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Abstract: The paper deals with the stability problem for a nonlineactional differential equation depending on the Caputoriza
fractional derivatives without singular kernels of diffat orders and on power nonlinearities of different ordéfs.give conditions
under which the equilibrium of the equation is exponentiathble. The proof of this result is based on the Pinto'gjirteinequality.
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1 Introduction

In the paper] a sufficient condition for the exponential stability of stibns of a fractionally perturbed ODEs is proved,
where the fractional parts of their right-hand sides depanwetral Riemann-Liouville integrals of different ordetss
well-known that fractional differential equations withettCaputo or Riemann-Lilouville derivatives on their leird
sides do not have exponentially stable solutions (864 3], [4], [5], [6]). They can have asymptotically stable solutions
only (see 8], [4]). We study the same problem for the case of fractionalljysbed ODEs, where instead of the Liouville
integrals there are integrals from the definition of the Gagtabrizio fractional derivative defined below. The perhlof
the existence of global solutions for a functional-difietial equation depending on several Riemann-Liouvillegnals
of different orders is studied in the pap&f fnd the problem of asymptotic integration of this type dfi@ipns is studied
in [8].

Let us consider the following fractionally perturbed pehui equation:

u'(t) + nu'(t) + w?u(t) = g(t,u(t),u'(t),°F DMu(t),... CFD%u(t)),  t€[0,0), (1)
wherew # 0, > 0,
. t .
CFDYiy(t) := ZAE—OZ?/O EXp(_lg—lai(t —s)) u'(s)ds 2)

is the Caputo-Fabrizio fractional derivative without sifey kernel of the functioru(t) of the ordera; € (0,1),
i€{1,2,...,p}, defined recently in the paped][ The classical Caputo fractional derivative, defined by@dputo in the
paper [L0] and the corresponding fractional differential equati(see p]) are frequently used in applications. This new
fractional derivative can also be very useful tool for maugbf real world problems. In the papel]] the Duffing-like
oscillator
d?x(t)
dt2

m +C/Ot/.le‘“(t‘”x’(r)dr+kx(t)+akx3(t) = Acog Qt) (3)
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is studied, wherea represents the displacement of the oscillator nmagbe linear stiffness is given ki the coefficient

o represents the form of the cubic stiffness nonlineadtys the viscous damping coefficient and the non-viscous
damping effects are represented by the paramet@he forcing amplitude i€\ = xgk, wherexg is the equivalent static
displacement. The damping tewtf, e H(t-7x (1)dt has the form2).

M. Caputo and M. Fabrizio present some applications relaietieir new definition of fractional derivative in the
paper [L2] and some applications of this derivative are recentlygmésd also in the papersd], [14], [15], [ 16]. Fractional
differential equations with the Caputo-Fabrizio derivasi are studied irl[7], where an existence and uniqueness theorem
for this type of equations is proved.

The equation) can be written as the system

x1(t) = Xa(t),

4
(1) = —wPxa(t) = () + 9(t. X 0, % (0. S 1 (1) .. SF1%(1)), L [0.0), @
wherex; = u, xp = U,
: M(a;) [t o -
CF qaj _ | _ — =

[%i%o(t) = T o /o exp( T a (t s))xz(s)ds, i=12...,p. (5)

In the paper18] an abstract second order differential equation of the form
u’(t) +Cu(t) = g(t,u(t),°D%u(t),....°D%u(t)),  te [0,»), u(t) € X, (6)

whereX is a Banach spac€ is a strongly continuous cosine family of linear operatorXj f is a nonlinear mapping
and
1

t -,
m/o(t—s) iu(s)ds

is the Caputo fractional derivative of the mappir(y) att € R of ordera € (0,1),i € {1,2,...,p}.

Some existence results for this equation are proved themmeSgeneralizations of these results to an abstract
integrodifferential equation are proved in the pafddi| .

We consider the following finite dimensional second ordezgnodifferential equation:

CDdiu(t) =

u’(t)+DU'(t) +Cu=g(t,u(t),u'(t),° DMu(t),... “FD%u(t)),  t€[0,00), ucR", (7)

whereA, B are constant matriceg,; R x R" x R" x R"? — R" is a continuous mapping. If we denatg(t) = u(t),
X2(t) = U'(t), then we obtain the following system feft) = (X (t),Xx(t)):

X/l(t) = XZ(t)a

%(t) = ~Coa(t) — Drglt) + 9t xa(t) xo(t) F DU (1) FDPxo(1)). e [O0), x(t) B =12 O
Motivated by this example we will consider a more generatesysof nonlinear fractional differential equations in the
next section with the aim to prove a sufficient condition foe Exponential stability of its solutions. A similar protvie
for fractional differential equations with several Riemaliouville integrals is studied in the papeli] In the paperT]

a sufficient conditions for the non- existence of blowings@futions to some functional-differential equations wiiie
same type of nonlinearities as ihg], [19) and [7] are proved.

2 Exponential Stability Result
In this section we study the problem of exponential stabditsolutions of the system
X (t) = AX(t) + f (t,x(t).CF199x(t),... .CFI1%x(t)),  te€[0,0), 9)

where
CRIaix(t) = (CFr9xg (1) SF1%%(t),... SF1%xa(t)),  i=1,2,...,p, (10)

Ais a constant matrix;,: R x R" x RP"is a continuous mapping. Before we need to present a lemmiadueBainov and
P. Semionov (se&p, Theorem 10.3]), originally proved by M. Pinto i@]]. First we define an ordering of continuous
functionswy, wy: [a,b) — R, wherew is positive on(0, ). We write e, O oy if % is nondecreasin), b).
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Lemmal. Letc> 0be aconstant. Assume th#f(t) are nonnegative continuous functionsfarb), wj (u), j=1,2,...,k
are nondecreasing continuous functions [0ne), positive for u> 0, w; 0 wp O -+ O w and Ut) is a nonnegative
continuous function ofD, «) such that

K
uit) <c+y /t Y(s)wj(u(s))ds  telab). (11)
=170
Then
u(t) < nk(t), t € [abi), (12)
where

O =W kna0)+ [ W(dd,  tefaby
for some b € (a,b), where
t
Ma(t) =W *Ma()+ [ Wa(sjas

ww= /"9 sus0j=12.. K
] - u wj(z)a — Y 7J_ &y Ny

—1: .
W; " is the inverse of Wand

t
miO =W W)+ [ g0, T=123.k

Corollary 1. Let wj(u) =u™, j=1,2,....k, wherel <my <mp < --- < my, [a,b) = [0,) and let the following
conditions be satisfied:

/ W(s)ds<oo,  j=12... .k
0

(mj—l)(cDj)mj_l/ W(sjds<1, j=12...k
0

where
elo" ¥a(s)ds, ifmg =1,
1
D1= " Tl .
(1— (mg — )™~ 5 LPl(s)ds> , ifmg > 1
1
e —mT
Dy = (1= (- 1o+ [weds) T =2k
0
Then
u(t) < cb,
where D= Dy.

Proof. Formy = 1 thenu(t) < celd < celd %1(99s < cDy. If my > 1 then

C
nl(t) < 1 < CD1.

(1‘ (Mg —L)em=1 [y’ %(s)ds> m

One can show by induction that
n](t)SCDjv j:27"'an

and from Lemma we obtain that(t) < ng(t) < cDg = cD.

We assume that all solutions of the equatibngXxist on the interval0, ) and that the following conditions hold:
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(C1)
k p k
I (t% Ve, V2, Vp) [ <5 Aj() XM + 21 > mpwill™,  teR xeRYL veR"i=12....p, (13
=1 i=1/=1
where 1<my < mp < --- <mg andAi(t), i (t), i=1,2,...,p; j =1,2,...,kare nonnegative continuous functions
on [0700)1 HX” = max{|x1|, |X2|7"'7|Xn|}'

(C2) There exist constant§ > 0,a > 0 such that
|eMx| <Ke x|  forall te[0,o), xeR" (14)

Theorem 1. Let the condition§C1), (C2) and the following conditions be satisfied:

(C3)

a>K::max{Ui:1§i§p}, where o'i:lala-’ i:1,2,...,p; (15)
— Qi

(C4)

Lij :/ pij (9@ Mg s <o, i=1,2,...,p; j=1,2,....k (16)
0

(CH)

RJ — /O )\J (s)e(lfmj)asds< 00, J = 1, 2, .. .,k. (17)

Then there exist constangs> 0, p > 0 such that
()] < ye[x]  forall t €[0,)
and for any solutions(t) of the equatior{1) satisfying the initial condition §0) = X with ||Xo|| < p.

Proof. Letx(t) be a solutions of the equatioh) (with x(0) = xo. Then

t S S
X(t) = xo + / T (s, X(8),Nye~ 1 / LX(T)dT, ..., Npe % / e“pfx(r)dr) ds (18)
0 0 0
where (@)
o M (o g .
Nl_l_ai7 O—I_l_aia |_1727"'7p'

Using the conditior{C1) and the inequalityX4) we can estimatéx(t)|| as follows:

k t
IX(t)]| < Ke™®]|xo]| + Ke 2 > /O &2 (9)||x(s)| M dT
” (19)

kK p st s m;
Ke & /eas i sN-mje‘Uimis</ et d ) ds
+ gli; A Hij (SN A Ix(T)[|dT

If we denotev(t) = ®||x(t) ||, i.e.,||x(t)|| = e 3Vv(t), then||x(t)||™ = e ™&y(t)™ and using the Holder inequality we
obtain

kK ot
V(D) <Kol +K 3 [ 2 ™=ni(sv(s™ ds
— JO
e (20)

K p st ) s mj
+KY zi / Lij (s)e<a—mjf’i>5|\|iml( / e—[a—ffi“v(r)dr> ds
j=1i= 0 0

If my =1then

t S t t
/ uil(s)e(aiji)SNi(/ e[am]rv(r)dr)dsg Ni(/ Ml(s)e<aai>sds> (/ e[am]rv(r)dr).
0 0 0 0
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If m; > 1 then using the Holder inequality we obtain

t ) s m; oot s
/Uij (S)NimJe(aGimj)s</ e[acﬁ]rv(r)dr> ds< Nimj/ Mj(s)e(aaimj)ssmjl(/ e[afﬂ]mjrv(r)mjdr)ds
0 0 0 0
_ t
<N"L; / e la-amrymymgr.
0

From the both above inequalities we obtain the followingjunelity forv(t):
kot
VD) <Kol + Y [ Fi(vemds  t=o0, 1)
=1

where
Fi(s) = KAj(s)et~m)3s 4 KNLe [a-KIm;s

with N = max{Nimj 11<i<p,1<j<k}, L=max{Lj:1<i<p,1<]j<k}andk defined by 15).

From the condition&C4), (C5) it follows thatf(t) Fj(s)ds< [y Fj(s)ds< e, j=1,2,...,k Therefore by the Corollary
there is a constari® > 0 such that/(t) = €||x(t)|| < KD||xol|, t >0, i.e.,|[x(t)|| < ye 3ol forallt € [0,), where
y=KD.
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