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1 Introduction

In complex analysis, the Stokes phenomenon (named
after George G. Stokes who discovered it in 1847-1858)
is that the asymptotic behaviour of functions can differ in
different regions of the complex plane. When
second-order linear ordinary differential equations :

h̄2 d2y
dx2 +Q(x)y= 0 (1)

where Q(x) is an irreducible rational function, are
considered, the principal parts of the formal solutions are
of the form :

y(x, h̄)∼ 1

Q(x)1/4
exp

(
± i

h̄

∫ x
Q(s)1/2ds

)

which are called WKB approximations. The regions or
domains in which the WKB approximations of (1) are
valid are determined by the so-called phase-integral :

ξ (x, t) =
∫ x

x0

Q(s)1/2ds (2)

where x0 is any of the turning points of (1). Since we
must consider two WKB approximations on two sheets of
complex planes, it is sufficient for our purpose to choose
one of the two square roots of the integrand of the integral
(2). Canonical regions around the turning pointx0 are
bounded by the level lines Reξ (x, t) = 0 (Stokes lines)
and Imξ (x, t) = 0 (anti-Stokes lines). More details about
the Stokes phenomenon can be found in [1], [6] or [7] for

instance - as well as the multiple references therein. For
an in-depth comprehension and beyond, the interested
reader should confer to the various works of Robert B.
Dingle [4], John Heading [5], and Michael V. Berry [2],
[3].

We focus on the Landau-Zener model (see [8] for
notations). This paper is divided into five parts :

•as usual, Section2 concerns some generalities and
definitions,
•in Section3, from the Schrödinger equation for the
wave component ψ1, we extract two series
representations that will be crucially required in both
Sections4 and6,
•by only assumingz≫ h̄ in Section4, we shall exhibit a
geometrical technique to derive the two Landau-Zener
transition probabilities :




aLZ(z) = exp

(
− πz2

2h̄

)

bLZ(z) =
2i
z

ei π
4

√
h̄
π

(
h̄
2

)i z2
2h̄

Γ
(

1+ i
z2

2h̄

)
exp

(
− πz2

4h̄

)
sinh

πz2

2h̄

,

(3)

due to the continuation of the WKB approximations
through the Stokes diagram, namely once the
singularities, the actionW and the Stokes constant

CS

(
3π
4

)
are known ; while in Section5, we show

the efficiency of the SDE in the diabatic limit too,
•regardless to the accurate expressions of Section4,
the adiabatic limit 0< z≪ h̄ is naively carried out in
Section 6, leading thus to a discrepancy that is
examined.
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For the S-matrix, we shall make straightforward use of
several rules derived in the end of [10]. Note that all the
results are remarkably consistent with (3).

2 The Stokes geometry

2.1 Generalities about the WKB analysis

The problem is that the approximate solutions exist in
disconnected domains of the real axis, and they must be
connected across the intervening domains where they are

not valid. For instance, the presence of the factor
1
t

(before the functionse±iΛp(t,·) in [10]) prevents the
prolongation of the approximate solutions through the
origin. Analytic continuation inC provides the means of
connection. But although the exact solution to the
differential equation may be analytic and thus valid
everywhere, the approximate solutions are not and have
very different properties from the exact solution,
including the existence of cuts.
George Gabriel Stokes was the first to deal with the
asymptotic approximations of the Airy equation, realizing
in 1857 that discontinuities in the form of the asymptotic
representation existed at the so-called Stokes lines, even
though the functions themselves are continuous. Lord
Rayleigh considered such approximate solutions in 1912,
but he did not succeed in making the connection across
the gap. More systematic approaches to matching the
solutions were obtained by Gregor Wentzel, Hans
Kramers and Léon Brillouin in 1926, when the interest
was primarily in obtaining solutions to bound state
problems in quantum mechanics.
The theory was finally put in form by Harold Jeffreys and
John Heading in 1962. It offers a very powerful means of
obtaining reasonably good approximate solutions to
differential equations, and is often used in
electromagnetism, quantum mechanics, and other
disciplines.

2.2 Asymptotic solutions

Joseph Liouville and George Green may be said to have
founded the method in 1837, and it is also commonly
referred to as the Liouville-Green method. The important
contribution of Harold Jeffreys, Gregor Wentzel, Hans
Kramers and Léon Brillouin to the method was the
inclusion of the treatment of turning points, connecting
the evanescent and oscillatory solutions at either side of
the turning point.
The power and simplicity of phase-integral methods for
the approximate solution of differential equations make
them a common tool in physics, when the equations are

often too cumbersome to solve by standard exact
methods. The physical problem is initially defined on the
real axis. However, the differential equation is
analytically prolonged into the complex plane.
By analogy with physics, we shall call the functionQ(x)
in (1) the pulsation of the system (or equivalently, its
frequence). This quantity is actually related to the
refractive index of a medium. The asymptotic theory of
(1) has been divided into two cases, depending on
whether or notQ(x) has isolated zeroes or singularities
(namely poles). IfQ(x) does not vanish then (1) falls
within the scope of a systematic theory. However, ifQ(x)
has isolated zeroes or singularities, individual
representatives of (1) become peculiar. Such special cases
are called ”turning point” problems, and the zeroes or
singularities ofQ(x) are called ”turning points”.

2.3 Classification of singularities

(Fuchs) Differential equations are classified according to
their singularity structure. Let us consider then-th order
linear differential equation :

L f = f (n)+Pn−1(x) f (n−1)+ . . .+P0(x) f = 0 .

Definition 1.A point x0 is called an ordinary point if all
the Pk(x) are analytic at this point, naturally considered
as functions of the complex variable x.

In this case, the solutions of the differential equation
possess Taylor series which converge within a disk with
radius at least as large as the distance to the nearest
singularity of thePk.

Definition 2.A point x0 is called a regular singular point
if the functions(x−x0)

nP0, (x−x0)
n−1P1, ...,(x−x0)Pn−1

are analytic at x0.

If a point x0 is neither an ordinary nor a regular singular
point, it is called an irregular (or essential) singular point.
In this case, there is no convergent series representation of
the solution around this point. Then the solutionf (x) has
an essential singularity at this point, meaning that neither

lim
x→x0

f nor lim
x→x0

1
f

exists. The Picard theorem states that in

any neighbourhoodUx0 of an essential singularity,f
takes on every complex value, except possibly one.
Nevertheless, it is often possible to find local asymptotic
series which approach the solution to within some small
error and thereafter diverge.

Definition 3(Darboux principle). One may derive an
asymptotic expansion in degree j for the coefficients aj of
a series solely from knowledge of the singularities of the
function f(x) that the series represents. This principle
applies to any power series and divergent power series.

c© 2017 NSP
Natural Sciences Publishing Cor.



Quant. Phys. Lett.6, No. 2, 79-89 (2017) /www.naturalspublishing.com/Journals.asp 81

Definition 4.Turning points (or equivalently, transition
points) are certain exceptional values of x for analytic
differential systems of the type (1).

Stated differently : in a neighbourhood of such points, the
functional character of the solution undergoes substantial
metamorphosis. At a transition point :

trigonometric solutions← f (x) → exponential solutions

neutral behaviour← functional character→ subdominant or dominant behaviour.

(Poincaré) Provided that

∣∣∣∣
1

Q3/2

dQ
dx

∣∣∣∣≪ 1, and setting :

y±(x) =
1

Q(x)1/4
exp

(
± i

h̄

∫ x
Q(s)1/2ds

)
,

a general solution of (1) can then be approximated by a
linear combination y(x) = c+y+(x) + c−y−(x).
Unfortunately, the approximate solutionsy± are local, not
global solutions, and clearly not valid in the vicinity of a
zero of Q(x). The phase-integral method consists in
relating for a given solution of (1), the WKB
approximation in one region of the complex plane to that
in another. These (canonical) regions are separated by the
Stokes and anti-Stokes lines associated withQ(x) - or
more generally by these level surfaces of codimension 1
when one works inCn. Thus the qualitative properties of
the solution are determined once these lines are known.

Definition 5.The Stokes (respectively anti-Stokes) lines
associated to Q(x) are paths in the complex plane,
emanating from zeroes or singularities x0 of Q(x), along

which
∫

x0

Q(s)1/2ds is imaginary (respectively real).

Along the anti-Stokes lines, the functionsy± are, within
the validity of the WKB approximation, of constant
amplitude i.e. oscillatory : they are said neutral and that is
why the subscriptss or d are sometimes dropped.
Similarly along the Stokes lines, the WKB solutions are
exponentially increasing or decreasing with fixed phase.
The global anti-Stokes and Stokes lines which are
attached to the singularities of the differential equationin
the Stokes diagram, along with the Riemann cut lines,
determine the global properties of the WKB solutions.
In the notation of Heading, a local WKB approximate
solution is denoted by :

(a,x)s =
1

Q1/4
exp

(
i
h̄

∫ x

a
Q(s)1/2ds

)
, (4)

where the subscripts (or d) indicates that the solution is
subdominant (or dominant), i.e. exponentially decreasing
(or increasing) for increasing|x−a| in a particular region
of the x plane, bounded by Stokes and anti-Stokes lines.
The two independent local WKB approximate solutions of
(1) are given by(a,x)s and (x,a)d. Of course when one
function is dominant, then the other one is subdominant.

2.4 Connection formulae

In a domain far from any zero or singularity ofQ(x), the
solution to the differential equation in WKB
approximation is simply given by the eikonal
representation (4).
(Jeffreys, Heading) Denote byx a generic point inC.
Begin with a particular solution in one region of the
complex plane, choosing that combination of
subdominant and dominant solutions which gives the
desired boundary conditions in this region. The global
solution is obtained by continuing this solution through
the whole complex plane, effecting the following changes :

•upon crossing a cut in a counterclockwise sense, the
cut originating for a first-order zero ofQ at the pointa :

(a,x)• −→−i(x,a)•
(x,a)• −→−i(a,x)• ,

and the property of dominancy or subdominancy is
preserved in the process
•upon crossing an anti-Stokes line, subdominant
solutions become dominant, and vice versa
•upon crossing a Stokes line in a counterclockwise
sense, the coefficientαs of the subdominant term of a
solution must be replaced byαs+CSαd, whereCS is
called the Stokes constant
•reconnect from singularitya to singularityb, using :

(x,a)• = (x,b)•[b,a]

with [b,a] = exp

(
i
h̄

∫ a

b
Q(s)1/2ds

)
. If a and b are

joined by a Stokes line, reconnect while on the line,
using 1/2 the usual Stokes constant to step on the
line, again 1/2 to step off.

Using the so-called connection formulae, we can pass
from region to region across the cuts, anti-Stokes and
Stokes lines emanating from a turning point. Beginning
with any combination of dominant and subdominant
WKB solutions in one region, this process leads to a
globally defined single-valued approximate solution of
(1). At a Stokes line in the presence of a dominant
solution, the apparent ”discontinuity” produced is small
in comparison to the error due to the WKB approximation
itself. As one continues further away from the Stokes line,
however, the subdominant term will begin to be
important, and the modified coefficient is the correct one.
Note that a Stokes structure consisting of multiple
singularities is more complicated, in the sense that the
Stokes constants tied to a turning point are modified by
the proximity of the other singularities.
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3 Construction of the asymptotic series for
the Landau-Zener problem

From [8], we know that the second-order linear ODE :

h̄2 d2ψ1

dt2
+(t2+ z2− ih̄)ψ1 = 0 (5)

is a partial reformulation of the Landau-Zener model.
Solutions of (5) have an essential singularity at infinity.
The WKB approximations of (5) involve two exponentials

exp

(
± it 2

2h̄

)
, both affected by the Stokes phenomenon.

At some point, we might need to determine the Stokes

constant in the direction Argt =
3π
4

. After extracting the

asymptotic behaviourψ1(t) = f (t)exp

(
− it 2

2h̄

)
, we are

looking for a power series representation of the function
f . By Liebniz formula :

d2ψ1

dt2
=

[
f ′′− 2it

h̄
f ′+

(
− i

h̄
− t2

h̄2

)
f

]
exp

(
− it 2

2h̄

)
.

Inserting this expression into (5), we get :

f ′′− 2it
h̄

f ′+

(
z2

h̄2 −
2i
h̄

)
f = 0 .

For convenience, we shall make an extensive use of the
(decreasing) Pochhammer symbol(x)(n) defined by :

∀n∈ N, (x)(n) = x(x−1) . . .(x−n+1)

=
Γ (x+1)

Γ (x−n+1)
, (6)

with the convention (x)(0) = 1. Since there is no
misunderstanding possible throughout this paper, we will
denote it simply byxn in order to lighten notations. This
falling sequential product is sometimes called the

descending factorial. Now write f (t) = tν
+∞

∑
k=0

ckt
k,

yielding :

f ′(t) = tν−1
+∞

∑
k=0

(ν + k)ckt
k , f ′′(t) = tν−2

+∞

∑
k=0

(ν + k)2ckt
k .

The second-order ODE definingf becomes :

1
t2

+∞

∑
k=0

(ν +k)2ckt
k− 2i

h̄

+∞

∑
k=0

(ν +k)ckt
k +

(
z2

h̄2 −
2i
h̄

) +∞

∑
k=0

ckt
k = 0

⇐⇒ 1
t2

+∞

∑
k=0

(ν +k)2ckt
k +

+∞

∑
k=0

[
z2

h̄2 −
2i(ν +k+1)

h̄

]
ckt

k = 0 .

The indicial equation gives the necessary condition
ν(ν−1) = 0. That impliesν ∈ {0,1}. When choosing
ν = 0, a quick inspection shows that every odd index

coefficients vanish asc1 can be arbitrary set to 0. For the
order 2(k−1), from the recurrence relation :

(ν +2k)2c2k+

[
z2

h̄2 −
2i [ν +2(k−1)+1]

h̄

]
c2(k−1) = 0 ,

we thus get :

∀k> 1, c2k =
1

(ν +2k)2

[
2i [ν +2(k−1)+1]

h̄
− z2

h̄2

]
c2(k−1)

=
1

(ν +2k)!

k−1

∏
ℓ=0

[
2i(ν +2ℓ+1)

h̄
− z2

h̄2

]
. (7)

Thus, the general power series solution is :

f (t) = A

(
1+

+∞

∑
k=1

1
(2k)!

k−1

∏
ℓ=0

[
2i(2ℓ+1)

h̄
− z2

h̄2

]
t2k

)

︸ ︷︷ ︸
f1(t)

+ B

(
1+

+∞

∑
k=1

1
(2k+1)!

k

∏
ℓ=1

[
2i(2ℓ)

h̄
− z2

h̄2

]
t2k

)
t

︸ ︷︷ ︸
f2(t)

andψ1(t,z) = [A f1(t)+B f2(t)]exp

(
− it 2

2h̄

)

as a linear combination of two independent functions. On
the other hand, if we make the substitution

ψ1 = g(t)exp

(
it 2

2h̄

)
instead off (t)exp

(
− it 2

2h̄

)
in (5) :

g′′+
2it
h̄

g′+
z2

h̄2 g= 0 .

Putg(t) = tν
+∞

∑
k=0

dkt
k with d0 = 1, and we obtain :

1
t2

+∞

∑
k=0

(ν +k)2dkt
k+

2i
h̄

+∞

∑
k=0

(ν +k)dktk+
z2

h̄2

+∞

∑
k=0

dkt
k = 0

⇐⇒ 1
t2

+∞

∑
k=0

(ν +k)2dkt
k+

+∞

∑
k=0

[
2i(ν +k)

h̄
+

z2

h̄2

]
dkt

k = 0 .

As before,ν ∈ {0,1}. And in the same way, we get :

∀k> 1, d2k =
(−1)k

(ν +2k)!

k−1

∏
ℓ=0

[
2i(ν +2ℓ)

h̄
+

z2

h̄2

]
. (8)

So the general power series solution is now :

g(t) = A

(
1− z2

2h̄2 t2+
+∞

∑
k=2

(−1)k

(2k)!
z2

h̄2

k−1

∏
ℓ=1

[
2i(2ℓ)

h̄
+

z2

h̄2

]
t2k

)

︸ ︷︷ ︸
g1(t)

+ B

(
1+

+∞

∑
k=1

(−1)k

(2k+1)!

k−1

∏
ℓ=0

[
2i(2ℓ+1)

h̄
+

z2

h̄2

]
t2k

)
t

︸ ︷︷ ︸
g2(t)

and ψ1(t,z) = [Ag1(t)+Bg2(t)]exp

(
it 2

2h̄

)
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The series
+∞

∑
k=0

ckt
k+ν is an example of asymptotic series.

This definition includes the cases of series which
converge, either for allt or for a restricted range oft, but
normally when one refers to an asymptotic series, it is
understood that the series in question is divergent. The
study of asymptotic series was first made by Henri

Poincaré. A series
+∞

∑
n=0

anxn is said to be asymptotic to a

function f (x) at x = 0, or f (x) ∼
0

+∞

∑
n=0

anxn, if for x→ 0,

we have :

f (x)−
N

∑
n=0

anxn≪ xN for all N .

If an asymptotic expansion of a functionf exists, then the
coefficients an are unique, and given by the limiting
procedure :

a0 = lim
x→0

f (x) , a1 = lim
x→0

f (x)−a0

x
, etc.

The converse is false : indeed tof (x), one can add any
function which decreases faster than any power ofx
without changing the asymptotic expansion. The class of
all functions which are asymptotically equal tof is
defined as the sum of the asymptotic series.

Remark 1If the series diverges, this can be an indication
that the function is not analytic at the point of the
expansion, and not that the function is infinite or
otherwise ill-defined.

A means of summing divergent series is the Borel
summation. This powerful technique often extends the
domain in which the sum ”converges” beyond the normal
radius of convergence.

4 Revisiting Landau-Zener, part 1 : when
z≫ h̄

In this section, we assume that̄h is small before the
coupling parameterz. Recall (5) :

h̄2 d2ψ1

dt2
+(t2+ z2− ih̄)ψ1 = 0 .

There will be repercussions in the structure of the Stokes
diagram, and the actionW between the turning points.

4.1 Stokes diagram

Here sincez≫ h̄, the pulsationQ(t,z) = t2 + z2− ih̄ is
almost real and positive on the real axis, with two simple

Fig. 1: Stokes structure for 2 simple turning points on the
imaginary axis.

zeroes close to±iz. Hence the resulting diagram (where
some distances were exaggerated for clarity) :
In the Stokes diagram, we deliberately begin with a
subdominant solution so that the solution is small and
cannot contain any dominant part due to the approximate
nature of the WKB solution. Continuation through the
upper half-plane gives :

1.start on the positive real axis with the subdominant
solution :(iz, t)s

2.crossing a Stokes line :(iz, t)s
3.crossing an anti-Stokes line :(iz, t)d
4.crossing a Stokes line :(iz, t)d +CS(t, iz)s
5.crossing an anti-Stokes line :(iz, t)s+CS(t, iz)d

reconnectingiz to−iz on the left of the cut :
[iz,−iz]ℓ(−iz, t)s+CS(t,−iz)d[−iz, iz]ℓ

6.passing the cut in a counterclockwise sense :
[iz,−iz]ℓ(t,−iz)s+CS(−iz, t)d[−iz, iz]ℓ
as reaching the negative axis, renamet into−t :
[iz,−iz]ℓ(−t,−iz)s+CS(−iz,−t)d[−iz, iz]ℓ

whereCS is the Stokes constant associated with the zero

at t2 = iz and the direction Argt =
3π
4

. Subscriptsℓ andr

stand for ”left” and ”right” of the cut. Let us compute the
quantity :

W =− i
h̄

∫ iz

−iz

√
t2+ z2dt =

πz2

2h̄

which is called the (left) action from the turning point
t1 = −iz to t2 = iz. Note thatW is proportional to the

Wallis integral I2 =
∫ π

2

− π
2

cos2 θdθ . The factor [−iz, iz]ℓ
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turns out to be equal toeW. Consequently, for a
subdominant solution in domain 1 :

ψ1(t) = (iz, t)s

i.e. with the correction expS+1 (+∞) = 1, we end up in
domain 6 with :

ψ1(−t) = e−W(−iz,−t)s+CSeW(−t,−iz)d

as t → +∞. Take the reference point for the phase to be
τ = 0. Formally divide both sides by[iz,0]r , then :

e−W(0,−t)s+CSeW(−t,0)d ! (0, t)s (9)

since[iz,0]r [0,−iz]ℓ = 1. This may be the shortest proof

ever ofa(z) = exp

(
−πz2

2h̄

)
.

4.2 Dominant exponential solutions in the
kπ
4

directions

Lemma 1.For α ∈ C fixed. For x∈ C such thatRex > 0,
one has :

Γ (x)
Γ (x+α)

=
1
xα +O

(
1

|x|1+Reα

)

as|x| →+∞.

Proof.It is essentially based on Watson’s lemma. Start with
the Beta function defined as :

B(x,α) =
Γ (x)Γ (α)

Γ (x+α)
=

∫ 1

0
tx−1(1− t)α−1dt .

Fix α with Reα > 0, and consider this integral as a
function ofx. Lettingt = e−u yields :

B(x,α) =

∫ +∞

0
e−xu(1−e−u)α−1

du

=

∫ +∞

0
e−xuuα−1

(
1− u

2!
+ . . .

)α−1
du≃ Γ (α)

xα

by only taking the first term in the expansion when Rex>

0, and thus the error is bounded by aO

(
1

|x|1+Reα

)
term.

Dividing both sides byΓ (α) gives the desired result. �

From (7), the general term off1 is :

c2nt
2n =

1
(2n)!

n−1

∏
ℓ=0

[
2i(2ℓ+1)

h̄
− z2

h̄2

]
t2n

=
2n

(2n)!

(
2i
h̄

)n n−1

∏
ℓ=0

(
ℓ+

1
2
+

iz2

4h̄

)
t2n

=
2n

(2n)!

(
2i
h̄

)n(
n− 1

2
+

iz2

4h̄

)

n
t2n

=
2n

(2n)!

(
2i
h̄

)n Γ
(

n+
1
2
+ i

z2

4h̄

)

Γ
(

1
2
+ i

z2

4h̄

) t2n .

Let us now determine the asymptotic expressions ofψ1 on

the Stokes lines Argt =−π
4

or Argt =
3π
4

.

Whent = Te−i π
4 or Tei 3π

4 - with T real, large and positive
(in a sense, we might think ofT as+∞), we have :

f1(t) =
+∞

∑
n=0

(
4
h̄

)n Γ
(

n+
1
2
+ i

z2

4h̄

)

Γ
(

1
2
+ i

z2

4h̄

) T2n

(2n)!

≃
+∞

∑
n=0

(
4
h̄

)n n−
1
2+i z2

4h̄

Γ
(

1
2
+ i

z2

4h̄

)
√

2πn
(n

e

)n 1√
4πn

( e
2n

)2n
T2n

=
+∞

∑
n=0

(
1
h̄

)n n−
1
2+i z2

4h̄

Γ
(

1
2
+ i

z2

4h̄

) 1√
2

(e
n

)n
T2n ,

by using Γ (n+ δ ) ≃ nδΓ (n) and the Stirling formula

Γ (n)≃
√

2π
n

(n
e

)n
. We replace these discrete terms by a

continuous function, but since a complex index occurs
for n, the summands are not wholly real. The factor

n−
1
2+i z2

4h̄ is a slowly varying function, compared with the
other variable factors. Hence :

f1(t)≃
x
− 1

2+i z2
4h̄

0
√

2Γ
(

1
2
+ i

z2

4h̄

) ∫ +∞
0 exp

(
x−x logx+x log T2

h̄

)
dx ,

with a constantx0 ∈ R+ soon to be determined. The
integral is now evaluated by the method of the steepest

descent. So if we setϕ(x) = x− xlogx+ xlog
T2

h̄
, then :

ϕ ′(x) =− logx+ log
T2

h̄
, ϕ ′′(x) =−1

x
.

Thusϕ ′(x) = 0 whenx0 =
T2

h̄
, and :

f1(t) ≃
1

√
2Γ
(

1
2
+ i

z2

4h̄

)
(

T2

h̄

)− 1
2+i z2

4h̄
√

2πT2

h̄
exp

(
T2

h̄

)

=

√
π

Γ
(

1
2
+ i

z2

4h̄

)
(

T2

h̄

)i z2
4h̄

exp

(
T2

h̄

)

=

√
π

Γ
(

1
2
+ i

z2

4h̄

)
(

it 2

h̄

)i z2
4h̄

exp

(
it 2

h̄

)

=⇒ ψ1(t) = f1(t)exp

(
− it 2

2h̄

)
=

√
π

Γ
(

1
2
+ i

z2

4h̄

)
(

it 2

h̄

)i z2
4h̄

exp

(
it 2

2h̄

)

in the directions Argt = −π
4

or
3π
4

, and this is indeed a

dominant expression due to itsO

[
exp

(
T2

2

)]
growth.
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When t = Te−i 3π
4 or Tei π

4 , we must use the seriesg1
instead of f1 since the latter series would contain
alternating signs, butg1 now has similar signs throughout.
From (8), the general term ofg1 is :

d2nt
2n =

(−1)n

(2n)!

n−1

∏
ℓ=0

(
4iℓ
h̄

+
z2

h̄2

)
t2n

=
1

(2n)!

(
−4i

h̄

)n(
− iz2

4h̄

) Γ
(

n− i
z2

4h̄

)

Γ
(

1− i
z2

4h̄

) t2n .

Therefore :

g1(t) ≃ −
iz2

4h̄

x
−1−i z2

4h̄
0

√
2Γ
(

1− i
z2

4h̄

)
∫ +∞

0
exp

(
x−x logx+x log

T2

h̄

)
dx

= − iz2

4h̄

√
π

Γ
(

1− i
z2

4h̄

)
(

T2

h̄

)− 1
2−i z2

4h̄
exp

(
T2

h̄

)

= − iz2

4h̄

√
π

Γ
(

1− i
z2

4h̄

)
(
− it 2

h̄

)− 1
2−i z2

4h̄
exp

(
− it 2

h̄

)

=⇒ ψ1(t) = g1(t)exp

(
it 2

2h̄

)

=− iz2

4h̄

√
π

Γ
(

1− i
z2

4h̄

)
(
− it 2

h̄

)− 1
2−i z2

4h̄
exp

(
− it 2

2h̄

)

in the directions Argt = −3π
4

or
π
4

. The Stokes constants

may now be calculated.

4.3 Stokes constants and transition probabilities

We have obtained the following asymptotic expressions :

• for Argt =− 3π
4

:

ψ1(t) =−
iz2

4h̄

√
π

Γ
(

1− i
z2

4h̄

) 1
t

(
− i

h̄

)− 1
2−i z2

4h̄
t−i z2

2h̄ exp

(
− it 2

2h̄

)

• for Argt =− π
4

:

ψ1(t) =

√
π

Γ
(

1
2
+ i

z2

4h̄

)
(

i
h̄

)i z2
4h̄

t i z2
2h̄ exp

(
it 2

2h̄

)

• for Argt =
π
4

:

ψ1(t) =−
iz2

4h̄

√
π

Γ
(

1− i
z2

4h̄

) 1
t

(
− i

h̄

)− 1
2−i z2

4h̄
t−i z2

2h̄ exp

(
− it 2

2h̄

)

• for Argt =
3π
4

:

ψ1(t) =

√
π

Γ
(

1
2
+ i

z2

4h̄

)
(

i
h̄

)i z2
4h̄

t i z2
2h̄ exp

(
it 2

2h̄

)
.

Suppose that we are interested in the computation of the
Stokes multiplier on a Stokes line at Argt = θ . If CS(θ )
denotes the associated Stokes constant, we have :

subdominant coefficient atθ+

= subdominant coefficient atθ−

+CS(θ ) dominant coefficient atθ . (10)

In our case, that can be exactly reformulated in terms of
dominant coefficients as :

dominant coefficient at
(

θ +
π
2

)−

= dominant coefficient at
(

θ − π
2

)+

+CS(θ ) dominant coefficient atθ ,

yielding the formula :

CS(θ ) =
D
(

θ +
π
2

)
−D

(
θ − π

2

)

D(θ )

where the letterD stands as a shorcut for ”dominant
coefficient at”. Apply this formula to our situation :

CS

(
3π
4

)
=

D

(
5π
4

)
−D

( π
4

)

D

(
3π
4

)

=− iz2

4h̄

Γ

(
1
2
+ i

z2

4h̄

)

Γ

(
1− i

z2

4h̄

) 1
t

(
1
h̄

)− 1
2−i z2

2h̄

(
e
−i 5π

4

)−1−i z2
2h̄
−
(

e
−i π

4
)−1−i z2

2h̄

(
e
−i 3π

4

)i z2
2h̄

=

Γ

(
1
2
+ i

z2

4h̄

)

Γ

(
−i

z2

4h̄

) 1
t

(
1
h̄

)− 1
2−i z2

2h̄
e
i 5π

4 exp

(
− 5πz2

8h̄

)
−e

i π
4 exp

(
− πz2

8h̄

)

exp

(
3πz2

8h̄

)

=− 2ie
i π

4

π
sinh

πz2

4h̄
Γ

(
1
2
+ i

z2

4h̄

)
Γ

(
1+ i

z2

4h̄

)(
1
h̄

)− 1
2−i z2

2h̄ 1
t

cosh
πz2

4h̄
exp

(
− 3πz2

4h̄

)

by using the reflection relationΓ (ζ )Γ (1− ζ ) =
π

sinπζ
.

Further simplifications occur if we use the duplication

formulaΓ (ζ )Γ
(

1
2
+ ζ
)
=

√
πΓ (2ζ )
22ζ−1

, yielding :

CS

(
3π
4

)
=−iei π

4

√
h̄
π

sinh
πz2

2h̄
Γ
(

1+ i
z2

2h̄

)(
h̄
2

)i z2
2h̄ 1

t
exp

(
− 3πz2

4h̄

)
.

Thus, by applying Rule 1 of [10] :

bStokes(z) =

(
−2

z

)
CS

(
3π
4

)
eW

=
2i
z

ei π
4

√
h̄
π

(
h̄
2

)i z2

2h̄

Γ
(

1+ i
z2

2h̄

)
exp

(
−πz2

4h̄

)
sinh

πz2

2h̄
,

(11)

in plain agreement with the Landau-Zener formula.
Subsequently, the transition probabilities are intrinsically
related to the continuation of the WKB approximations of
(5), bringing into play connection formulae and Stokes
constants - or equivalently Stokes matrices.
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5 The SDE alternative whenz≫ h̄

In this section, we intent to recover an approximation of
(11) in the SDE context :

h̄2 d2φ
dt2

+(t2+ z2)φ = 0 . (12)

Placing φ(t) = f (t)exp

(
− it 2

2h̄

)
, one obtains the linear

differential equation :

f ′′− 2it
h̄

f ′−
(

i
h̄
− z2

h̄2

)
f = 0 .

Expand f (t) = tν
+∞

∑
k=0

ckt
k, with the normalizationc0 = 1.

Then :

∀k> 1, c2k =
1

(ν +2k)2k

k

∏
ℓ=1

[
i(2ν +4ℓ−3)

h̄
− z2

h̄2

]
.

Likewise :

∀k> 1, d2k =
(−1)k

(ν +2k)2k

k

∏
ℓ=1

[
i(2ν +4ℓ−3)

h̄
+

z2

h̄2

]
,

by observing that the coefficientsdk can be readily
obtained fromck by complex conjugation.

5.1 Dominant exponential solutions in the
kπ
4

directions

Chooseν = 0. Let us now determine the asymptotic
expressions on each Stokes line for

φ(t) = f1(t)exp

(
− it 2

2h̄

)
= g1(t)exp

(
it 2

2h̄

)
. When

t = Te−i π
4 or Tei 3π

4 , the general termc2nT2n is :

c2nT2n =

(
4
h̄

)n Γ
(

n+
1
4
+ i

z2

4h̄

)

Γ
(

1
4
+ i

z2

4h̄

) T2n

(2n)!

≃
(

1
h̄

)n n−
3
4+i z2

4h̄

√
2Γ
(

1
4
+ i

z2

4h̄

)
(e

n

)n
T2n .

So :

f1(t) =

√
π

Γ
(

1
4
+ i

z2

4h̄

)
(

i
h̄

)− 1
4+i z2

4h̄ t i z2
2h̄
√

t
exp

(
it 2

h̄

)

=⇒ φ(t) =
√

π

Γ
(

1
4
+ i

z2

4h̄

)
(

i
h̄

)− 1
4+i z2

4h̄ t i z2
2h̄
√

t
exp

(
it 2

2h̄

)

for Argt =−π
4

or
3π
4

. Whent = Te−i 3π
4 or Tei π

4 , we must

use the seriesg1 instead off1. We can expect that :

φ(t) =
√

π

Γ
(

1
4
− i

z2

4h̄

)
(
− i

h̄

)− 1
4−i z2

4h̄ t−i z2
2h̄
√

t
exp

(
− it 2

2h̄

)

for Argt =−3π
4

or
π
4

.

5.2 Stokes constants

CS

(
3π
4

)
=

(
1
h̄

)−i z2
2h̄

Γ
(

1
4
+ i

z2

4h̄

)

Γ
(

1
4
− i

z2

4h̄

)

(
e−i 5π

4

)− 1
2−i z2

2h̄ −
(

e−i π
4

)− 1
2−i z2

2h̄

(
e−i 3π

4

)− 1
2+i z2

2h̄

=

(
1
h̄

)−i z2
2h̄

Γ
(

1
4
+ i

z2

4h̄

)

Γ
(

1
4
− i

z2

4h̄

)
ei 5π

8 exp

(
− 5πz2

8h̄

)
−ei π

8 exp

(
− πz2

8h̄

)

ei 3π
8 exp

(
3πz2

8h̄

)

=

(
1
h̄

)−i z2
2h̄

Γ
(

1
4
+ i

z2

4h̄

)

Γ
(

1
4
− i

z2

4h̄

)2i sin

(
π
4
+ i

πz2

4h̄

)
exp

(
− 3πz2

4h̄

)

=

(
1
h̄

)−i z2
2h̄ 2iπ

Γ
(

1
4
− i

z2

4h̄

)
Γ
(

3
4
− i

z2

4h̄

) exp

(
− 3πz2

4h̄

)
.

This last expression can be simplified into :

CS

(
3π
4

)
= i

(
h̄
2

)i z2
2h̄

√
2π

Γ
(

1
2
− i

z2

2h̄

) exp

(
− 3πz2

4h̄

)
,

which is exactly the result in [9].

6 Revisiting Landau-Zener, part 2 : when
0< z≪ h̄

By computing the Stokes constants, we are also able to
recover the correct behaviour of the scattering matrixS(z)
asz→ 0. More precisely, we have :

Proposition 1.Let us consider the vector-valued
differential equation :

h̄
i

dψ(t)
dt

= [Re(t + iz)σ3+ Im(t + iz)σ1]ψ(t)

being the Landau-Zener problem. When0< z≪ h̄, the S-
matrix is given by :

S(z) ∼
0+




exp

(
−πz2

2h̄

)
−ize−i π

4

√
π
h̄

cosh
πz2

2h̄

−izei π
4

√
π
h̄

cosh
πz2

2h̄
exp

(
−πz2

2h̄

)




= exp

(
− πz2

2bar

)
12− iz

√
π

2bar
(σ1+σ2)cosh

πz2

2bar
.
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Fig. 2: Stokes structure for 2 simple turning points.

This expression holds continuously as z→ 0, yielding :

lim
z→0

S(z) = 12 (13)

and
dS
dz

(0) =−i(σ1+σ2)

√
π
2h̄

. (14)

These transition probabilities can not be valid outside a
small neighbourhood of 0, since

∀z ∈ R+, a2(z) + |b(z)|2 = 1, and the factorzcosh
πz2

2h̄
shall blow quickly.

6.1 Stokes diagram

The pulsationQ(t,z) = t2+z2− ih̄appears to be a complex
number fort ∈ R. This differential equation displays two
turning points that are still first-order zeroes :

t ≃±ei π
4 h̄1/2

(
1+ i

z2

2h̄

)

sincez≪ h̄.
As previously, the asymptotic directions of the Stokes lines

are given by(2k+1)
π
4

. Using the Stokes lines as guides,

the remaining elements of the diagram are easily deduced
from the properties of the Stokes geometry. Continuation
through the upper half-plane gives :

1.start on the positive real axis with the subdominant
solution :(t2, t)s

2.crossing a Stokes line :(t2, t)s
3.crossing an anti-Stokes line :(t2, t)d
4.stepping on a Stokes line, using half the Stokes

constant :(t2, t)d +
CS

2
(t, t2)s

reconnecting while on the linet2 to t1 on the left of the

cut :e−i π
2 [t2, t1]ℓ(t1, t)d +

CS

2
(t, t1)s[t1, t2]ℓe

i π
2

5.stepping off the Stokes line :

e−i π
2 [t2, t1]ℓ(t1, t)d +(t, t1)s

{
CS

2
[t1, t2]ℓe

i π
2 +

CS

2
e−i π

2 [t2, t1]ℓ

}

6.crossing an anti-Stokes line :

e−i π
2 [t2, t1]ℓ(t1, t)s+

CS

2
ei π

2 {[t1, t2]ℓ− [t2, t1]ℓ}(t, t1)d

passing the cut in a counterclockwise sense :

e−i π
2 [t2, t1]ℓ(−t, t1)s+

CS

2
ei π

2 {[t1, t2]ℓ− [t2, t1]ℓ}(t1,−t)d

where CS is the Stokes constant associated with the
turning point at t2 ≃ ei π

4 h̄1/2 and the direction

Argt =
3π
4

. The (left) action between the singularities,

oriented from t1 = ei 5π
4 h̄1/2

(
1+ i

z2

2h̄

)
to

t2 = ei π
4 h̄1/2

(
1+ i

z2

2h̄

)
, equals to :

W =− i
h̄

∫ t2

t1
Q(t)1/2dt =− i

h̄

∫ t2

t1
(t2− ih̄+ z2)1/2dt .

Parametrizet = ei π
4 h̄1/2

(
1+ i

z2

2h̄

)
sinθ . Then :

W ≃−i

(
1+ i

z2

2h̄

)2∫ π
2

− π
2

√
1− sin2 θ cosθdθ

≃−i

(
1+ i

z2

h̄

)
π
2
=− iπ

2
+

πz2

2h̄

which proves to be almost an imaginary number. It is
reassuring, since the reconnection path between the
turning points is indeed an anti-Stokes line. Thus the

factor [t1, t2]ℓ is equal toeW = −i exp

(
πz2

2h̄

)
. One might

be surprised at first by the extrai in e−W. Yet sinceh̄ is no

longer negligible, the previous phase factort±i z2
2h̄ before

exp

(
± it 2

2h̄

)
is now replaced byt±1/2. An±i factor arises

naturally, due to the square root presence. Besides, it
should be incorporated into the principal parts i.e. in
(t1, t)• and(t, t1)•, and not taken into account during the
continuation process. That explains the factorse∓i π

2 to
compensate. Hence :

e−i π
2 e−W(−t, t1)s+

CS

2
ei π

2

(
eW−e−W

)
(t1,−t)d ! (t2, t)s

(15)
asymptotically speaking.
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6.2 Dominant exponential solutions in the
kπ
4

directions

In Section 3, we have obtained the coefficientsc2n
(respectivelyd2n) in terms of the Gamma function. If we
conduct the computations with these exact expressions

until the Stokes constantCS

(
3π
4

)
, an excellent match is

expected. But we will not gain any knowledge of the
potential discrepancy. So let us do it the pedestrian way
i.e. by keeping only one error term in (7) and (8). We
beforehand recall the following result :

Lemma 2.For any n∈ N∗ :

n

∑
ℓ=0

1
ℓ
= logn+ γ +O

(
1
n

)

as well as
n−1

∑
ℓ=0

1
2ℓ+1

= log2+
1
2
(logn+ γ)+O

(
1
n

)

whereγ is the Euler-Mascheroni constant.

Recall the expression (7) of the coefficientsc2k. Since we
assume thatz≪ h̄, the general term off1 is :

c2nt
2n =

1
(2n)!

n−1

∏
ℓ=0

[
2i(2ℓ+1)

h̄
− z2

h̄2

]
t2n

≃ 1
(2n)!

[(
2i
h̄

)n n−1

∏
ℓ=0

(2ℓ+1)−
(

2i
h̄

)n−1 z2

h̄2

n−1

∏
ℓ=0

(2ℓ+1)

(
1+

1
3
+ . . .+

1
2n−1

)]
t2n

by neglecting terms of higher order inz2. Since
n−1

∏
ℓ=0

(2ℓ+1) =
(2n)!
2nn!

, we get :

c2nt
2n ≃ 1

2nn!

(
2i
h̄

)n{
1− z2

2ih̄

[
log2+

1
2
(logn+ γ)

]}
t2n

=
1
n!

(
i
h̄

)n{
1+ i

z2

2h̄

[
log2+

1
2
(logn+ γ)

]}
t2n .

Approximating a series by an integral :

f1(t)≃ 1+
∫ +∞

1

1
x!

(
i

h̄

)x{
1+ i

z2

2h̄

[
log2+

1
2
(logx+ γ)

]}
t2xdx

≃ 1+
∫ +∞

1

1√
2πx

( e
x

)x
(

i
h̄

)x{
1+ i

z2

2h̄

[
log2+

1
2
(logx+ γ)

]}
t2xdx

≃ 1+
∫ +∞

1

1√
2πx

( e
x

)x
(

i
h̄

)x(
1+ i

z2

4h̄
logx

)
t2xdx ,

by removing all the small constantsγ < log2≪ 1
2

logn as

soon asn> 4. With the coefficientsd2k in (8), the general
term ofg1 becomes :

d2nt
2n =

(−1)n

(2n)!
z2

h̄2

n−1

∏
ℓ=1

[
2i(2ℓ)

h̄
+

z2

h̄2

]
t2n

≃ (−1)n

(2n)!
z2

h̄2

(
2i
h̄

)n−1

2n−1(n−1)!

[
1− i

z2

2h̄

(
1
2
+

1
4
+ . . .+

1
2n−2

)]
t2n

=
(−1)n

4in
n!

(2n)!
z2

h̄

(
4i
h̄

)n{
1− i

z2

4h̄
[log(n−1)+ γ)]

}
t2n .

Approximating a series by an integral :

g1(t)≃ 1+
z2

h̄

∫ +∞

1

(−1)x

4ix
x!

(2x)!

(
4i
h̄

)x{
1− i

z2

4h̄2 [log(x−1)+ γ)]
}

t2xdx

≃ 1− i
z2

4h̄

∫ +∞

1

(−1)x

x

x!
(2x)!

(
4i

h̄

)x(
1− i

z2

4h̄
logx

)
t2xdx

≃ 1− i
z2

4h̄

∫ +∞

1

(−i)x

x

√
2πx√
4πx

( e
4x

)x
(

4
h̄

)x(
1− i

z2

4h̄
logx

)
t2xdx

= 1− i
z2

4
√

2h̄

∫ +∞

1

1
x

(
− i

h̄

)x( e
x

)x
(

1− i
z2

4h̄
logx

)
t2xdx .

In the directions Argt =−π
4

or
3π
4

, we shall use the series

defining f1. Sett = Te−i π
4 or Tei 3π

4 :

∫ +∞

1

1√
2πx

(e
x

)x
(

i
h̄

)x(
1+ i

z2

4h̄
logx

)
t2xdx

=

∫ +∞

1

1√
2πx

(e
x

)x
(

1+ i
z2

4h̄
logx

)(
T2

h̄

)x

dx

≃ 1√
2πx0

(
1+ i

z2

4h̄
logx0

)∫ +∞

1
exp

(
x+xlog

T2

h̄
−xlogx

)
dx

wherex0 =
T2

h̄
. Therefore, we have :

f1(t)≃
(

1+ i
z2

4h̄
log

T2

h̄

)
exp

(
T2

h̄

)

sinceT is large. In other words, the very first summands
of both power series off or g can clearly be neglected.
Moreover, we obtain the dominant solutions :

ψ1(t) =

(
1+ i

z2

4h̄
log

T2

h̄

)
t1/2exp

(
T2

2h̄

)
.

So whent = Tei 3π
4 :

ψ1(t) =

(
1+ i

z2

4h̄
log

e−i 3π
2 t2

h̄

)
t1/2exp

(
it 2

2h̄

)

=

(
1+

3πz2

8h̄
+ i

z2

4h̄
log

t2

h̄

)
t1/2exp

(
it 2

2h̄

)
.

In the directions Argt =−3π
4

or
π
4

, we shall use the series

definingg1 (without the annoying 1) :

−i
z2

4
√

2h̄

∫ +∞

1

(−i)x

x

( e
h̄x

)x
(

1− i
z2

4h̄
logx

)
t2xdx

≃−i
z2

4
√

2h̄

1
x0

(
1− i

z2

4h̄
logx0

)∫ +∞

1
exp

(
x+xlog

T2

h̄
−xlogx

)
dx

=−i

√
πz2

4h̄

√
h̄

T2

(
1− i

z2

4h̄
log

T2

h̄

)
exp

(
T2

h̄

)

=−i
z2

4

√
π
h̄

(
1− i

z2

4h̄
log

T2

h̄

)
1
T

exp

(
T2

h̄

)
.

And the dominant solutions look like :

ψ1(t) =−i
z2

4

√
π
h̄

(
1− i

z2

4h̄
log

T2

h̄

)
t−1/2

T
exp

(
T2

2h̄

)
.
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6.3 Stokes constants and transition probabilities

Therefore, we have asymptotically :

• for Argt =
π
4

:

ψ1(t) =−i
z2

4

√
π
h̄

(
1− πz2

8h̄
− i

z2

4h̄
log

t2

h̄

)
ei π

4

t3/2
exp

(
− it 2

2h̄

)

• for Argt =
3π
4

:

ψ1(t) =

(
1+

3πz2

8h̄
+ i

z2

4h̄
log

t2

h̄

)
t1/2exp

(
it 2

2h̄

)

• for Argt =
5π
4

:

ψ1(t) =−i
z2

4

√
π
h̄

(
1− 5πz2

8h̄
− i

z2

4h̄
log

t2

h̄

)
ei 5π

4

t3/2
exp

(
− it 2

2h̄

)
.

With z→ 0 but fixed, it existsT such that
z2

h̄
log

T2

h̄
≫ 1.

Henceforth :

• for Argt =
π
4

:

ψ1(t) =−
z4

16h̄

√
π
h̄

log

(
t2

h̄

)
ei π

4

t3/2
exp

(
− it 2

2h̄

)

• for Argt =
3π
4

:

ψ1(t) = i
z2

4h̄
log

(
t2

h̄

)
t1/2exp

(
it 2

2h̄

)

• for Argt =
5π
4

:

ψ1(t) =−
z4

16h̄

√
π
h̄

log

(
t2

h̄

)
ei 5π

4

t3/2
exp

(
− it 2

2h̄

)
.

Let us compute the Stokes constant at
3π
4

:

C̃S

(
3π
4

)
≃ iz2

4t

√
π
h̄

(
ei 5π

4 −ei π
4

)
=− iz2

2t
ei π

4

√
π
h̄
.

From the Stokes geometry, we know that at−∞, we need
a mixed state such that :

ψ1(−t) = e−i π
2 e−W(−t, t1)s+

1
2

C̃S

(
3π
4

)
ei π

2
(
eW−e−W

)
(t1,−t)d

= exp
(
− πz2

2h̄

)
(−t, t1)s−

iz2

2t
ei π

4

√
π
h̄

cosh
πz2

2h̄
(t1,−t)d

sinceeW =−i exp

(
πz2

2h̄

)
. By applying Rule 1 of [10], the

S-matrix coefficients are given by :





a(z) = exp

(
−πz2

2h̄

)

b̃(z) =
2
z

iz2

2
ei π

4

√
π
h̄

cosh
πz2

2h̄
= iz

√
π
h̄

ei π
4 cosh

πz2

2h̄

.

Fig. 3: An approximation in the series’ coefficients affects the
Stokes constant and gives birth to a discrepancy of|b(z)|. For
comparison, the theoretical behaviour is plotted in dotted.

Consequently :

db̃
dz

= i

√
π
h̄

ei π
4

(
cosh

πz2

2h̄
+

πz2

h̄
sinh

πz2

2h̄

)

and
dS
dz

(0) =

(
0 −ie−i π

4

−iei π
4 0

)√
π
h̄
=−i

(
0 1− i

1+ i 0

)√
π
2h̄

.

Compare with the result of [8] :
dS
dz

(0) =−i(σ1+σ2)

√
π
2h̄

!

Defineµ1 =
z2

h̄
. Graphically for|b(z)|, our valuẽCS gives

a pretty nice approximation as long asz. 0,15h̄1/2.
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