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Abstract: Recently, Z. Ma et al., introduced the notion ofC∗-algebra valued metric spaces and proved some related fixed point
theorems in these spaces. In this paper, we introduce the concept of Branciari integral type contractive condition forC∗-algebra valued
metric spaces. Also we provide an example to support our mainresult.
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1 Introduction

We are familiar with the well known result
Banach-Caccippoli theorem [1] first introduced by S.
Banach, a French mathematician in 1922. This theorem is
also called Banach contractive theorem or principle,
which is stated as follows;Theorem 1.1.Let (X,d) be a

complete metric space,δ ∈ (0,1) and f : X → X, then f is
said to be a contractive mapping such that for ally,z∈ X,

d( f y, f z) ≤ δd(y,z).

Then f has a unique fixed point.
Banach contraction principle plays an important role

for solving nonlinear problems. Kannan [6] used the
Banach contractive principle for analyzing new type of
contractive condition. In 2002, Branciari [3] introduced
the concept of integral type contractive mapping to
generalized the concept of Banach contraction principle.
In 2010, F. Khojasteh et al. [7] used the Branciari integral
type contractive mapping for the cone metric space and
proved some fixed point theorems.

Recently in 2014, Z. Ma et al. [9] established the
notion of C∗-algebra valued metric spaces, and proved
some fixed point theorems for contractive and expansive
mappings. For more details and basic definitions of theC∗

algebra we refer [2,4,5,8,11].
In this paper we introduce the integral typeC∗-valued

contractive mapping for theC∗-algebra valued metric
spaces and prove some fixed point theorems.

2 Preliminaries

We recollected some basic definitions, notations and
results of C∗-algebra that may observe [4,11]. A
∗-algebraA is a complex algebra with linear involution∗
such thaty∗∗ = y and (yz)∗ = z∗y∗, for any y,z ∈ A . If
∗-algebra together with complete sub multiplicative norm
satisfying ||y∗|| = ||y|| for all y ∈ A , then ∗-algebra is
said to be a Banach∗-algebra. AC∗-algebra is a Banach
∗-algebra such that||y∗y|| = ||y||2 for all y ∈ A . An
element of A is called positive element, if
A+ = {y∗ = y|y∈ A } andσ(y) ⊂ R+, whereσ(y) is the
spectrum of an element y ∈ A , i.e.
σ(y) = {λ ∈ R : λ I − y is not invertible}. There is a
natural partial ordering onA+ given byy � z if and only
if y− z∈ A+.

Definition 1.Suppose that X be a nonempty set, and the
mapping d : X × X → A is satisfying the following
conditions:

1. d(y,z) ≥ 0 for all y,z∈ X and d(y,z) = 0⇔ y= z;
2. d(y,z) = d(z,y) for all y,z∈ X;
3. d(y,z) ≤ d(y,x)+d(x,z) for all x,y,z∈ X.

Then d is C∗-algebra valued metric on X, and(X,A,d) is
C∗-algebra valued metric space.

It is clear thatC∗-algebra valued metric spaces is the
generalization of the metric space by substitutingA
instead ofR.
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Definition 2.Let (X,A,d) is C∗-algebra valued metric
space and let{yn} be a sequence in X. If

1.for any ε > 0, there is N such that for all n> N,
||d(yn,y)|| ≤ ε, then the sequence{yn} is said to be
convergent, and we denote it aslimn→∞ yn = y.

2.for anyε > 0, there is N such that for all m,n > N,
||d(ym,yn)|| ≤ ε, then the sequence{yn} is said to be
Cauchy sequence.

3.C∗-algebra valued metric space is said to be complete
if every Cauchy sequence in X with respect toA is
convergent.

Example 1.Let X = R andA= M2(R). Define

d(y,z) =

(

|y− z| 0
0 δ |y− z|

)

for all y,z∈ R andδ ≥ 0.

It is essay to verify thatd is aC∗-algebra valued metric
space and(X,M2(R),d) is completeC∗-algebra valued
metric spaces.

Definition 3.Let (X,A,d) be a C∗-valued metric spaces.
A mapping f from X into X is said to be a C∗-valued
contractive if there exists an c∈ A with ||c||< 1 such that

d( f y, f z) ≤ c∗d(y,z)c,

for all y,z∈ X.

3 Main results

Branciari in 2002, introduced the general integral type
contraction which stated as follows.

LetΨ be the class of all mappingsψ fromR+ intoR+

which is Lebesgue integrable, summable on each compact
subset ofR+, nonnegative and for eachε > 0,

∫ ε
0 ψ(z)dz>

0.
Theorem 3.1.Let (X,d) be a complete metric space,δ ∈
(0,1) and leth : X → X be a mapping such that for each
y,z∈ X,

∫ d(hy,hz)

0
ψ(z)dz≤ δ

∫ d(y,z)

0
ψ(z)dz, (1)

where ψ from R+ into R+ is a Lebesgue-integrable
mapping which is summable (i.e., with finite integral) on
each compact subset ofR+, nonnegative and such that for
eachε > 0,

∫ ε
0 ψ(z)dz> 0. Then h has a unique fixed

pointy∈ X such that for eachy∈ X, limn→∞ hny= y.
Motivated by the work of Z. Ma et al. [9] and Branciari

[3], we introduce the following definition.

Definition 4.Let (X,A,d) be a C∗-valued metric space. A
mapping h: X → X is said to be a integral C∗-valued
contraction mapping on X if there exists an c∈ A with
||c||< 1 such that

∫ d(hy,hz)

0
ψ(z)dz≤ c∗(

∫ d(y,z)

0
ψ(z)dz)c,

for all y,z∈ X andψ ∈Ψ .

Now we define a subclass of integral typeC∗-valued
contraction which we will use in our main result. We call
this class a sub additive integral typeC∗-contraction. LetΘ
be the set of all mappingsψ ∈Ψ satisfying the following;

∫ a+b

0
ψ(z)dz≤

∫ a

0
ψ(z)dz+

∫ b

0
ψ(z)dz,

for all a,b≥ 0.

Theorem 3.2.Let (X,A,d) be completeC∗-algebra valued
metric space, if there existsc ∈ A with ||c|| < 1 andh :
X → X be a integralC∗-valued contractive mapping such
that for allx,y∈ X,

∫ d(hx,hy)

0
ψ(z) dz≤ c∗

(

∫ d(x,y)

0
ψ(z) dz

)

c, (2)

whereψ ∈Ψ . Then h has a unique fixed point.

Proof. Choosex0 ∈ X and settingxn+1 = hxn = hn+1x0.
Then we have

∫ d(xn+1,xn)

0
ψ dz=

∫ d(hxn,hxn−1)

0
ψ dz

≤ c∗
(

∫ d(xn,xn−1)

0
ψdz

)

c

≤ c∗c∗
(

∫ d(xn−1,xn−2)

0
ψdz

)

cc

≤ (c∗)2
(

∫ d(xn−1,xn−2)

0
ψdz

)

(c)2

.

.

.

≤ (c∗)n
(

∫ d(x0,x1)

0
ψdz

)

(c)n
.

For n > m and by triangular inequality and sub additive
property inC∗-algebra metric space, we get

∫ d(hxm,hxn)

0
ψdz≤

∫ d(hxn,hxn+1)+d(hxn+1,hxn+2)+...+d(hxm−1,hxm)

0
ψdz.

≤
∫ d(hxn+1,hxn)

0
ψdz

+ · · ·+
∫ d(hxm−1,hxm)

0
ψdz

≤ (c∗)n
∫ d(x0,x1)

0
ψdz(c)n

+ · · ·+(c∗)m
∫ d(x0,x1)

0
ψdz(c)m

≤ {(c∗)n(c)n+ · · ·+(c∗)m(c)m}
∫ d(x0,x1)

0
ψdz

≤ {(cn)∗(c)n+ · · ·+(cn)∗(c)m}
∫ d(x0,x1)

0
ψdz
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∣

∣
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∣

∣

∣
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∣

∣
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∣
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Thus,
∫ d(hxm,hxn)

0
ψdz→ 0, asm,n→ ∞,

which implies that

lim
n,m→∞

||d(hxm,hxn)||= 0.

Thus {xn} is a Cauchy sequence inX. Hence {xn}
converges tox∈ X. i.e.,

lim
n→∞

xn = x.

Now for fixed point ofh.
∫ d(xn+1,hx)

0
ψ dz=

∫ d(hxn,hx)

0
ψ dz

≤ c∗
∫ d(xn,x)

0
ψ dzc.

Thus,
lim
n→∞

||d(xn+1,hx)||= 0.

Now, for the unique fixed point ofh. Lety be another fixed
point ofh, then
∫ d(x,y)

0
ψ dz=

∫ d(hx,hy)

0
ψ dz

≤ c∗
∫ d(x,y)

0
ψ dzc

<

∫ d(x,y)

0
ψ dz.

Which is contradiction. Thush has a unique fixed point
x∈ X.
Remark 3.3.This theorem is the generalization of theC∗-
algebra valued contractive mapping, by settingψ(z) = 1,

∫ d(hx,hy)

0
ψ(z) dz= d(hx,hy) ≤ c∗d(x,y)c=

∫ d(x,y)

0
ψ(z) dz.

Example 2.Let X = [0,1] be any non empty set andd be
metric space defined as

d(x,y) = ||x− y||I ,

and defineh : X → X, ψ : [0,∞)→ [0,∞) by

h(z) =















z
1+qz

i f z=
1
m
,

0 i f z 6= 1
m

(3)

and

φ(t) =

{

t
1
t −2(1− logt) i f t > 0,

0 i f t = 0,
(4)

for all m∈ N andq be any positive integer. As we know
that (1) is equivalent to

||d(hx,hy)||
1

||d(hx,hy)|| ≤ ||c||||d(x,y)||
1

||d(x,y)|| for all x,y∈ X.

(5)
Now our next target is to show that (5) is satisfied forc=
||c||= 1√

2
< 1. For this let us considerx= 1

m+1 andy= 1
m

for m∈N, then we have

||d(hx,hy)||
1

||d(hx,hy)|| =
∣

∣

∣

∣

∣

∣

1
m+1+ p

− 1
m+ p

∣

∣

∣

∣

∣

∣

1
|| 1

m+1+p−
1

m+p ||

=
[ 1
(m+1+ p)(m+ p)

](m+1+p)(m+p)
(6)

Now, R.H.S of (5) implies that,

||d(x,y)||
1

||d(x,y)|| =
∣

∣

∣

∣

∣

∣

1
m
− 1

m+1

∣

∣

∣

∣

∣

∣

1
|| 1

m− 1
m+1 ||

=
[ 1

m(m+1)

]m(m+1)
. (7)

Putting value of (6) and (7) in (5), then we get

[ 1
(m+1+ p)(m+ p)

](m+1+p)(m+p)
≤ ||c||

[ 1
m(m+1)

]m(m+1)
.(8)

Therefore (8) is true for||c||= 1√
2
< 1, soh is an integral

C∗-valued contraction with contraction constant
||c|| = 1√

2
< 1. Thus all the condition ofTheorem 3.2.is

satisfied andh has a unique fixed point 0.

4 Conclusion

The idea of an integral typeC∗-valued contraction is not
only the extension ofC∗-valued contraction, but it
develops the inequality (1). Whereas, the notion of sub
additive C∗-valued contraction extends the idea of
C∗-valued contraction but it slightly generalizes the
inequality (1).
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