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Abstract: Recently, Z. Ma et al., introduced the notion ©f-algebra valued metric spaces and proved some related foied p
theorems in these spaces. In this paper, we introduce tleepbaf Branciari integral type contractive condition @ralgebra valued
metric spaces. Also we provide an example to support our neaint.
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1 Introduction 2 Preliminaries

We are familiar with the well known result e recollected some basic definitions, notations and
Banach-Caccippoli theoreml][ first introduced by S. results of C*-algebra that may observe4,l1]. A
Banach, a French mathematician in 1922. This theorem is-algebras is a complex algebra with linear involutian
also called Banach contractive theorem or principle,such thaty** =y and (y2)* = z'y*, for anyy,ze /. If
which is stated as followsTheorem 1.1.Let (X,d) be a  x-algebra together with complete sub multiplicative norm

complete metric spacé,c (0,1) andf : X — X, thenfis  satisfying||y*|| = |ly|| for all y € <7, then x-algebra is
said to be a contractive mapping such that foyalle X, said to be a Banack-algebra. AC*-algebra is a Banach
x-algebra such thatly*y|| = ||y||> for all y € &/. An
d(fy, fz) < ad(y,2). element of o is called positive element, if
gy ={y" =ylye &/} ando(y) C R, wherea(y) is the
Then f has a unique fixed point. spectrum of an element y € &, i.e.

Banach contraction principle plays an important role o(y) = {A € R : Al —yisnotinvertiblg. There is a
for solving nonlinear problems. Kanna][used the natural partial ordering on7, given byy < zif and only
Banach contractive principle for analyzing new type of if y—ze <7, .
contractive condition. In 2002, Branciar][introduced
the concept of integral type contractive mapping to Definition 1.Suppose that X be a nonempty set, and the
generalized the concept of Banach contraction principlemapping d: X x X — A is satisfying the following
In 2010, F. Khojasteh et al7] used the Branciari integral ~ conditions:
type contractive mapping for the cone metric space and
proved some fixed point theorems.

Recently in 2014, Z. Ma et al.9] established the
notion of C*-algebra valued metric spaces, and proved
some fixed point theorems for contractive and expansiverhen d is C-algebra valued metric on X, ang, A, d) is
mappings. For more details and basic definitions ofthe  c+-algebra valued metric space.
algebra we referZ,4,5,8,11].

In this paper we introduce the integral typ&valued It is clear thatC*-algebra valued metric spaces is the
contractive mapping for th&€*-algebra valued metric generalization of the metric space by substitutiag
spaces and prove some fixed point theorems. instead ofR.

1.d(y,z) >0Oforally,ze X anddy,z) =0 y=17;
2.d(y,z) =d(zy) forally,ze X;
3.d(y,2) <d(y,x)+d(x,z) forall x,y,ze X.

* Corresponding author e-madadababo@yahoo.com

(@© 2016 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/jant/040203

102

A. Zada, S. Saifullah: Fixed point theorem for integral t@yevalued contraction

Definition 2.Let (X,A,d) is C'-algebra valued metric
space and lefy,} be a sequence in X. If

1.for any e > 0, there is N such that for all > N,
[|d(yn,Y)|| < €, then the sequencly,} is said to be
convergent, and we denote it B® 0 Yn =Y.

2.for anye > 0, there is N such that for all pm > N,
||d(ym,Yn)|| < €, then the sequendgn} is said to be
Cauchy sequence.

Now we define a subclass of integral typé-valued
contraction which we will use in our main result. We call
this class a sub additive integral typé-contraction. Le©®
be the set of all mappingg € W satisfying the following;

[ v [Cw@azs [ uoe

3.C*-algebra valued metric space is said to be completefor all a,b > 0.

if every Cauchy sequence in X with respectitds
convergent.

Example lLet X = R andA = M(R). Define
_(ly=24 _0
d(y,z) = < 0 oly—7 forally,ze R andd > 0.
It is essay to verify thatl is aC*-algebra valued metric

space andX,Mz(R),d) is completeC*-algebra valued
metric spaces.

Definition 3.Let (X, A,d) be a C-valued metric spaces.

A mapping f from X into X is said to be a‘@alued
contractive if there exists an€ A with ||c|| < 1 such that

d(fy, fz) <c'd(y,zc,

forally,ze X.

3 Main results

Branciari in 2002, introduced the general integral type

contraction which stated as follows.
Let W be the class of all mappingsfrom R into R+

which is Lebesgue integrable, summable on each compact

subset o ;, nonnegative and for eaeh> 0, |5 Y(z)dz>
0.

Theorem 3.1.Let (X,d) be a complete metric spac®.c

(0,1) and leth: X — X be a mapping such that for each

v,z€ X,

d(hy,hz) d(y,2)
[ wadzzs [ wdz )
0 0

where ¢ from R, into R, is a Lebesgue-integrable
mapping which is summable (i.e., with finite integral) on
each compact subset Bf, , nonnegative and such that for
eache > 0, [§ Yw(z)dz> 0. Then h has a unique fixed

pointy € X such that for each € X, limp_. h"y =Y.
Motivated by the work of Z. Ma et al9] and Branciari
[3], we introduce the following definition.

Definition 4.Let (X, A,d) be a C'-valued metric space. A

mapping h: X — X is said to be a integral Gvalued
contraction mapping on X if there exists anccA with
||| < 1such that

d(hyhz) d(y,2)
/o Y(2)dz< C*(/ Y(2)d2c,

0
forally,ze X andy € V.

Theorem 3.2.Let (X, A,d) be complet€*-algebra valued
metric space, if there existse A with ||c|| < 1 andh:

X — X be a integraC*-valued contractive mapping such
that for allx,y € X,

/od(hxhy)l’u(z)dzg C*(/Od(xy)w(z)dz)c, (2)

wherey € W. Then h has a unique fixed point.

Proof. Choosexp € X and settingk,.1 = hx, = h"xg.
Then we have

d(Xn+1.%n) d(hxn,hx, 1)
/ Yydz= / Y dz
0 0
d(Xn,%h-1)
<c ( /0 L[JdZ)C
d(%n-1:%n-2)
< c*c*(/ Lpdz) cc
0

<@r( [ yaz) o

< ©@)( /O o wdz) ()"

For n > m and by triangular inequality and sub additive
property inC*-algebra metric space, we get

d(hxn,hx,) d (o, 0% 1) +d(hXn s 1,%012) 4+ 4-d (hXn_1,hxn)
/ Ydz < / ydz

0 0

d(hXe1,h%)
<)

ydz
0

d(hXm-1,h%n)
+~-~+/0 Wdz
d(Xo,X1)
<@ [ podor

d(x0.x1)
et [ gz

d(x0.x1)
<)@+ + O™ [ ydz
d(x0.%1)
(@) @+ @)@ [ wdz

0

(@© 2016 NSP
Natural Sciences Publishing Cor.



J. Ana. Num. Theo#, No. 2, 101-104 (2016)www.naturalspublishing.com/Journals.asp

< c z
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mo o)

A ™ g
2 | doox)

= 1||E|:|c|| /o o |l
o | doox)

= 1||E|:|c|| /o " .

Thus,

d(hxm,hxa)
/ dz— 0, asm,n — oo,
0

which implies that
lim [|d(hxm, hx,)|| = 0.
n,m-—sco

Thus {x} is a Cauchy sequence iX. Hence {x,}
convergestx € X. i.e.,

lim x, = x.
n—oo

Now for fixed point ofh.

d(Xn4-2,hx) d(hxn,hx)
/ Ydz= / Ydz
0 0

d(xn.x)
< C*/ Ydzc
0

Thus,
lim 1d(xy1.1,h¥)]| =O.

Now, for the unique fixed point df. Lety be another fixed
point of h, then

d(xy) d(hxhy)
/ Ydz= / Y dz
0 0

d(xy)
< C*/ Ydzc
0

d(xy)
< / Y dz
0

Which is contradiction. Thus has a unique fixed point
x e X.
Remark 3.3.This theorem is the generalization of G&

algebra valued contractive mapping, by settin@) = 1,

-d(hxhy) ~d(xy)
L w@ dz=dinchy <cdteye= [ w) dz

Example 2.et X = [0,1] be any non empty set artlbe
metric space defined as

dixy) = [Ix=yllI,
and definéh: X — X, ¢ : [0,00) — [0, 0) by

z 1
1+9z It z=0
h(z) = 1 3)
0 if z;«féﬁ1
and
1 - .
tt “(1—logt) if t>0,
t) = 4
o) { 0 if t—o. (4)

for all me N andq be any positive integer. As we know
that (1) is equivalent to

1

[|d(hx; hy) || Tdbxmll < ||c||||d(x,y)||||d<§,y>||

forall x,y € X.
_ o )
Now our next target is to show thd)(is satisfied foic =

|lcl| = % < 1. For this let us consider= —1; andy = &

V2 m
for me N, then we have
o 1 1 ot
Tty — _ lmrtp - mpll
It T = || e |
B [ 1 }(WHP)(WE%))
~ L(m+1+p)(m+p)
Now, R.H.S of ) implies that,
1 1 1 T -
Tyl = || = — —— ||l mizll
Ao = || = — = || 1A~
1 m(m+-1)
= {m(m+ 1)} )
Putting value of §) and (7) in (5), then we get
1 (MH-1+p) (MH-p) 1 m(m+1
[(m+1+ p)(m-+ p)] = HCH[m(erl)] 88)

Therefore 8) is true for||c|| = % < 1, sohis an integral
C*-valued contraction with contraction constant
Ic|| = % < 1. Thus all the condition oTheorem 3.2.is
satisfied andh has a unique fixed point O.

4 Conclusion

The idea of an integral typ€*-valued contraction is not
only the extension ofC*-valued contraction, but it
develops the inequalityl{. Whereas, the notion of sub
additive C*-valued contraction extends the idea of
C*-valued contraction but it slightly generalizes the

inequality ).
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