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1 Introduction instance - as well as the multiple references therein. For
an in-depth comprehension and beyond, the interested

In complex analysis, the Stokes phenomenon (namedeader should confer to the various works of Robert B.

after George G. Stokes who discovered it in 1847-1858)Dingle [4], John Heading4], and Michael V. Berry 2],

is that the asymptotic behaviour of functions can differ in [3].

different regions of the complex plane. When

second-order linear ordinary differential equations : We focus on the Landau-Zener model (se# for
notations). This paper is divided into five parts :

2
ﬁzd_ngQ(x)y:o Q) eas usual, Sectio2 concerns some generalities and

dx definitions,
where Q(x) is an irreducible rational function, are ein Section3, from the Schrodinger equation for the

considered, the principal parts of the formal solutions are ~Wavé component ¢, we extract two series
representations that will be crucially required in both

of the form : X
Sectionst and6, . _ .
1 i X 12 eby only assuming > hin Sectiord, we shall exhibit a
y(x,h) ~ 71/49XP<iﬁ/ Q(s) dS) geometrical technique to derive the two Landau-Zener
Q) transition probabilities :
which are called WKB approximations. The regions or 2
domains in which the WKB approximations of)(are aLZ@:eX”(’ﬁ) .
lid determined by th -called phase-int I i i :
valid are determined by the so-called phase-integra bLz(Z>=%éZ\/§<g> mr<1+i2§ﬁ>exp<7%>smh%
"X
1/2
S(xt) = ~/X0 Q(s)"?ds () due to the continuation of the WKB approximations
through the Stokes diagram, namely once the
wherexg is any of the turning points oflj. Since we singularities, the actioW and the Stokes constant

i imati 3t A .
must consider two WKB approximations on two sheets of Cs( 2 are known : while in Sectio, we show
complex planes, it is sufficient for our purpose to choose 4
one of the two square roots of the integrand of the integral  the efficiency of the SDE in the diabatic limit too,

(2). Canonical regions around the turning poigt are eregardless to the accurate expressions of Seetjon
bounded by the level lines Kéx,t) = 0 (Stokes lines) the adiabatic limit O< z < h'is naively carried out in
and Imé (x,t) = 0 (anti-Stokes lines). More details about Section 6, leading thus to a discrepancy that is
the Stokes phenomenon can be foundlif [6] or [7] for examined.
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For the Smatrix, we shall make straightforward use of often too cumbersome to solve by standard exact
several rules derived in the end dfd]. Note that all the  methods. The physical problem is initially defined on the
results are remarkably consistent wif).( real axis. However, the differential equation is
analytically prolonged into the complex plane.
By analogy with physics, we shall call the functi@tx)
2 The Stokes geometry in (1) the pulsation of the system (or equivalently, its
frequence). This quantity is actually related to the
refractive index of a medium. The asymptotic theory of
(1) has been divided into two cases, depending on
whether or notQ(x) has isolated zeroes or singularities
. , . .. (namely poles). IfQ(x) does not vanish thenl) falls
The problem is that the approximate solutions exist in\yitin the scope of a systematic theory. HoweveQik)
disconnected domains of the real axis, and they must b ;< isolated zeroes or singularities,  individual

connected across the intervening domains where they AR presentatives ofl] become peculiar. Such special cases
not valid. For instance, the presence of the factor are called "turning point” problems, and the zeroes or

(before the functionse™»() in [10) prevents the singularities ofQ(x) are called "turning points”.
prolongation of the approximate solutions through the
origin. Analytic continuation inC provides the means of
connection. But although the exact solution to the
differential equation may be analytic and thus valid
everywhere, the approximate solutions are not and hav
very different properties from the exact solution,
including the existence of cuts.

George Gabriel Stokes was the first to deal with the
asymptotic approximations of the Airy equation, realizing
in 1857 that discontinuities in the form of the asymptotic
representation existed at the so-called Stokes lines, even

though the functions themselves are continuous. Lord

Rayleigh considered such approximate solutions in 1912Pefinition 1.A point % is called an ordinary point if all
but he did not succeed in making the connection acroséhe R(x) are analytic at this point, naturally considered
the gap. More systematic approaches to matching th&s functions of the complex variable x.

solutions were obtained by Gregor Wentzel, Hans
Kramers and Léon Brillouin in 1926, when the interest
was primarily in obtaining solutions to bound state
problems in quantum mechanics.

The theory was finally put in form by Harold Jeffreys and
John Heading in 1962. It offers a very powerful means of Definition 2.A point % is called a regular singular point
obtaining reasonably good approximate solutions toif the functiongx— xg)"Po, (X—Xo)" P, ..., (X—Xo)Ph_1
differential equations, and is often used in are analytic at ¥.

electromagnetism, quantum mechanics, and othe . . . . .
disciplinesg g ‘f a pointXg is neither an ordinary nor a regular singular

point, it is called an irregular (or essential) singularrmioi

In this case, there is no convergent series representdtion o
. . the solution around this point. Then the solutibix) has

2.2 Asymptotic solutions an essential singularity at this point, meaning that neithe

2.1 Generalities about the WKB analysis

2.3 Classification of singularities

?Fuchs) Differential equations are classified according to
their singularity structure. Let us consider theh order
linear differential equation :

Lf =™ 4P 100 f Y 4 4 R(x)f =0.

In this case, the solutions of the differential equation
possess Taylor series which converge within a disk with
radius at least as large as the distance to the nearest
singularity of theR,.

. o1 . .
lim f nor lim = exists. The Picard theorem states that in
X0 x—xg f

) ) . X—
Joseph Liouville and George Green may be said to haveiny neighbourhoodz,, of an essential singularityf
founded the method in 1837, and it is also commonlytakes on every complex value, except possibly one.
referred to as the Liouville-Green method. The importantnevertheless, it is often possible to find local asymptotic

contribution of Harold Jeffreys, Gregor Wentzel, Hans series which approach the solution to within some small
Kramers and Léon Brillouin to the method was the grror and thereafter diverge.

inclusion of the treatment of turning points, connecting

the evanescent and oscillatory solutions at either side oPéfinition 3(Darboux principle). One may derive an
the turning point. asymptotic expansion in degree j for the coefficientsfa
The power and simplicity of phase-integral methods fora series solely from knowledge of the singularities of the
the approximate solution of differential equations makefunction f(x) that the series represents. This principle
them a common tool in physics, when the equations arépplies to any power series and divergent power series.
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Definition 4.Turning points (or equivalently, transition 2.4 Connection formulae
points) are certain exceptional values of x for analytic
differential systems of the typ#)(

. . ; ; In a domain far from any zero or singularity Qi(x), the
Stated differently : in a neighbourhood of such points, theSolution to the differential equation in  WKB

functional character of the solution undergoes substantia

metamorphosis. At a transition point : approximation is simply given by the eikonal
) . ) ) , representatiord.
trigonometric solutions— f(x) — exponential solutions (Jeffreys, Heading) Denote b)j( a generic point inC.

Begin with a particular solution in one region of the
complex plane, choosing that combination of
subdominant and dominant solutions which gives the
desired boundary conditions in this region. The global
solution is obtained by continuing this solution through
the whole complex plane, effecting the following changes:

neutral behavious functional character~ subdominant or dominant behaviaur

(Poincaré) Provided th:%ti dQ

oz dx < 1, and setting :

1 [ a1/2
V4% = Gpora exp(j:ﬁ/ Qs) ds) ,
eupon crossing a cut in a counterclockwise sense, the

a general solution ofl) can then be approximated by a cut originating for a first-order zero @ at the poin@a:
linear combination y(x) = ciyi(X) + c_y_(X).

Unfortunately, the approximate solutiops are local, not (a,x)e — —i(x,a)
global solutions, and clearly not valid in the vicinity of a e e
zero of Q(x). The phase-integral method consists in (X, @)e — —i(a;X)s ,

relating for a given solution of 1), the WKB

approximation in one region of the complex plane to that  and the property of dominancy or subdominancy is
in another. These (canonical) regions are separated by the preserved in the process

Stokes and anti-Stokes lines associated v@ilx) - or eupon crossing an anti-Stokes line, subdominant
more generally by these level surfaces of codimension 1  splutions become dominant, and vice versa

when one works irC". Thus the qualitative properties of  eupon crossing a Stokes line in a counterclockwise
the solution are determined once these lines are known. sense, the coefficiemts of the subdominant term of a

_— . . . solution must be replaced Csay, whereCs is
Definition 5.The Stokes (respectively anti-Stokes) lines  .-iad the Stokes copnstanthys+ st Cs

assoua-ted o ) are paths n .the complex plane, ereconnect from singularity to singularityb, using :
emanating from zeroes or singularities a&f Q(x), along

which/ Q(s)Y/?ds is imaginary (respectively real). (%a)s = (% b)u[b,a]
X0 9 o — ] L] 9

Along the anti-Stokes lines, the functiogs are, within A
the validity of the WKB approximation, of constant with [b,a) = exp '_/ Q(s)l/zds _If aandb are
amplitude i.e. oscillatory : they are said neutral and that i hJo
why the subscriptss or d are sometimes dropped.
Similarly along the Stokes lines, the WKB solutions are
exponentially increasing or decreasing with fixed phase.
The global anti-Stokes and Stokes lines which are
attached to the singularities of the differential equation Using the so-called connection formulae, we can pass
the Stokes diagram, along with the Riemann cut linesfrom region to region across the cuts, anti-Stokes and
determine the global properties of the WKB solutions.  Stokes lines emanating from a turning point. Beginning
In the notation of Heading, a local WKB approximate with any combination of dominant and subdominant
solution is denoted by : WKB solutions in one region, this process leads to a
globally defined single-valued approximate solution of
1 i 12 (1). At a Stokes line in the presence of a dominant
(8,%)s = WeXp<ﬁ/a Q9" ds) ’ (4) solution, the apparent "discontinuity” produced is small
in comparison to the error due to the WKB approximation
where the subscrip (or d) indicates that the solution is itself. As one continues further away from the Stokes line,
subdominant (or dominant), i.e. exponentially decreasinchowever, the subdominant term will begin to be
(or increasing) for increasinigx— a| in a particular region  important, and the modified coefficient is the correct one.
of the x plane, bounded by Stokes and anti-Stokes linesNote that a Stokes structure consisting of multiple
The two independent local WKB approximate solutions of singularities is more complicated, in the sense that the
(1) are given by(a,x)s and (x,a)q. Of course when one Stokes constants tied to a turning point are modified by
function is dominant, then the other one is subdominant. the proximity of the other singularities.

joined by a Stokes line, reconnect while on the line,
using /2 the usual Stokes constant to step on the
line, again ¥2 to step off.
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3 Construction of the asymptotic series for coefficients vanish as; can be arbitrary set to 0. For the
the Landau-Zener problem order 2k — 1), from the recurrence relation :
- - - 2 2iv+2k-1)+1
From [8], we know that the second-order linear ODE : (v + 2K)2Cax + {_2 2] (ﬁ ) ]] S
d
W1+(t2+22 iny.=0 ®)  wethus get:
is a partial reformulation of the Landau-Zener model. > 1 ¢, — 1 {Zi [v+2k-1)+1 _é} 02
2 | “2(k-1)

Solutions of B) have an essential singularity at infinity. (v+2Kk)2 h h
The WKB approximations of) involve two exponentials 1 k1 {Zi(v +20+1) 22} @

it2 = _c
exp i;—ﬁ , both affected by the Stokes phenomenon. (v +2K)! J:!y h R

At some point, we might need to determine the StokesThus, the general power series solution is :

3
constant in the direction Atg= —. After extracting the +o k=179
i irecti 9= xtracting - al1+5 1 {2|(2€+1) zz}tz(
it? & (20! L h R

asymptotic behavioury (t) = f(t)exp R ) we are

. . . . fa(t)
looking for a power series representation of the function '

b e K o 2
f. By Liebniz formula : 1 {2'(213) } 2%
+B<1+kz1 K1) J]l R t |t

2y, [, 2t i 2 it — ‘
ST Chre) (- zﬁ) o

and g (t,2) = [Afy(t) + Bfa(t )]exp( gﬁ)

Inserting this expression int®), we get :

2 9 as a linear combination of two independent functions. On
f_ Ff/ <ﬁ2 ﬁ) f—0. the other hagd, if we make the2 substitution
Y= g(t)exp<£> instead off (t)exp(—£> in (5) :
For convenience, we shall make an extensive use of the 2h 2h
(decreasing) Pochhammer symipo), defined by :

g//_’_ﬂg/_’_ég_o
VneN, (X)m =X(x—1)...(x—n+1) h~ R '
_ /_(X+ 1) 6 —+00
T T(x—=n+1)’ 6) Putg(t) =t¥ %dktkwith do = 1, and we obtain :
k=
with the convention (X)) = 1. Since there is no 1t 2 %
misunderstanding possible throughout this paper, we will z (v +K) 20tk + ﬁ Z (v + K)otk + Z Atk =
denote it simply byx, in order to lighten notations. This k=0 * &
) . . ) o

falling sequential product is sometimes called the iz 2 (v K)okt ZJ{ (v+Kk) rz;} At —
descending factorial. Now write f(t) =tV z atk, k=0
yielding : As beforev € {0,1}. And in the same way, we get :

+oo oo (—Dk iraiv4+20) 2

- - k>1 dx= +=|. (8)

)=ty (v+kjad, () =tV 2§ (v+k)ad". k1 dac= 7 h R2

b3 b3 vzl
The second-order ODE definirfghecomes : So the general power series solution is now :

2, S A2 | 2 A
tjézv+kzcktk*ﬁzv+kcktk ( )zcktk g()—A<l 2ﬁ2t+g ﬁzﬂ{ & +ﬁ2:|t>
+o0 91(t)
<:>tlz Z)(v+kzcktk+zj{ W]qtkzo.

(-1k K1r2i20+1) 2
@1 | [ +*]t2k>t

™Mz

h A2

+B<l+
The indicial equation gives the necessary condition
v(v—1)=0. That impliesv € {0,1}. When choosing 2
v = 0, a quick inspection shows that every odd indexand ¢s(t,2) :[Agl<t)+Bgz<t)]exp(2—ﬁ>

92(t)
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+o0
The seriesz ct“tV is an example of asymptotic series.

K=0
This definition includes the cases of series which
converge, either for all or for a restricted range df but

normally when one refers to an asymptotic series, it is
understood that the series in question is divergent. The

study of asymptotic series was first made by Henri
+00

Poincaré. A seriesy anx" is said to be asymptotic to a
n=|

+0o
function f(x) atx =0, or f(x) " zoanx”, if for x — 0,
n=
we have :

N
f(x) — Zjanxn <xN forallN.
n=

If an asymptotic expansion of a functidrexists, then the

coefficientsa, are unique, and given by the limiting it —— anti Stokes
procedure : 1 -~~~ Stokes lines
ag=Ilimf(x) , a;=Iim m , eftc. Fig. 1: Stokes structure for 2 simple turning points on the
x—=0 x=0 X imaginary axis.

The converse is false : indeed f@x), one can add any
function which decreases faster than any powerxof

without changing the asymptotic expansion. The class o%erpes close ta-iz. Hence the resulting diagram (where
defined as the sum of the asymptotic series. In the Stokes diagram, we deliberately begin with a

Remark 1If the series diverges, this can be an indication SUbdominant solution so that the solution is small and
that the function is not analytic at the point of the c&nnotcontain any dominant part due to the approximate
expansion, and not that the function is infinite or nature of the WKB solution. Continuation through the
otherwise ill-defined. upper half-plane gives :

1.start on the positive real axis with the subdominant
solution :(iz,t)s

2.crossing a Stokes lin€iz, t)s

3.crossing an anti-Stokes lingiz, t)q

4 .crossing a Stokes lindiz,t)q + Cs(t,iz)s

5.crossing an anti-Stokes linéiz, t)s + Cs(t,iz)q4
reconnectingz to —iz on the left of the cut :
[i27 —iZ]g(—iZ,t)s—F CS(tv —iZ)d[—iZ, iz]€

A means of summing divergent series is the Borel
summation. This powerful technique often extends the
domain in which the sum "converges” beyond the normal
radius of convergence.

4 Revisiting Landau-Zener, part 1 : when

z>h 6.passing the cut in a counterclockwise sense :
[i27 —iZ]g(t, _iZ)S+ CS(_iZat)d[_iZa iz]€
In this section, we assume thatis small before the as reaching the negative axis, renanmgo —t :
coupling parametez. Recall 6) : liz,—iz](—t, —iz)s + Cs(—iz, —t)q[—iz, iz,
, a2y, , whereCs is the Stokes constant associated with the zero
bl i — . N 3 .
A +(t +Z Ny, =0. att, = iz and the direction Arg= _n. Subscriptg andr

dt?
There will be repercussions in the structure of the StokesStand for "left” and "right” of the cut. Let us compute the

diagram, and the actioV between the turning points. quantity:
i [z nz
W=—— [ Vi242dt=—
ﬁ[iz Tz 2h
which is called the (left) action from the turning point
t1 = —iz to t, = iz. Note thatW is proportional to the

Wallis integral I, = /i cog 0d6. The factor [—iz, iz,
2

4.1 Stokes diagram

Here sincez > h, the pulsationQ(t,z) =t?+ 2z —ihis
almost real and positive on the real axis, with two simple
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turns out to be equal teeV. Consequently, for a Letus now determine the asymptotic expressiong;obn

subdominant solution in domain 1 : the Stokes lines Arg— _g or Argt — 3771
dn(t) = (iz,t)s

. _ _ ~ Whent=Te 4 or T ¥ - with T real, large and positive
i.e. with the correction exg; (+«) = 1, we end up in  (in a sense, we might think Gf as-+), we have :
domain 6 with :

1 .7
(1) = eV (~iz,~t)s+ Cse" (~t, ~iz)q c eyt (”+ +'4ﬁ) T
ast — +. Take the reference point for the phase to be 1 = ,Zo(ﬁ> r <1+ é) (2n)!

T = 0. Formally divide both sides bz, 0|, then : 4n
_ 1,2
eW(0,~)s+Cse¥(-1,0)g  «~ (O,1)s  (9) N Zo( ) n_ it Vam (M) L (&)
sinceliz,0];[0, —iz], = 1. This may be the shortest proof <7 4 22) e/ Vam \2n
nz? 2 4h
ever ofa(z) = exp(—ﬁ). ey CHE e .
L (ﬁ)l_ 1 i22 ﬁ(ﬁ) '
27'%®

, . . .k
4.2 Dominant exponential solutions in tllﬂ(rf
directions
Lemma 1For a € C fixed. For xe C such thatRex > 0,

by using I (n+4 &) ~ n%(n) and the Stirling formula

2n
rn)~y/— - (e) We replace these discrete terms by a
continuous function, but since a complex index occurs

one has : for n, the summands are not wholly real. The factor
2 . . .
) = ia +0 (ﬁ) N2t is a slowly varying function, compared with the
rix+a) X x| other variable facfors. Hence :
as|x| — +oo. 1,2
— 5 +i
Proofltis essentially based on Watson's lemma. Start with 1, (t) ~ 2_211%22 I exp(x— xlogx+ xlog T_ﬁz) dx,
the Beta functlon deflned as: Vor ( +,_>
4h
B(x,a) = / - 1(1—1)" dt. , .
x+a with a constantxg € R, soon to be determined. The
function ofx.+Lett|ngt = e "yields: descent. So if we sgf(x) =x—xlogx+ xlog ., then :
B(x,a) = / e (1—e %) *du ,
0 T 1
!/ _ _ " _ =
2! xa

by only taking the first term in the expansion whend®e Thus¢’(x) = 0 whenxo = T_2 and :
. 1 R’ '

0, and thus the error is bounded byd ——=-- | term.
. , , X’ L N
Dividing both sides by (a) gives the desired result. B fu) = 7zz> (F R eXF’(F)

. fl'( +ige
From (7), the general term ofy is : 2
2\ 'an 2
et? — = rj_L [ZI (20+1) ﬁz} on = ’—<l\/jfﬁ> (%) 4 eXp( ﬁ)

_ 2" a " n }—I—E t2n t2 NG 2\ ' am it2
o (2n)! \ h 2 4h n = () = fl()exp< 2ﬁ> r<1+i§> (h‘) exp<zﬁ>
2 4R
. F<n+—+|—>
2 (2 n;‘m 2n in the directions Arg) = I or 3—”, and this is indeed a
() \ R 1 2\ 2 g
' i : : . T
r <2 +I4ﬁ) dominant expression due to @[exp<?)] growth.
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Whent = Te ' ¥ or Té4, we must use the serieg Suppose that we are interested in the computation of the
instead of f; since the latter series would contain Stokes multiplier on a Stokes line at Arg- 0. If Cg(0)
alternating signs, bug; now has similar signs throughout. denotes the associated Stokes constant, we have :

From @), the general term afs is :

o2 (—1)" 17410 A 2 subdominant coefficient &
= + . -
an (2n)! J_L< h ﬁz) = subdominant coefficient &~
r (n i 22> +Cs(0) dominant coefficient af .  (10)
_ 1 /74 _f 4h {2 In our case, that can be exactly reformulated in terms of
(2n)! h 4R 7 ' dominant coefficients as :
r _Iﬁ
dominant coefficient a<6 + I—T)
Therefore : 2 _—
. LiZ . ) = dominant coefficient af 6 — —)
oi(t) ~— iz Xoizz/ exp(x—xlogx+xlog%>dx . 2 .
s (1 75) 0 +Cgs(6) dominant coefficient aff ,
2 R (T2> 5 lmexp<—2> yielding the formula :
T 2\ \h R T I3
() . D(0+5)-D(0-3)
iz2 N it2\ “27'am it2 N D(e)
= |(-= expl ——
4ﬁr<17|4iﬁ> ( ﬁ> ( ﬁ> where the letterD stands as a shorcut for "dominant
/) coefficient at”. Apply this formula to our situation :
— w0 -a0en( ) () 20) =0
D
Y ( it2> ZHZﬁex( |t2> 4
4h Z\\ R PR 2 i 717i§2ﬁ L Y
F<17|4—ﬁ> :7ér<%+|fﬁ)}(}>727|%2? <e T) —(e Z) Wil
an (o)t
in the directions Argg= —— or Z The Stokes constants ( )
may now be calculated. r(taZ 2 T op -T2 dT e 2
eTw }(}>—%—|ﬁ s Pl
ez (%)
4.3 Stokes constants and transition probabilities ;ﬁsmhgﬁrGﬂgﬁ)r(mgﬁ)(%>—%—i§;wshgﬁexp(iﬁ)
m 4 2 4 4 t 4 4
. . . T
We have obtained the following asymptotic expressions : by using the reflection relatiof ({)I" (1-¢) = SN
o for Argt_f%n_ Further simplifications ocigr_ if(we) use the duplication
nr o
2 ym 1/ i\ 2@ 2 formular ()r ( +Z> "1 , yielding :
wo -y el
iz 2
3n in R 2 2\ (W& 1 3
o for Argt:—’—:: CS(T) :7|e1\/73|nhﬁr (lHZ_ﬁ) (_> ?exp< an )
/R NG 2 it2 Thus, by applying Rule 1 ofi[]] :
TeRraUIE) 2\ (an
2 4 Dstoked 2) = (_E> Cs (Z) eV
-forArgt:g: 2% i« [R/RA i% i i i
L2 =—¢€1 —<—) I'(l—H—) exp< )smh
iz2 \/ﬁ 1 i\ 27'a i 2 it2 z T 2 Zﬁ 4ﬁ ﬁ
-yt el ) m
R . . .
in plain agreement with the Landau-Zener formula.
o for Argt = 37": Subsequently, the transition probabilities are intriakyc
2 _2 related to the continuation of the WKB approximations of
G (t) = 1ﬁ22 (%) tiZﬁexp(g—h_> . (5), bringing into play connection formulae and Stokes
r (5 +i4—ﬁ> constants - or equivalently Stokes matrices.
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5 The SDE alternative whenz > h for Argt = T or 3T Whent = Te i orTe4, we must

In this section, we intent to recover an approximation of US€ the serieg, instead off;. We can expect that :

(12) in the SDE context :

i i it2
t) ex
ﬁzit‘f+(t2+zz) az Y < ) ( ) N3 p( Zﬁ)
: it2 : ,
Placing ¢(t) = f(t)exp( —== |, one obtains the linear 3mr 7T
. . . 2h forArgt———o —
differential equation : 4 4’

, 2t i 7
Vst -(fm)f=0 5.2 Stokes constants
% pais k
Expandf(t) =t ct”, with the normalizatiorey = 1. 1 2 e 12 12
2 oy B (i) 7)o
Then: CS<T>:<E> r(Lif) o 32
o1 o 1 K Tliv+4c—3) 2] ) . . (=¥) .
= 4 = - = - 1 . i 5 5 iy
2 (V—I—ZK)ZKJ:'l L h ﬁz_ <1>i§ﬁr<4+'4ﬁ> eTexp<fﬁ>—eS exp<7ﬁ>
. . . - ﬁ 1 Z2 3 3
Likewise : r (Zﬂﬁ) = exp<ﬁ>
~Dk K Tiu+ar—3) 2] 12
VK>17d2k: ( 2)k J_l ( ﬁ )+_2 ) 1 7i§7r<z+lﬁ> (A 3
(Vv+2K)k ) L h” | = (ﬁ) I_<1.22>2|S|n<4 +|ﬁ>exp<—ﬁ>
1.,z
by observing that the coefficientd, can be readily 4 4
obtained fronty, by complex conjugation. 1 g 2 32
_<ﬁ> r(}ié>r<§ié>exp<ﬁ>.
4 4R 4 4R
5.1 Dominant exponential solutions in tgg This last expression can be simplified into :
directions ar\ L (A\E  yam a2
(M) () el )
(t-)
Choosev = 0. Let us now determine the asymptotic
expressions on  each  Stokes line  for Whichis exactly the resultird].
it2 it2
Q(t) = fy(t )exp( Zﬁ> =gyt )exp(zﬁ> When o
im . o 6 Revisiting Landau-Zener, part 2 : when
t=Te'2 orTéT, the general terrmp, T" is : O<z<h
nl <n+ i ) on By computing the Stokes constants, we are also able to
Con T2 = (‘_‘) 4h) T recover the correct behaviour of the scattering mes(z
h r (} +ié> (2n)! asz— 0. More precisely, we have :
4h Proposition1Let us consider the vector-valued
N <}>n n-3+i% (E)HTZn differential equation :
~—\h 1 .2\ \n ' hdy(t) , :
Var (Z +Iﬁ> TTa [Re(t +iz)os+ Im(t +iz)o1] Y(t)
So: being the Landau-Zener problem. Wher z < h, the S-
SR i 12 tlézﬁ 2 matrix is given by :
- (1) T ) B\ g [F
1 .2\ \h t h exp| —— ize ¥ [ T cosh e
r{—-+i— 2h h 2h
4 4n Al w2 7
: T i 34z 5 it2 ~izds \/%COShﬁ EXp(_ﬁ)
:>¢()_l' }+ié (ﬁ> —tEXp(%—> = ex __n22 1 —izy |- (o 4—0)cosh—7122
4 4h — &P\ "2par) 2 2bar' 172 2bar
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2.crossing a Stokes lingty, t)s
3.crossing an anti-Stokes linéts, t)q
4.stepping on a Stokes line, using half the Stokes

C
constant {to,t)q + ?S(t,tz)s
reconnecting while on the lintg to t; on the left of the
_iIT CS VT
cut:e 'z [tz,tl]g(tl,t)d + —(t,tl)s[tl,tz]gelz
5.stepping off the Stokes line :
BT C. i Cg _nm
e Flta.ta)e(tn. g + (L) g 5 Mt ? + e 'z[tz,tm}
6.crossing an anti-Stokes line :
T Cs in
e '2[t2, ty]o(te,t)s+ ?e' 2 {[ta,to]e — [t2,ta]e} (t,t1)d
passing the cut in a counterclockwise sense :

e 2 [ty ta] o (—t,ta)s+ %Seig {Ita,t2]¢ — [t2,ta] ¢} (1, —t)g

where Cs is the Stokes constant associated with the
turning point at t, ~ d4hY2 and the direction

— anti-Stokes

; 3n . . -
==~ Stokes lines Argt = R The (left) action between the singularities,
. 05 v
Fig. 2: Stokes structure for 2 simple turning points. oriented from t = d 7 Rt/ (1+ i ﬁi) to

ST 22
_ dTR1/2 ; .
t,=€7h <1+|Zﬁ),equals to:

This expression holds continuously as», yielding :

i [t it
: _ W=—— tl/zdt:——/ t2—ih+2)Y2dt.
LIL)T?)S(Z) _ 12 (13) h by Q( ) h t ( + )
ds . T
and d_z(o) =-i(o+0) V2R 14 parametrize — ¢ TFY2 <1+i%> sin@. Then :
These transition probabilities can not be valid outside a
small neighbourhood of 0, nszigce We i <1+i%) 2/§n \/mcosede
Vze Ry, @(2) +|b(z)? = 1, and the factozcosh—— ~2
shall blow quickly. an o i1\ T_ i 2
o h/)2 2 2h
6.1 Stokes diagram which proves to be almost an imaginary number. It is

reassuring, since the reconnection path between the
turning points is indeed an anti-Stokes line. Thus the

The pulsatiorQ(t,z) =t*+2° —ihappears to be acomplex factor |ty, t,], is equal toe" = —iexp(g). One might

number fort € R. This differential equation displays two _ _ - 2h _ _
turning points that are still first-order zeroes : be surprised at first by the extrin e ™. Yet sngeﬁls no
_ 2 longer negligible, the previous phase factotz before
t~+dhl/2 (14 it2) 12 . .
2h exp i%_ is now replaced by*/2. An i factor arises
sincez< h. naturally, due to the square root presence. Besides, it

As previously, the asymptotic directions of the Stokesdine Should be incorporated into the principal parts i.e. in
P y yme (t1,t)e and(t,t1)e, and not taken into account during the

. T . .

are given by(2k+1)Z' Using the Stokes lines as guides, continuation process. That explains the factets? to
the remaining elements of the diagram are easily deducedompensate. Hence :

from the properties of the Stokes geometry. Continuation

through the upper half-plane gives : e e Wt ty)st %Seig (ew _efw) (t1,—t)g ~ (t2,t)s
1.start on the positive real axis with the subdominant (15)
solution :(t,t)s asymptotically speaking.
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. . : . I
6.2 Dominant exponential solutions in tl% Approximating a series by an integral :
directions =112 [ ﬁ.”%(%') {1 12 log(x- l)+V)]}t2xdx

X zZ 2
P
(1 i ﬁIogx)t dx

. . . R i
In Section 3, we have obtained the coefficients, ; {m X%( e 22
(respectivelydzn) in terms of the Gamma function. If we — ~1-iZ [ <7X') (4 <ﬁ> (1 l;ﬁlosJX> t%dx

conduct the computations with these exact expressions

1
. 3 ) = el (R
until the Stokes constafls ) an excellent match is 4fﬁ/ X( ﬁ)

expected. But we will not gain any knowledge of the Inthe directions Arg) = —gor%n, we shall use the series
potentlal discrepancy. So let us do it the pedestrian way i i3

i.e. by keeping only one error term im)(and @). We  definingfi. Sett =Te" forTd?:

beforehand recall the following result :

Moi <(—e>x(i)x(l+iilo x) t2dx
Lemma 2For any ne N* : 1 v2mx \x/ \h T
T () (5)

n = — (- 1+i—logx ) ( — ) dx
;%:bgmw@(%) /1 Z§m<<><> 4 ﬁ2

/=0 1 . 400 T

| n1q - | , 1 o~ P (1+|ﬁlogx0)/l exp(x+x|ogﬁ—xlogx)dx

as we as= 2109 +5 (ogn+y)+ ( ) X

T
wherexg = - Therefore, we have :
wherey is the Euler-Mascheroni constant.

2 2
Recall the expressiorY) of the coefficientsy,. Since we fi(t) ~ (1+ié |OgT_> exp<T_)
assume that < h, the general term ofy is : 4h 7 h h

sinceT is large. In other words, the very first summands
of both power series of or g can clearly be neglected.
Moreover, we obtain the dominant solutions :

Z 12 T2
yn(t) = (1+|4ﬁlog ﬁ)t exp(zﬁ>

Cont™ =

1 niraie+1) A i
[Z s { g ﬁz]

:(z—ﬁ)!Kz—ﬁi)nﬁm 1) (H)n 1§H(24+1) <1+%+...+2n171>}t2”

by neglecting terms of higher order iz®. Since

n—-1 | . -3 .
J_L(zg—F 1) = —(22;:3 ,we get : So whent = Té 4
) | 2 e T2\ L, (it
1 /2i\" 22 Ya(t) = <1+|—Iog t/ exp( >
n “ s on oK
Cont = (ﬁ) {1 |:|Og2+ (logn+ y)] }t L 2
, 3 it
1 " 2 z 1/2
= (%) {1+| [I092+ (logn+ y)} }tz". (1+ an T12R'°9% )t exp(zﬁ)
Approximating a series by an integral : In the directions Arg = 3m or 7_T, we shall use the series
fl(t)zl+/:m;l| <1ﬁ> {1+| N Pogu (.ogxﬂ)]}tﬂdx definingg; (without the annoying 1) :
1 e 2 x 2 ()X s ex Z 2
i [ g O (8) o o] o e TS () (2w
cae [ ey (Y (12 e oo 2
_1+‘/1 \/ﬁ(x) (ﬁ) <1+|4ﬁlogx>t dx, ) g—i%% (1—ii|ogx0)/ exp(x+x|og%—xlogx> dx
by removing all the small constangs< log2 < > lognas B \/—nzz ( Z2 o 2) o <T2>
soon as > 4. With the coefficientsly in (8), the general 4n VT2 "9 PLR
term ofg; becomes : 22 1 T2
= lo ex .
ot — 7>z2“[2|< ) }tm \f( " gh‘) p(h‘)
_qyn in) 5 T 271 1 . And the dominant solutions look like :
@ ?<ﬁ> Z ey [1 ‘ﬁ(é*ﬂ'“*znfz)]tz" bt — % n(l 2, T2>t 12 (TZ)
n! 1) =—17\/ g | 17175100 —= | ——€Xp
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6.3 Stokes constants and transition probabilities ~ ansiion probabilties Zoom p=0

Therefore, we have asymptotically :

n .
e for Argt = 7
2 [m
Yn(t) = 7VR (1

3
o for Argt = —n

5m
for Argt = — :
o for Arg 7

o033

2 2 \ei (i
7 g @z P\ "o

+|—Iog t1/2exp 2
h 2h

5nz2 22| d¥ ox it2
'R g 2P\ "R )

2

With z— 0 but fixed, it existsI such thaté Iog% > 1.

Henceforth :

o for Argt = —

_ tz et it
$alt) = 16ﬁ t3/2 P\ "R

3
e for Argt = T

w5 oen(5)

o for Argt = 5—7T

_ | t2 _it?
$alt) = 16ﬁ 9 t3/2 P\ "R )

3
Let us compute the Stokes constan{zat:

3m iz2 [m ,
CS(4> 4 ﬁ(el _er d\/>

From the Stokes geometry, we know that-ab, we need

a mixed state such that :

() =eZeW(—tt)s+ 5

25 (F) T e,

:exp(—%)(—t,tl)s——él fcosh%(tl —t)d

ineaaV
sincee™ = —iex
PL2A

n22> . By applying Rule 1 of10], the

S-matrix coefficients are given by :

a(z) =exp| ——==

(%)
Z'Zé\/i:

osh— |z\/7e'4cos

W "
[——a—— bistokes) ——b(12) | —— a — b(Stokes) — — b(LZ) |

Fig. 3: An approximation in the series’ coefficients affects the
Stokes constant and gives birth to a discrepancyb()|. For
comparison, the theoretical behaviour is plotted in dotted

.M:l

Consequently :
(cosh + E &nhE)

db
\fe' h 2R
—je 1% T (0 1—i T
and dz(o):(—le' 0 )\/%:_l(lﬂ o) 2R

ds [
. . i — 1
Compare with the result o8] : —dZ(O) =—i(01+ 0) oF

Definepy = g Graphically for|b(z)|, our valueCs gives

a pretty nice approximation as longas, 0, 15h%/2,
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