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2 Department of Mathematical Analysis and Numerical Mathematics, Faculty of Mathematics, Physics and Informatics, Mlynská dolina,
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Abstract: The paper deals with the stability problem for a nonlinear fractional differential equation depending on the Caputo-Fabrizio
fractional derivatives without singular kernels of different orders and on power nonlinearities of different orders.We give conditions
under which the equilibrium of the equation is exponentially stable. The proof of this result is based on the Pinto’s integral inequality.
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1 Introduction

In the paper [1] a sufficient condition for the exponential stability of solutions of a fractionally perturbed ODEs is proved,
where the fractional parts of their right-hand sides dependseveral Riemann-Liouville integrals of different orders.It is
well-known that fractional differential equations with the Caputo or Riemann-Lilouville derivatives on their left-hand
sides do not have exponentially stable solutions (see [2], [3], [4], [5], [6]). They can have asymptotically stable solutions
only (see [3], [4]). We study the same problem for the case of fractionally perturbed ODEs, where instead of the Liouville
integrals there are integrals from the definition of the Caputo-Fabrizio fractional derivative defined below. The problem of
the existence of global solutions for a functional-differential equation depending on several Riemann-Liouville integrals
of different orders is studied in the paper [7] and the problem of asymptotic integration of this type of equations is studied
in [8].

Let us consider the following fractionally perturbed pendulum equation:

u′′(t)+ηu′(t)+ω2u(t) = g
(

t,u(t),u′(t),CF Dα1u(t), . . . ,CF Dαpu(t)
)

, t ∈ [0,∞), (1)

whereω 6= 0, η > 0,

CFDαi u(t) :=
M(αi)

1−αi

∫ t

0
exp

(

−
αi

1−αi
(t − s)

)

u′(s)ds (2)

is the Caputo-Fabrizio fractional derivative without singular kernel of the functionu(t) of the orderαi ∈ (0,1),
i ∈ {1,2, . . . , p}, defined recently in the paper [9]. The classical Caputo fractional derivative, defined by M.Caputo in the
paper [10] and the corresponding fractional differential equations(see [6]) are frequently used in applications. This new
fractional derivative can also be very useful tool for modeling of real world problems. In the paper [11] the Duffing-like
oscillator

m
d2x(t)

dt2
+ c

∫ t

0
µe−µ(t−τ)x′(τ)dτ + kx(t)+αkx3(t) = Acos(Ω t) (3)
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is studied, wherex represents the displacement of the oscillator massm, the linear stiffness is given byk, the coefficient
α represents the form of the cubic stiffness nonlinearity,c is the viscous damping coefficient and the non-viscous
damping effects are represented by the parameterµ . The forcing amplitude isA= x0k, wherex0 is the equivalent static
displacement. The damping termc

∫ t
0 µe−µ(t−τ)x′(τ)dτ has the form (2).

M. Caputo and M. Fabrizio present some applications relatedto their new definition of fractional derivative in the
paper [12] and some applications of this derivative are recently presented also in the papers [13], [14], [15], [16]. Fractional
differential equations with the Caputo-Fabrizio derivatives are studied in [17], where an existence and uniqueness theorem
for this type of equations is proved.

The equation (1) can be written as the system

x′1(t) = x2(t),

x′2(t) =−ω2x1(t)−ηx2(t)+g
(

t,x1(t),x2(t),
CF Iα1x2(t), . . . ,

CF Iαpx2(t)
)

, t ∈ [0,∞),
(4)

wherex1 = u, x2 = u′,

CFIαi x2(t) =
M(αi)

1−αi

∫ t

0
exp

(

−
αi

1−αi
(t − s)

)

x2(s)ds, i = 1,2, . . . , p. (5)

In the paper [18] an abstract second order differential equation of the form

u′′(t)+Cu(t) = g
(

t,u(t),C Dα1u(t), . . . ,C Dαpu(t)
)

, t ∈ [0,∞), u(t) ∈ X, (6)

whereX is a Banach space,C is a strongly continuous cosine family of linear operators in X, f is a nonlinear mapping
and

CDαi u(t) =
1

Γ (1−αi)

∫ t

0
(t − s)−αi u′(s)ds

is the Caputo fractional derivative of the mappingu(t) at t ∈R of orderα ∈ (0,1), i ∈ {1,2, . . . , p}.
Some existence results for this equation are proved there. Some generalizations of these results to an abstract

integrodifferential equation are proved in the paper [15].
We consider the following finite dimensional second order integrodifferential equation:

u′′(t)+Du′(t)+Cu= g
(

t,u(t),u′(t),CF Dα1u(t), . . . ,CF Dαpu(t)
)

, t ∈ [0,∞), u∈ R
n
, (7)

whereA,B are constant matrices,g: R×R
n ×R

n ×R
np → R

n is a continuous mapping. If we denotex1(t) = u(t),
x2(t) = u′(t), then we obtain the following system forx(t) = (x1(t),x2(t)):

x′1(t) = x2(t),

x′2(t) =−Cx1(t)−Dx2(t)+g
(

t,x1(t),x2(t),
CF Dα1x2(t), . . . ,

CF Dαpx2(t)
)

, t ∈ [0,∞), xi(t) ∈ R
n
, i = 1,2.

(8)

Motivated by this example we will consider a more general system of nonlinear fractional differential equations in the
next section with the aim to prove a sufficient condition for the exponential stability of its solutions. A similar problem
for fractional differential equations with several Riemann-Liouville integrals is studied in the paper [1]. In the paper [7]
a sufficient conditions for the non- existence of blowing-upsolutions to some functional-differential equations withthe
same type of nonlinearities as in [18], [19] and [7] are proved.

2 Exponential Stability Result

In this section we study the problem of exponential stability of solutions of the system

x′(t) = Ax(t)+ f
(

t,x(t),CF Iα1x(t), . . . ,CF Iαpx(t)
)

, t ∈ [0,∞), (9)

where
CF Iαi x(t) =

(CF
Iαi x1(t),

CF Iαi x2(t), . . . ,
CF Iαi xn(t)

)

, i = 1,2, . . . , p, (10)

A is a constant matrix,f : R×R
n×R

pn is a continuous mapping. Before we need to present a lemma dueto D. Bainov and
P. Semionov (see [20, Theorem 10.3]), originally proved by M. Pinto in [21]. First we define an ordering∝ of continuous
functionsω1,ω2 : [a,b)→ R, whereω1 is positive on(0,∞). We writeω2 ∝ ω1 if ω2

ω1
is nondecreasing(0,b).
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Lemma 1. Let c> 0 be a constant. Assume thatΨj(t) are nonnegative continuous functions on[a,b),ω j(u), j = 1,2, . . . ,k
are nondecreasing continuous functions on[0,∞), positive for u> 0, ω1 ∝ ω2 ∝ · · · ∝ ωk and u(t) is a nonnegative
continuous function on[0,∞) such that

u(t)≤ c+
k

∑
j=1

∫ t

0
Ψj(s)ω j

(

u(s)
)

ds, t ∈ [a,b). (11)

Then
u(t)≤ ηk(t), t ∈ [a,b1), (12)

where

ηk(t) =W−1
k

[

Wk(ηk−1(t))+
∫ t

a
Ψk(s)ds

]

, t ∈ [a,b1)

for some b1 ∈ (a,b), where

η1(t) =W−1
1 [W1(c)+

∫ t

a
Ψ1(s)ds]

Wj(u) =
∫ u

u j

dz
ω j(z)

, z≥ u j > 0, j = 1,2, . . . ,k,

W−1
j is the inverse of Wj and

η j(t) =W−1
j

[

Wj(η j−1(t))+
∫ t

0
ψ j(s)ds

]

, j = 1,2,3, . . . ,k.

Corollary 1. Let ω j(u) = umj , j = 1,2, . . . ,k, where1 ≤ m1 < m2 < · · · < mk, [a,b) = [0,∞) and let the following
conditions be satisfied:

∫ ∞

0
Ψj(s)ds< ∞, j = 1,2, . . . ,k;

(mj −1)
(

cD j
)mj−1

∫ ∞

0
Ψj(s)ds< 1, j = 1,2, . . . ,k,

where

D1 =











e
∫∞
0 ψ1(s)ds, if m1 = 1,

(

1− (m1−1)cm1−1∫ ∞
0 Ψ1(s)ds

)− 1
m1−1

, if m1 > 1

D j =

(

1− (mj −1)(D j)c
mj−1

∫ ∞

0
Ψj(s)ds

)− 1
mj−1

, j = 2, . . . ,k.

Then
u(t)≤ cD,

where D= Dk.

Proof. Form1 = 1 thenu(t)≤ ce
∫ t
0 ≤ ce

∫∞
0 Ψ1(s)ds≤ cD1. If m1 > 1 then

η1(t)≤
c

(

1− (m1−1)cm1−1
∫ ∞

0 Ψ1(s)ds

) 1
m1−1

≤ cD1.

One can show by induction that
η j(t)≤ cD j , j = 2, . . . ,n

and from Lemma1 we obtain thatu(t)≤ ηk(t)≤ cDk = cD.

We assume that all solutions of the equation (1) exist on the interval[0,∞) and that the following conditions hold:
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190 E. Brestovanská, M. Medved’: Exponential stability of Solutions of a second...

(C1)

‖ f
(

t,x,v1,v2, . . . ,vp
)

‖ ≤
k

∑
j=1

λ j(t)‖x‖mj +
p

∑
i=1

k

∑
j=1

µi j (t)‖vi‖
mj , t ∈ R, x∈R

n
, vi ∈ R

n
, i = 1,2, . . . , p, (13)

where 1≤ m1 < m2 < · · · < mk andλi(t),µi j (t), i = 1,2, . . . , p; j = 1,2, . . . ,k are nonnegative continuous functions
on [0,∞), ‖x‖= max{|x1|, |x2|, . . . , |xn|}.

(C2) There exist constantsK > 0, a> 0 such that

‖eAtx‖ ≤ Ke−at‖x‖ for all t ∈ [0,∞), x∈ R
n
. (14)

Theorem 1. Let the conditions(C1), (C2) and the following conditions be satisfied:

(C3)

a> κ := max{σi : 1≤ i ≤ p}, where σi =
αi

1−αi
, i = 1,2, . . . , p; (15)

(C4)

Li j =

∫ ∞

0
µi j (s)e

(a−mj σi)ssmj−1ds< ∞, i = 1,2, . . . , p; j = 1,2, . . . ,k; (16)

(C5)

Rj =

∫ ∞

0
λ j(s)e

(1−mj )asds< ∞, j = 1,2, . . . ,k. (17)

Then there exist constantsγ > 0, ρ > 0 such that

‖x(t)‖ ≤ γe−at‖x0‖ for all t ∈ [0,∞)

and for any solutions x(t) of the equation(1) satisfying the initial condition x(0) = x0 with ‖x0‖< ρ .

Proof. Let x(t) be a solutions of the equation (1) with x(0) = x0. Then

x(t) = eAtx0+

∫ t

0
eA(t−s) f

(

s,x(s),N1e−σ1s
∫ s

0
eσ1τx(τ)dτ, . . . ,Npe−σps

∫ s

0
eσpτ x(τ)dτ

)

ds, (18)

where

Ni =
M(αi)

1−αi
, σi =

αi

1−αi
, i = 1,2, . . . , p.

Using the condition(C1) and the inequality (14) we can estimate‖x(t)‖ as follows:

‖x(t)‖ ≤ Ke−at‖x0‖+Ke−at
k

∑
j=1

∫ t

0
easλ j(s)‖x(s)‖mj dτ

+Ke−at
k

∑
j=1

p

∑
i=1

∫ t

0
easµi j (s)N

mj
i e−σimj s

(

∫ s

0
eσ j τ‖x(τ)‖dτ

)mj

ds.

(19)

If we denotev(t) = eat‖x(t)‖, i.e.,‖x(t)‖= e−atv(t), then‖x(t)‖mj = e−mj atv(t)mj and using the Hölder inequality we
obtain

v(t)≤ K‖x0‖+K
k

∑
j=1

∫ t

0
e(1−mj )asλ j(s)v(s)

mj ds

+K
k

∑
j=1

p

∑
i=1

∫ t

0
µi j (s)e

(a−mj σi)sN
mj
i

(

∫ s

0
e−[a−σi ]τ v(τ)dτ

)mj

ds.

(20)

If m1 = 1 then

∫ t

0
µi1(s)e

(a−mj σi)sNi

(

∫ s

0
e−[a−σi ]τv(τ)dτ

)

ds≤ Ni

(

∫ t

0
µi1(s)e

(a−σi)sds

)(

∫ t

0
e−[a−σi ]τ v(τ)dτ

)

.
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If mj > 1 then using the Hölder inequality we obtain

∫ t

0
µi j (s)N

mj
i e(a−σimj )s

(

∫ s

0
e−[a−σi ]τv(τ)dτ

)mj

ds≤ N
mj
i

∫ t

0
µi j (s)e

(a−σimj )ssmj−1
(

∫ s

0
e−[a−σi ]mj τv(τ)mj dτ

)

ds

≤ N
mj
i Li j

∫ t

0
e−[a−σi ]mj τv(τ)mj dτ.

From the both above inequalities we obtain the following inequality forv(t):

v(t)≤ K‖x0‖+
k

∑
j=1

∫ t

0
Fj(s)v(s)

mj ds, t ≥ 0, (21)

where
Fj(s) = Kλ j(s)e

(1−mj )as+KNLe−[a−κ ]mj s

with N = max{N
mj
i : 1≤ i ≤ p,1≤ j ≤ k}, L = max{Li j : 1≤ i ≤ p,1≤ j ≤ k} andκ defined by (15).

From the conditions(C4), (C5) it follows that
∫ t

0 Fj(s)ds<
∫ ∞

0 Fj(s)ds<∞, j = 1,2, . . . ,k. Therefore by the Corollary1
there is a constantD > 0 such thatv(t) = eat‖x(t)‖ ≤ KD‖x0‖, t ≥ 0, i.e.,‖x(t)‖ ≤ γe−at‖x0‖ for all t ∈ [0,∞), where
γ = KD.
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