a numerical method for solving tleedimensional space fractional Schrodinger equatidghen
case of a particle moving in a potential field. The fractioedivative is defined by the quantum Riesz-Feller fractialeaivative. A
novel weighted average non-standard finite difference atkib presented to solve the underline problem numeric@lg stability
analysis of the proposed method is given by a recently pexppsocedure similar to the standard John von Neumanniggaiklysis
and the truncation error is analyzed. Several numericahples are introduced for various choices of derivative ordel < o < 2,
and for various choices of skewne8go demonstrate utility of the proposed method. We demotestteat the proposed technique is
more accurate than the standard weighted average finiggeatite method.

Keywords: Space fractional Schrodinger equation, Riesz-Fellatifvaal derivative, weighted average non-standard firifferénce
methods, von Neumann stability analysis.

1 Introduction

The famous Schrodinger equation is one of the fundamegtetens in quantum mechanics that describes the change of
the quantum behavior of some physical systems, It was fatadlin 1925, by the Austrian physicist Erwin Schrodinger.

It was shown in 1] that the Feynman path integral over the Lévy like quanmechanical paths allows to develop
a fractional generalization of the quantum mechanics. \@éethe Feynman path integral over Brownian trajectories
leads to the well-known Schrodinger equation, the patbgiretls over Lévy trajectories lead to the fractional $dimger
equation (FSE) with the quantum Riesz derivative. Nick lia$k] discovered the fundamental equation of FSE in the
form:

iﬁawa(tr,t) = Ca(M)(=2)72Y(rt) +V(r,H¥(rt), t>0, rekR, 1)

for the wave functiort¥ of a quantum particle with the massthat moves in a potential field with the potential In
(1, h= % whereh is the Plank constan€, (m) is a positive constant which equgﬁ fora =2]2], and(—A)”’/2 was
called in (], [1]) the quantum Riesz fractional derivative of oraerin the mathematical Iiteraturé,—A)"’/2 is usually
referred to as the fractional Laplacian. For= 2, the quantum Riesz fractional derivative becomes thetivegaaplace
operator—A and Eq. 1) is reduced to the classical Schrodinger equation for anuma particle with the mass that
moves in a potential field with the potential

The non-standard finite difference (NSFD) schemes werg/fppeiposed by Mickendd], both for ordinary differential
equations (ODEs) and partial differential equations (PDEth more accuracy than standard finite difference method
(SFDM), Recently Sweilarat al. ([5], [6]) used this technique to solve fractional and variable ofidetional differential
equations, also they used to solve Two-dimensional fraatidiffusion equation{].

The purpose of this work is to study numerically the fracib8&chrodinger equation with the quantum Riesz-Feller
derivative for a particle that moves in a potential field gsirew technique called weighted average non-standard finite
difference method (WA-NSFDM) and to illustrate the behawbthe solutions of FSE with various values @fand 6.
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Numerical results are given to highlight the high accurdaye present method. Recently, in 2013, Al Saq8bshowed
that this model with the quantum Riesz-Feller derivative lsa considered from the mathematical viewpoint, but it ssem
to have no physical applications in the c&sg 0.

Several analytical and numerical methods (see 8]g[3], [1] to mention only few of them) have been proposed for
the one-dimensional space-fractional and space-tinadidraal Schrodinger equations with some specific potéfidills
including zero potential (free particle), tBepotential, the infinite potential well, the Coulomb poiaehtand a rectangular
barrier. In P] the authors introduced the implicit fully discrete locasebntinuous Galerkin method (IFDLDGM) for
a solution of the T-FSE, while Moheblet al. [10] used the meshless technique (MT) for approximating itsitgmh
numerically. Moreover, Bhrawgt al. [11] proposed a new Jacobi spectral collocation method forirsglfractional
Schroddinger equations and fractional coupled Schraatisgstem. More recently, Bhravet al. [12] proposed a fully
spectral collocation approximation for multi-dimensibtiae fractional Schrodinger equations.

This paper is structured as follows: In the next section we giome definitions on fractional calculus and some
properties of non-standard discretization. Section 3wt to discretization of the Cauchy-type problem for fi@gal
Schroddinger equation with the quantum Riesz-Feller d¢ivie in the case of a free particle using weighted average no
standard finite difference methods. In Section 4 stabiliglgsis and truncating error of the proposed method forisglv
the mention model were studied. In Section 5 some numeriathents are establishment with their results. Conctudin
remarks are given in Section 6.

2 Preliminaries and Notations

This section gives some preliminary results which are néé@dsubsequent sections of this paper.

2.1 Fractional Calculus Definitions

In the last years fractional derivatives have found numerapplications in many fields of physics, mechanical
engineering, biology, electrical engineering, contr@dty and finance 3], [14], [15], [6], [4]). Fractional calculus in
mathematics is a natural extension of integer-order cafcahd gives a useful mathematical tool for modeling many
processes in nature more than classic calculus.

Indeed, many definitions of the fractional integrals andvd¢ives were introduced (see e.§6]). The time-fractional
derivatives are often given in the Caputo, Riemann-Lidayibr Griinwald-Letnikov sense. As to the space-fractiona
derivative, it is usually defined as an operator inverse ©Rlesz potential (see e.dlq, [14], [1]) and is referred
to as the Riesz fractional derivative. Podlubny mentioried 18]) that "the complete theory of fractional differential
equations, especially the theory of boundary value problEmfractional differential equations, can be developsly o
with the use of both left-and right-sided derivatives.” 8e spatial derivatives discussed in this paper are all Fieter
potential operator, which include the two-sided Riemaiwulzlle fractional derivatives. Recently, the Riesz{Eekpace-
fractional derivative of ordeor and skewnesé has been shown to be relevant for anomalous diffusion m¢dé]sin
addition, this derivative is better suited for a generaitato higher order derivatives. Another advantage of giftiesz-
Feller derivative lies in the fact that the solution of thadtional reaction-diffusion equation with Riesz-Felleridative
includes the fundamental solution for space-time reaatidiffusion, which itself is a generalization of neutrad¢tional
diffusion, space-fractional diffusion, and time-fracta diffusion [L9].

For0< a < 2 and|8| < min{a,2— a}, the quantum Riesz-Feller derivative can be representtétiform (see e.g3],

[20], [16])
DEf(x) = _’_(17;0’) {sin((a+ e)g) ./: Fx 8- 4

El+a

+sin((@—6)7) /Omwcjf}. @

For 0< a < 2 anda # 1 and6 in its range, this formula can be rewritten as (see &lg[14])
D§ f(x) = (¢, DY +¢-DI)f(x), 3)
where the coefficients, are given by

_sin((a —0)m/2)

c:=cy(a,0)= Sin(a ) — sin((a +0)11/2)

» 6-=c-(a.0) sin(am)

; (4)
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and q q
(DY) (x) = (&)”(li‘“f)(X), (D) (x) = (—&)“(IE“’ f)(x), (5)

are the two-sided Riemann-Liouville fractional derivawvithx € R anda > 0, n—1 < a <n, n€ N. In expressions
(5) the fractional operatodd® are defined as the left- and right-side of Weyl fractionagntls, which given by

a1 [ 1@ anpo L [ 1@
05000 = gy [ s emade 100 = iy [ g gt ©®)

Fora =1, the representatio)is not valid and has to be replaced by the formula
D} f(x) = [cog871/2)D3 — sin(671/2)D] f (x), (7)

where the operatdib(l) is related to the Hilbert transform as first noted by Fellet3%2 in his pioneering pape2]]

D(l): li/mﬁda

mdx/ -0 X—¢

andD refers for the first standard derivative.

From the above relations one can see:

1- The quantum Riesz-Feller derivative is the Riesz-Felégivative multiplied by -1.

2- The Riesz-Feller fractional derivative (in space) of@rd and skewnes® can be expressed by the linear
combination of the two-sided Riemann-Liouville differexibperators.

3- When6 = 0, the fractional Riesz-Feller derivative is changed toRiesz derivative.

4- Forc s any constant theBg (c) = 0.

In this paper, we consider the fractional Schrodinger ggnavith the quantum Riesz-Feller derivative that desesib
the wave functiort of a quantum particle that moves in a potential field with theeptialV in the form:
0P (x,t)
ih ’
ot

=Cq(mDg¥(x,t) +V(x,t)¥(xt), t>0, xeR. (8)
2.2 Non-Standard Discretization

The non-standard finite difference (NSFD) schemes werdgyfipsdpposed by Mickens], either for ordinary differential
equations (ODESs) or partial differential equations (PDBEsjcheme is called non-standard if at least one of the fatigw
conditions is satisfied:
1- Nonlocal approximation is used.
2- Discretization of derivative is not traditional and usecmnegative functioni.e.,

. . t+h)—y(t) . t+h) —y(t .
when we want to approxma%%/ using Euler method we u ( +(p()h) v instead ofw, whereg(h) is a
continuous function of step size and the functiorp(h) satisfies the following conditions:

@(h)=h+0(h?), 0< @h)<1, h—0.

In addition to this replacement, if there are nonlinear eimthe differential equation, these are replaced by noatlo
approximation like for example
X
X — {Yn N1

Yn+1%n-

3 Discretization of the Cauchy-Type Problem for a Free Particle

In this section, we present the WA-NSFDM, to obtain the ditization of the fractional Schrodinger equation with the
guantum Riesz-Feller derivative of order 1 < a < 2 for a free particle\{ = 0) in the form

iﬁaqja(;(’t) —Ca(MDIW(xt), t>0, xeR 9)
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Existence and uniqueness theorems of the solution of#tgupject to an initial condition
W(x,0) = f(x), XxXeR,
and the boundary conditions
WY(x,t) — 0, as Xx— oo,

were introduced in3] and the solution was given in terms of Fox H-function.
The problem of solving numerically equatid®) (ies in a properly approximation of quantum Riesz-Felleriative
by a WA-NSFD scheme with a weight factor € [0, 1].
Let us assume that the coordinates of the mesh points are
Xn=nhn=..-2-1012 .., tg=mAt, m=0,1,2, ..M,
whereh = xp — X1, At =tm—tm_1. Let us define the approximation of the functigt{x,t) on the grid (xn,tm) by
W(Xn,tm) = WM. Eq. @) can be written in the following form:

il gm —hZa il "
M_WZW_:%WWW 2g¥a%ﬂ+u o)W Hw+ T, (10)
whereo being the weight factor and the coefficiemis= w(a, 8) have the following form14:
W L1
KT 2r(3—a)
[(K|+2)2%(2—A) + (|K| +1)>9(4) —6)
+[kj279(6— 61) + (k| — 1)2 (4 —2) + (|| —2)> “(~A)le; for k< -2,
(3279(2—A)+2%9(4) —6) —6A +6)c, + (2—A)c_ for k= -1,
x< (2279(2—A)4+4X —6)(c, +c.) for k=0,
(3279(2—A)+2%9(4) —6) —6A +6)c, +(2—A)c, for k=1,
[(k|+2)27 (2= A) + (k| + 1)2%(4A — 6)
+[K|Z9(6—6A)+ ([ — 1) (42 —=2)+ (K — 2> %(=A)]c- for k>2,

with
A=A(a,0)=2—(a+|0)).
The above replacements give rise to an error, the truncatimr, denoted here bi]nm. Its value will be discussed in

Section 4.2. This technique has been used to simulate thgoinal anomalous diffusion equatioriLy], [22]), where
Dg (W) was approximated by the following formula:

D§ (¥ (%n,tm)) ~ z 200 [(2=2)¥ 1+ (3A =4 W0y

to g
+(2=30) W AN, ot z 27))2[ Hlkiz

+(2-3M)W 1+ BGA = H W+ (2—- 1) gIvid, (11)
with

1 Xn—k 1 1 Xnk41 1
O sl A eyt eyl A e

(k+1)> 0 — k2@

_ h27a 12
r3—-a) (12)
Neglecting the truncation error on schemé)( one gets a computable difference scheme
) qjm+1_q_;m _h2 a  +o 1
|HW = C 2 Z +k+ 1 O—)WFTFT( ) K- (13)
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The proposed method is explicit for= 1, partially implicit for 0< o < 1, especial case when=1/2 then we have
Crank-Nicholson scheme, and fully implicit for= 0 [23].

The numerical schemd§), which included the unbounded domaime < X < 4o, has no practical implementations
in computer simulationslf]. Here we solve this problem in the finite domdh L < x < Rwith boundary conditions for
t>0

YLt =W¥(x,t) =0, (), PRt)=W(xt)=0;(t). (14)

We divide the domai2 into N sub-domains with the stdp= (R—L)/N. Here, we can observe additional points in the
grid located outside the lower and upper limits of the donfin
In order to introduce the Dirichlet boundary conditions,pvepose a numerical treatment which assumes the same values
of function¥ outside the domain limits as the values predicted on boyntzaesxy andxy.

JW(x,,t) fork <O,
Pt) = {W(xN,t) fork > N.

Based on previous considerations we need to modify exjpres$i3) for the discretization of the quantum Riesz-Feller
derivative. Thus we have

. mEl_gm —hZ-a | NN 1
R o g |5 vt - omgme s, s, ) 69
where N ) 2 5 2
Tt (2P 2=+ (n+ 1P 9(BA -4 +n*9(2-3)) + (n-1)* @
%, —k:Zka—Cf' 2r (3—a) '
2 N+ 22+ (n+1)2 93BN -4+ 92— 3A) 4+ (n—1)> @
S, = k}ﬂ""k =G+ 2r(3—a) '

Scheme 15) with the boundary conditiorld) can be written after some simplification in the matrix forsa a
cCymtl— Apm B, (16)

where®@™+1 js the vector of unknown function values at timmer 1, and

1 0 0 o --- 0 0
c.1 1+c C2 -+ CN-2 CN-1
C2 €31 14c €1 -+ CN-3 CN-—2
C— C3 Cp €1 1l4+cCop--- Cn-4 CN=3 7
C Nt1C-Nt2C Ns3CoNya - 1+Co C
0 0 0 o --- 0 1
1 0 0 o --- 0 0
a1 l+a & a - an-2 an-1
a, a1 l+a a - av-3 an-2
A—| a3 a2 a1 l+a - an-4 an-3

anNylaN2@Ns3ANpg L+ &
0 0 0 o --- 0 1

B=10, by, by, ..., bn_1,0]",

 Ca(m)p(At)hz @
T ()2

(—1wj, j=-N+1,,..,0,.,N-1

)
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Cq(M)p(At)h2—@

aj=I R(o(h) )2 owj, j=—-N+1,,..,0, ..., N-1,
_ Ca(me(A)h* 7 m m _ B
bnh=i Rl@(M)2 (%o's, + " SRan)’ n=12 .,N-1

4 Stability Analysisand Truncating Error
4.1 Stability Analysis

In this section, John von Neumann procedure is used to shedstability analysis of the weighted average schetbg (

Let us considefl = _%’ then schemel) can be written in the form

N—n
(Yt —ym =g l Y (oWt (- o)W w+ (Whs, + s, )1 : (17)
k=—n

Theorem 1. The weighted average schenigis conditionally stable.

Proof. Assuming that" = £™e"d with q is the spatial wave number (which we assume to be purely [2gljhen Eq.
(17) can be written in the following form

N—n
i(EMt—gmena—p [ S (0EM+(1—0)EM Hwe "N (5 +sRNnéN“q>£"‘] :

k=—n

§m+1

dividing the last equation b§™e""d where g =1 = n(q) is the amplification factorg4], we find:

k=—n

in-1)=p le (0+(1-0)nwe (s, e—i”“‘*+sﬁNné<N—“>“q>] :

so we can confirm that

N-n N—n 1

L k=-n

k=—n

also

N—n ) [ N-n )
nLi-BL-0) T we —fi+|o T wedhisz,

k=—n L k=-n

wherez, =§ e inha_ S ¢(N-mhd gndz, is the complex conjugate af.
The scheme will be stable as long|g$ < 1, forall qi.e.,
N—n N—n

i+B(0 Y we"+z) <[i-B(1-0) T we",

k=—n k=-—n
this inequality takes the next form depending on propedfébe complex number norm:

N—n )
i+pB(o Z Wkelkhq—F Zn)

k=—n

N—n )
—i+B(@ 5 we 47

k=—n

< [i -B(1-o0) Nin Wkeikhq] [—i -B(1-0) Nin Wke‘ikhq] .
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The above inequality can be written as:

N—n ~ N-n ) ) N—n .
BO.Z z Wkelkhq z Wke—lkhq_|_Ba(Z z Wke_'khq—|—2n Z Wke'khq)
k=—n k=—n k=—n k=—n

N—n . N—n .
+Bzza—io( Y wedM— 5 we ) —i(z - 7)

k=—n k=—n

n . N—n . n . N—n .
<i(l-0)( ) wiehd — > wie ) 4 B(1 - 0)? > wgknd > wie kha,
k=—n k=—n k=—n k=—n

Let z, = rne®, then the previous inequalityL®) after some simplification:

-n

pota(e ™ 'y

. o N-n .
wigkhd 4 g > wie %) 1 Br2 — 2sing,
k=—n k=—n

N—n ) N—n . N—n . N—n .
<i(Y wed— S we )+ B(1-20) T W T we
k=-n k==n k=-n k=—n

which equivalent to
N-n N—n N—n
Blotn2 5 wcog6h—kho —(1-20)( 5 wi+2 Y wiw,cosk — v)hq) 4 r2]

k=-—n k=-n k=—n,v=—nk#£v

N—n
< 2sin6, — 2 z wisin(khg).
k=—n
So the scheméely) is stable under the condition:
with
N—n
A=2sinf, -2 z wisin(khg),

k=—n

N—n N—n N—n
B=20ry 3 wkcogbh—khg)—(1-20)(y wg+2 5 wweosk—v)ha)+r7
k=—n k=—n k=—n,v=—nk#v

4.2 Truncating Error

Theorem 2. The truncating error of WA-NSFD schem&(j is:
Ty = O(¢(At) + p(h) +h?~9).
Proof. From the definition of truncating error given by E40J, one gets

m _q_/nm+1_q;nm h2—a +00
T =I5y e M gme 2

oW+ (1- o) ¥ bw,

depending on Taylor series expansion we find (fongll

q_/nm+1 _ (pnm
¢(At)
and Eq.{1) takes the form (for alin)

= U4 Y (D(AD) + e (BAD .

(18)

(19)

(20)

(21)
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g 1 1
DG (W)~ = |cr Y [Bact 50(0) oot 75(4+122) (@()Hooor+ - vk
k=0

g 1 1
+C- Z W+ é(p(h)q&xx"‘ 4_8(4+ 12) )((p(h))z%xxxﬂ- V] - (22)
K=0
We mention here (for example) the Taylor expansiort#g, . , which we have used to write EdLY) in the form @2)

ki1 =¥k + % o(h) + %q&x (¢(h))2 + %"H(xx' ((o(h))s + 2—14%(xxx' ((0(h))4—|— e

Eg. (22) can be written, using Eq1@), in the following form

h2—a -0

DG (") ~ oz, 2 (i W= —(Cr+ 0 ) [t %co(h)%xx

!
*78

(k+ 1) — Ko

_a) (23)

— (4+122) (@()) *Hooox+ .. z 2o
Inserting these expressior&l( 23) into Eq. £0), the local truncation error is

= O(¢(At) + @(h) +h?~9).

Accordingly, our scheme is convergent under the conditi® (

5 Numerical Examples

In this section we present the results obtained by the ptesenerical approachl) with ¢ (At) = sinh(At), @(h) =
sinh(h).
Example 1. Consider the space fractional Schrodinger equation Wigtguantum Riesz-Feller derivative
oW (x,t)
ot

=—-iDg¥W(x,t), —2<x<2, t>0, 1<a <2 (24)

with the initial condition:
Y(x,0) = 1+ cosh2x),

the boundary conditions: _ _
W(-2,t)=1+cos—4)e ™ W(2,t)=1+cosh4)e ™,

and the exact solution when= 2 [8] is:
W(x,t) = 1+cosh2x)e ™, —2<x<2.

Table() shows the maximum error between the norm of the numeridatisn obtained by using the WA-NSFDM
and the norm of the exact solution, is smaller than the maxiruror between the norm of the numerical solution obtained
by using the FDM and the norm of the exact solution, whea 1 att = 1, usingN = 10 and different values d¥l.

Table@) shows the maximum errors between the norm of the numeitatisn obtained by using the WA-NSFDM
and the norm of the exact solution, whenr=1, 0.5, 0, att = 1, usingN = 50 and different values dfl also it shows the
stability bound (SB) 19).

The behavior of the real parts of the analytical and numksiclutions by means of the WA-NFDMo(= 1) with
different values otr and6 when 0< t < 0.6 are presented in Figuret) @nd @).
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Exact, Alpha=2 NFDM, Alpha=2 ,Theta=0

8 Theta=0

Fig. 1. Solution of the real part of example (1) for different valuwdsr, 8 andN = 12, M = 100.

Alpha=2 ,Theta=0

Fig. 2: Unstable solution of the real part of example (1) winhea- 20, M = 100,a = 2, 6 = 0, hereSB= 0.0151.
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Table 1: The maximum error for example (1) when= 2 andN = 10 at t=1 using WA-NSFDM and FDMo( = 1).

M max-error-WA-NSFD| max-error-SFD
100 1.2072e-01 3.9669e-01
500 1.7256e-02 3.9339e-01
1000 8.5100e-03 3.9404e-01

5000 1.6870e-03 3.9449e-01
10000 8.4269e-04 3.9455e-01

Table 2: The maximum error for example (1) when= 2 andN = 50 at t=1 using WA-NSFDM witlo = 1, 0.5, 0 and the (SB)

(c=1) (c=0.5) (c=0)
M max-error SB max-error SB max-error SB
50 divergent 9.6e-04| 6.2345e-01 -9.8e-04{ 2.7353e-01  -9.6e-04
200 divergent 9.8e-04| 1.5703e-01 -9.8e-04] 1.2620e-01  -9.8e-04
500 divergent 9.8e-04| 4.2314e-02 -9.8e-04{ 6.3040e-02 -9.8e-04
1000 divergent 9.8e-04| 2.3245e-02 -9.8e-04| 3.3042e-02 -9.8e-04
2000 divergent 9.8e-04f 1.8051e-03 -9.8e-04] 1.9655e-03  -9.8e-04

Example 2. Consider the space fractional Schrodinger equation Wiglguantum Riesz-Feller derivative

oW (x.t .
#:—ngqJ(x,t), 2<x<2, t>0, l<a<2, (25)
with the initial condition: _
W(x,0) = e**,

the boundary conditions:
qj(_z’t) _ eBi(72+3t)’ qj(z’t) _ eBi(24r3t)7

and the exact solution when= 2 is given as follows§]:
W(X,t) _ e3i(x+3t)’ o

Table@) shows the maximum errors of WA-NSFDM, when= 1, 0.5, 0, between norm of the exact solution and
norm of the numerical solutions & 1, usingM = 1000 and different values &f also it shows the (SB)1Q).

Tabled) shows the maximum errors of WA-NSFDM, when= 1, 0.5, 0, between norm of the exact solution and
norm of the numerical solutions &= 1, usingN = 40 and different values d¥l also it shows the (SB)O).

The behavior of the imaginary parts of the analytical and etical solution by means of the WA-NFDM(= 1) with
different values otr and6 when 0< t < 0.6 are presented in Figure3)@nd @).

Table 3: The max-error for example (2) when= 2 andM = 1000 at t=1 using WA-NSFDM witlo = 1, 0.5, 0 and the (SB) with
different value ofN.

(0=1) (o0=0.5) (oc=0)
N max-error SB max-error SB max-error SB
20 2.9664e-01 -1.5e-02] 2.8405e-01 -1.5e-02| 2.9954e-01  -1.5e-02
50 divergent 9.8e-04|| 4.3375e-02 -9.8e-04{ 7.1492e-02  -9.8e-04
100 divergent 1.2e-04|] 1.1069e-02 -1.2e-04] 4.8963e-02 -1.2e-04
200 divergent 1.5e-05|| 7.7360e-03 -1.5e-0% 4.7809e-02  -1.5e-0%
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image exact image, alpha=2 , theta=0 image, alpha=1.8 , theta=0

Fig. 3: Behavior of the imaginary part of solution of example (2) défferent values ofx, 8 andN =12, M = 100.

image, alpha=2 , theta=0

200

100l

-200

Fig. 4: Unstable solution of the imaginary part of example (2) whea 20, M = 100,a =2, 6 =0, hereSB= 1.5128& — 02.
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Table 4: The max-error for example (2) when = 2 andN = 40 at t=1 using WA-NSFDM witho = 1, 0.5, 0 and the (SB) with
different value ofM.

(c=1) (o =0.5) (oc=0)

M max-error SB max-error SB max-error SB
10 divergent 1.5e-03| 6.5126e-01 -1.9e-03| 8.8342e-01 -1.5e-03
100 divergent 1.8e-03| 6.9029e-02 -1.9e-03 4.2900e-01  -1.8e-03
200 divergent 1.9e-03] 3.3151e-02 -1.9e-03| 2.2612e-01  -1.9e-03
500 divergent 1.9e-03| 2.6544e-02 -1.9e-03 2.6544e-02  -1.9e-073

Example 3. Consider the space fractional Schrodinger equation Wigtguantum Riesz-Feller derivative

% =—iDgW(x,t) —iv(x,t)¥(xt), 0<x<2m t>0, 1<a <2, (26)
such that o o
V(X t) = 3/2+sin7n+ cos7”,

with the initial condition:
W(x,0) = sin(x),

the boundary conditions: _
W(0,t) =0, W(2,t)=sin(2)e /2

and the exact solution is: .
W(x,t) =sinx)e 2 o<x<2m

Table6) shows the maximum errors of WA-NSFDM, when= 1, 0.5, 0, between norm of the exact solution and
norm of the numerical solutions, usihg= 10, M = 100, 6 = 0 and different values af whent = 0.1 also it shows the
(SB) (19).

Table@) shows the maximum errors of WA-NSFDM, when= 1, 0.5, 0, between norm of the exact solution and
norm of the numerical solutions, usifg= 10, M = 100, a = 1.7 and different values d whent = 0.1 also it shows
the (SB) 9.

Figs. 6) show the behavior of the real part of the exact solution Ardblutions of example (3) using the WA-NSFDM
(o = 1) for different values ofr and 6 whenN = 15 M = 10.

Figs. 6) show the behavior of the real part of the solutions of exan®) using the WA-NSFDMd = 1) fora =2
and 6 = 0whenN =10, M = 10.

Table 5: The max-error for example (3) whéh= 10, M = 100, 6 = 0 and different values af, using WA-NSFD witho =1, 0.5, 0
and the (SB).

(c=1) (o0 =0.5) (c=0)

a max-error SB max-error SB max-error SB

2 divergent 7.5e-03| 1.0960e-02 -7.5e-03| 1.1075e-02  -7.5e-03
1.7 divergent 6.8e-02| 1.0873e-02 -6.8e-02] 1.0096e-02  -6.8e-02
1.4 divergent 1.2e-01] 8.1281e-03 -1.2e-01] 8.0639e-03  -1.2e-01
1.1 divergent 1.8e-01| 5.7612e-03 -1.8e-01] 5.6717e-03  -1.8e-01
1 divergent 1.9e-01)| 7.6605e-04 -1.9e-01y 2.4310e-04  -1.9e-01
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0 o

Fig. 6: Unstable solution of the real part of example (3) winea- 10, M = 10,a =2, 8 =0, hereSB= 7.5382 — 03.
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Table 6: The max-error for example (3) whéh= 10, M = 100, a = 1.7 and different values d, using WA-NSFD witho =1, 0.5, 0
and the (SB).

(c=1) (o0 =0.5) (c=0)
[¢] max-error SB max-error SB max-error SB
0 divergent 6.8e-02| 1.0132e-02 -6.8e-02| 1.0096e-02  -6.8e-02

0.1 divergent 6.2e-02| 8.4556e-03 -6.2e-02| 8.4522e-03  -6.2e-02
0.2 divergent 4.8e-02| 6.8251e-03 -4.8e-02| 6.9052e-03  -4.8e-02
0.3 divergent 2.8e-02| 6.0464e-03 -2.8e-02| 6.1157e-03  -2.8e-02
-0.2 divergent 5.6e-02| 1.4159e-02 -5.6e-02| 1.3923e-02  -5.6e-02

6 Conclusions

In this paper, we used WA-NSFDM to introduce numerically #pproximate solution of a fractional Schrodinger
equation with the quantum Riesz-Feller derivative. Theppsed method is based on choosing the weight faztdrhe
main advantage of this method is, it can be explicit or iniplidth large stability regions as we see in tables (2-6).
Special attention is given to study the stability and cdesisy of proposed methods. To execute this aim we have
resorted to the kind of John Von Neumann stability analy&isne numerical results are used to show the accuracy of the
WA-NSFDM and some figures are used to demonstrate how thé@michange whea and6 take different values. All
computations in this paper are performed using MATLAB pesgming.
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