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Abstract: Following the concepts of fractional differential and Lwitz’s L-Fractional Derivatives, proposed by the authtj; fhe
L-fractional chain rule is introduced. Furthermore, thedty of curves and surfaces is revisited, into the contekrattional Calculus.
The fractional tangents, normals, curvature vectors adidl abcurvature of curves are defined. Moreover, the Sdfreiet equations
are revisited, into the context of fractional calculus. Tineposed theory is implemented into a parabola and the @angured by
the Weierstrass function as well. The fractional bendirgpbfam of an inhomogeneous beam is also presented, as imptktine of
the proposed theory. Further, the theory is extended onfoldsj defining the fractional first differential (tangespaces, along with
the revisiting first and second fundamental forms for théas@s. In addition revisited operators like fractionaldieat, divergence
and rotation are introduced, outlining revision of the eedteld theorems..
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1 Introduction

Fractional calculus, originated by Leibnit2][ Liouville [ 3], and Riemann4], has recently applied to modern advances
in physics and engineering. Fractional derivative modetoant for long-range (non-local) dependence of phenomena
resulting in better description of their behavior. Variouaterial models, based upon Fractional time derivativage h
been presented, describing their viscoelastic intenactRefs p,6]. Lazopoulos 7] has proposed an elastic uniaxial
model, based upon fractional derivatives for lifting Nekixiom of local-action. Carpinteri et aB][have also proposed a
fractional approach to non-local mechanics. Applicationgarious physical areas may also be found in various books
Refs. P,10,11,12). Since the need for Fractional Differential Geometry hasesively been discussed in various places,
researchers have presented different aspects, concéfrantional Geometry of Manifold< B, 14] with applications in
fields of mechanics, quantum mechanics, relativity, finamrebabilities etc. Nevertheless, researchers are gaisin
doubtfulness about the existence of Fractional Diffesdi@ieometry and their argument is not easily rejected. Bégjc
the classical differentia f(x) = f/(x)dx has been substituted by the fractional one introduced bya4tll 17] in the
form

d*f = g(x)(dx)°

Nevertheless that definition of the differential is validtive case of positive increments dx, whereas in the case of
negative increments, the differentidPf(x) may be complex. That is exactly the reason why many reseache
reasonably reject the existence of Fractional Differér@i@ometry. However the variable x accepts its own fractiona
differential

d® = a(x)(dx)?

with o(x) # 1, differently of the conventional case when- 1, whereg(x) is always one. Relating both equations, it
appears that
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. In this cased?x is always a real quantity accepting positive or negativeemental real values alike. On those bases,
the development of Fractional Differential Geometry may démtablished. Further, fractal functions exhibiting
self-similarity are non-differentiable functions, buethexhibit fractional differentiability of order & a < 1. See Ref.
[18,19,20,21]. Golmankhaneh and Baleantq introduced the generalized fractional Riemann-Liowvi#ind Caputo
like derivatives for functions defined on fractal sets. Fmal Calculus in mechanics has been suggested by many
researchers, Tarasol3 22, Drapaca & Sivaloganathar2P], Sumelka R4], Lazopoulos & Lazopoulos2p], in
problems of continuum mechanics with microstructure wheye-local elasticity is necessary. Fractional Continuum
mechanics has been applied to various problems in hydraodigsaRef [L3,26]. Recently Fractional Calculus has been
introduced by the author2[] for the description of peridynamic theor28 29]. Yet, fractional calculus has been
considered as the best frame for describing viscoelastiblems p,6]. In addition Fractional Differential Geometry
affects rigid body dynamics, in holonomic and non-holonosystems 30,31,32]. Recent applications in Quantum
Mechanics, Physics and relativity demand differentialrgety revisited by Fractional Calculu83 34]. In the present
work, the fractional differential established in Lazopmail[l] will be recalled along with the introduced Leibnitz
L-fractional derivatives. Those differentials are alwaygsml and proper for establishing the Fractional Differainti
Geometry. Correcting the picture of fractional differahtof a function, the fractional tangent space of a manifoégw
defined, introducing also Leibnitz L-fractional derivatithat is the only one having physical meaning. Moreover, the
present work reviews the theory of Fractal Geometry of csingiescribing their tangent spaces, their normals, the
curvature vectors and the corresponding radii of curvaturaddition the Serret-Frenet equations will be revisited

the fractional calculus context. The theory is implemert®d parabola, to the Weierstrass function and the beam
bending BY], considered as applications of the curves theory to thiel snechanics. Yet, the theory is extended on
manifolds, just to describe the fractional differentiabgeetry of surfaces. Finally outline of fractional vectotdi¢heory

is included, along with the revisited fractional vectordi¢heorems.

2 Basic Properties of Fractional Calculus

Fractional Calculus has recently become a branch of purdenstics, with many applications in Physics and
Engineering, Taraso\B,22]. Many definitions of fractional derivatives exist. In faétractional Calculus originated by
Leibniz, is looking for the possibility of defining the deaitive % whenn = % The various types of the fractional
derivatives exhibit some advantages over the others. HMeless they are almost all non local, contrary to the
conventional ones. The detailed properties of fractiorlvdtives may be found in Kilbas et aR][ Podlubny[L(,
Samko et al11]. Starting from Cauchy formula for the n-fold integral of arpitive function f (x).

I”f(x):/oxf(s) (ds" :/Xan/X”an,l/X”*lan,z ..... /Xzf(xl)dxl 1)
expressed by S a a
0 () = (n_ll)!/x(x—s)”‘lf(s)ds x>0,neN )
and a
(o f (X) = (n_ll)!/b(s—x)"‘lf(s)ds x>0,neN 3)

the left and right fractional integral of f are defined as

a1 [x_f(9
o f(x)‘r(mZ PEF @
af(y_ L f(s)
xIb f(X)— ,—(a)x/b(s_x)lads (5)

(@© 2016 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl2, No. 3, 169-186 (2016)www.naturalspublishing.com/Journals.asp NS = 171

In Egs.(4,5) we assume that is the order of fractional irstisgrith 0< a < 1, considering™ (x) = (x— 1)! with I (a)
Euler's Gamma function. Thus the left and right Riemannelvitie (R-L) derivatives are defined by

aD 3 (X) = % (alx* 2 f(x)) (6)
and
«Dp?f (x) = —% (b2 f(x)). (7)

Pointing out that the R-L derivatives of a constant ¢ are neno,zCaputos derivative has been introduced, yielding

zero for any constant. Thus, it is considered as more seiialthe description of physical systems.
In fact Caputos derivative is defined by

em af(yy L x f'(s)
LDRF(X) = l'(l—a)a/ PRt 8)
and
M. af (v _ 1 f’(s)

Evaluating Caputos derivatives for functions of the type
f(x) = (x—a)"orf(x) = (b—x)" we get

rv+1)

CD a _ \% — _ v—a 1

a D (x=3) r(—a+v+1)(x 9 (10)
and for the corresponding right Caputos derivative

riv+1 _
Ak y)V — _y\v—a

xDo (b= l'(—a+v+1)(b X)

Likewise, Caputos derivatives are zero for constant fomsti
f(x)=c. (11)

3 The Geometry of Fractional Differential
Itis reminded, the n-fold integral of the primitive funatid (x), Eq.(1) is

I"f (x) = /Xf (s) (d9" (12)

which is real for any positive or negative increment ds. Pas® the fractional integral

1 (100) = [ *F(5)(d9)" (13)

a

the integer n is simply substituted by the fractional numidevertheless, that substitution is not at all straignd.
The major difference between passing from Eq.(11) to E¢.idfhat althoughds)” is real for negative values of ds,

(d9)? is complex. Therefore, the fractional integral, Eq.(18)p0t compact for any increment ds. Hence the integral of

Eq.(13) is misleading. In other words, the differentialc@ssary for the existence of the fractional integral, R),(s
wrong. Hence, a new fractional differential, real and védidpositive and negative values of the increment ds, shoeld
established. It is reminded that the a-Fractional diffeeéof a function f(x) is defined by1[7]

d?f (x) = a°Dy f (X) (dx)2. (14)

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

172 NS 2 K. Lazopoulos and A. Lazopoulos: Fractional differentiabgetry of...

Itis evident that the fractional differential, defined by.@d}), is valid for positive incremental dx, whereas for atge
ones, that differential might be complex. Hence considgion the moment that the increment dx is positive, and raaall
that,°Dy®x # 1, the a-fractional differential of the variable x is

d®x = 2°Dyx(dx)?. (15)
Hence
EDy2f (X)
a __a¥X a
d*f(x) = TCDX&‘X dex. (16)

It is evident thatd?f(x) is a non-linear function of dx, although it is a linear fulctiof d®x. That fact suggests
the consideration of the fractional tangent space that wpgse. Now the definition of fractional differential, EcG§1
is imposed either for positive or negative variable diffétalsd“x. In addition the proposed L-fractional (in honour of
Leibnitz) derivativey"Dy2f (x) is defined by,

d?f (x) = o"Dy3f (x)d3x 17)
with the Leibnitz L-fractional derivative,
CD af( )
L X
0 D0 = =5 e (18)

Hence only Leibnizs derivative has any geometrical of ptglsineaning. In addition, Eq.(3), is deceiving and the
correct form of Eq.(3), should be substituted by,

F(X)— (a) = L3 (D F(x)) = / 1 "D f(s)ds (19)

It should be pointed out that the correct forms are definedHerfractional differential by Eq.(17), the Leibniz
derivative, Eq.(18), and the fractional integral by Eq)(¥9l the other forms are misleading. Configurating the fiawmal
differential, along with the first fractional differentispace (fractional tangent space), the function y=f(x) feenldrawn
in Fig.1, with the corresponding first differential spaceatint x, according to Adda’s definition, Eq.(14).

f(x)A

|

|

| .

X,  x;dx

Fig. 1: he non-linear differential of f(x).

The tangent space , according to Addag][definition, Eq. (14), is configurated by the nonlinear cudff (x)
versus dx. Nevertheless, there are some questions conmgéhei correct picture of the configuration, Fig. 1, conaggni
the fractional differential presented by Addi&/]. Indeed,

(a)The tangent space should be linear. There is not corieis@ason for the nonlinear tangent spaces.

(@© 2016 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl2, No. 3, 169-186 (2016)www.naturalspublishing.com/Journals.asp NS = 173

(b)The differential should be configured for positive andjaté/e increments dx. However, the tangent spaces, in the
present case, do not exist for negative increments dx.

(c)The axid? f (x), in Fig.1, presents the fractional differential of the ftion f(x), however dx denotes the conventional
differential of the variable x. It is evident that both axésry x and f(x) should correspond to differentials of the sam
order.

Therefore, the tangent space (first differential spacejulshbe configured in the coordinate system with axes

(d%x, d?f (x)) . Hence, the fractional differential, defined by Eq. (17)¢@figured in the planéd®x, d9f(x)) by a
line, as it is shown in Fig.2.

Af(x,)

Fig. 2: The virtual tangent space of the f(x) at the paigt Xg.

It is evident that the differential space is not tangent ki@ tonventional sense) to the functiorxgt but intersects
the figurey = f(x) at least at one poimty. This space, we introduce, is the tangent space. Likewigenormal is
perpendicular to the line of the fractional tangent. Heneeare able to establish Fractional Differential Geometry of
curves and surfaces with the Fractional Field Theory. Cpmsitly whenr = 1, the tangent spaces, we propose, coincide
with the conventional tangent spaces.

4 The L-Fractional Chain Rule and Fractional Differential
It is evident the fractional differential may be valid whémetvariable changes. Nevertheless the chain rule is nat ivali
Fractional Calculus J2], p.80. Therefore the idea of fractional differential magm useless. However variation of chain

rule may be considered for L-Fractional derivatives. Letoissider the function

f(x) =, (20)
wheref3 may be a rational number. Then the L-fractional derivatb/ddfined by

r+yr2—-aoa) s
L~ a _ B—1
a Dx°f(X) FB+i-a) xPT (21a)
In case thak =tY, the L-fractional derivative is
riy+uyr@2-a) ,.
Lp.a Ln.a 1
Di?f(x) = "DtY = Y=L 21b
(%) t Fly+1-a) X (21b)
Hence the conventional chain rule applied in the presemt giasds
2
LD@x(t) = rly+)r(B+1( (2-a)) WB-1 -1 (22a)

ry+1-o)r (B+1-a)
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Nevertheless:

rBy+1r@-a g,
LH.a _Ccna_ By—1
D¢ f (X(t)) D¢ r (By—i— 1— a) t . (22b)
Hence a fractional chain rule may be established for any miaidf (x) = x® wherex = t¥ with
"D (x(1)) = K,PEDEF () "Dex(1) (23)
with
KB rBy+1yr (B+1—-a)r(y+1—-a) (24)
YU rBy+1l-a)f (BHY)I (y+1)I (2—a)
Example:
Let us considef = 2.5 andy = 3
then
K1/32'5: r25/3+)r 25—oa)r (1/3+1—a)j . (25)
r(25/3+1-ar (25+1)r (1/3+1r (2—a)
Furthermore
r2s54+19r2-a)
Ln a _ Lp a5 15
a Dxf(X) = a D> = F25+1-a X (26a)
and r@/3+1r (2—a)
Lpyay(t) — Lp,arl/3 _ + — Q). 23
D¢ X(t) Dtat r (1/3+1_a) t . (26b)
Hence,
LDtaf (X(t)) — k1/32.5aLDXaf (X) LDtaX(t) — r (25/3+ 1)1_ (2_ a)t70.5/3. (27)

r(25/3+1-a)

Although the procedure of L-fractional chain rule is valid to now for rational monomials, it may be valid for any
rational polynomial

f(x) = zﬂiyﬁ' with x= 5 t%. (28)
Yi
Likewise the Fractional Chain rule for rational polynorsiatay be expressed by:
'Dex(t) = AT Ky PIDAT () "X (1), (29)
Yi

However, another view, maybe more physical, may rejectliaéncrule, since the influence of both tBeandy should
be present and the path frgrto y should be expressed. That quite physical idea cancelsdiep@mdence of the L-chain
rule from the powerg andy.

5 The Fractional Arc Length

Let y=f(x) be a function, which may be non-differentiablet las a fractional derivative of order ,0a < 1. The
fractional differential of y=f(x) in the differential spads defined by

oD (x)

a
&y oDx@X

d2x = o' DA (X)d®. (30)
Therefore, the arc length is defined by

ODXa f (X) 1

s1(x.8) = oh(0%)? + (00712 = b (ST 4 1) (31)
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Furthermore, for parametric curves of the type

y=f(t), x=g(t). (32)
The fractional -differentials are defined by:

a, _ oD%g(t)
d?x = Dt dat,

33
day:ODtaf(t)dat )
oDt
and the fractional differential of the arc-length is exgesby
ac _ [rqan? + (qag? — (0P 2 oDe?g(t) 21 g
d%s (day)* + (dax)“ = [( Dt + Dyt )4)2d% (34)
and
_ 1y aqae_ Lyay0D?f(t) o oDg(t) 213 qa
s=o lx d s=o lt [( ODxalt ) +( ODxalt )] dt (35)

— o ("D (1))% + (,Dg(t))? 2dCt.

6 The Fractional Tangent Space

Letr = r(s) be a natural representation of a curve C, where s is the idreattlength of the curve. Since the velocity of
a moving material point on the curve r(s) defines the tangemtes the fractional tangent space of the curver(s) is
defined by the first derivative

a Da
_ A DT ipar (36)

M =—= =
1= das oDs?s

Recalling

d?|r| = d®s (37)

the lengthlr 1| of the fractional tangent vector is unity.
The tangent space line of the cunve: r (s) at the pointy = r(s) is defined by

r=ro+kto 0<k< oo, (38)

wheretp = t(s) is the unit tangent vector at
The plane throughg, orthogonal to the tangent line &4, is called the normal plane to the curve CsatThe points
of that orthogonal plane are defined by

(y—ro)-t(so) = (y—ro)-ri(so) =0. (39)

7 Fractional Curvature of Curves

Considering the fractional tangent vector

~ oDs?r

t=r1(s) = — = o"DSr 40
1(s) Das 0 Ds (40)
its fractional derivative may be considered
dat D&%t L
ro(s) = — = =0 D&t =11(9). 41

The vectott; (s) is called the fractional curvature vector on C at the poisitafid is denoted by = k(s) = t1(S).
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Since is a unit vector

t-t=1 (42)

Restricted to fractional derivatives that yield zero foromstant function, such as Caputos derivatives, the curvatu
vectorts(s) on C is orthogonal td and parallel to the normal plane. The magnitude of the faeticurvature vector:

K =Ik()] (43)

is called the fractional curvature of C at r(s).The recipiaaf the curvaturd is the fractional radius of curvature at

r(s)

(44)

8 The Fractional Radius of Curvature of a Curve

Following Porteous37), for the fractional curvature of a plane curkewe study at each poimtt) of the curve, how
closely the curve approximates there to a parameterizetbciXow in the tangent or first differential space at a point
r(to) , the circle, with centre c and radips consists of alf (t) in the differential space such that

(r—c)-(r—c)=p (45)
Further Eq.(35) yields
11 2
c-r—ir-r_i(c-c—p) (46)
with the right hand side been constant. Therefore, the aféoiv of the function
V(c):t—>c-r(t)—%r(t)-r(t). (47)
Hence
V(c)r=(c—r(t)) ri(t) =0, (48)
V(C)2 = (c—r(t)) rat) —ra(t)-ra(t) =0. (49)

Suppose that r is a parametric curve with) in the virtual tangent space. Th¥fic),1(t) = 0 when the vectoc —r (t)
in the tangent space is orthogonal to the tangent veg{d). Indeed when the point c, in the tangent space, lies on the
normal tor,(t) at t, the line through is orthogonal to the tangent line. Whgh) is not linearly dependent upan(t),
there will be a unique poirg # r (t),on the normal line, such that al§d@c),(t) = 0.

9 The Serret-Frenet Equations

Letr be a curve with unit speed, where the fractional velocitytef36]

t(s) =rai(s) = "i?;% = 0"Ds?r (9) (50)

is of unit length. Let (s) be such a curve. The vector
~0°Dsra(s)  o°Ds? [ 0°Dsr (s)

tl(S) - rZ(S) B OCDsaS - OCDsaS( OCDSaS ) - OLDSa (OLDSar (S)) (51)

is normal to the curve=r(s) sincet(s)-t(s) =1 and

t1(s)-1(s) =0 (52)
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since for Caputos derivatiys?c = 0 for any constant c.

Considert;(s) = k(s)n(s), wheren(s) is the unit principal normal to r at s, provided thats) # 0 wherek (s) is the
curvature of r at s.

Hence the equations for the focal line are defined by:

(c—r(s)-ru(9)=0
(c—r(s)-K(9n(s) = 1. (53)

Thus, the principal centre of curvature c at s is the paist+ p(s)n(s), wherep(s) = %

Furthermore, the principal normal vector n(s) orthogoonahe tangent line is pointing towards the focal line (locus
of the curvature centers). Likewise, the (unit) binorma)hg defined to be the vectt(s) x n(s), the triad of unit vectors
t(s),n(s), b(s) forming a right-handed orthonormal basis for the tahgentor space to the curvatures).

Each of the derivative vectots(s), ni(s), bi(s) linearly depends o(s), n(s), b(s). Considering the equations:
t;-t=0andt;-n=0witht;-n+n;-t =0, we get the fractional Serret-Frenet equations:

t1=Kn,
ni= —Kt+1b, (54)
b]_: —1n.

The coefficient is defined to be the torsion of the curve r. €leegiations are the Fractional Equations for the fractional
Serret Frenet system. Considering plane curves,

r(x)=xi+y(x)]j. (55)
Egs.(38,39), defining the fractional centres of curvaturec,i + c,j become,

(6x—X) + (ey — (X)) 0"Dx’y(X) = 0

(56)
(6~ ¥(0)o"De” (a-Dxy (X)) — (1+0"Dxy(¥)) = 0.
Since, the fractional radius of curvature is defined by
P =P+ oy = (e X) i+ (¢y—Y(X)] (57)
the components of the fractional curvature are given by
140"Dy(0? |
a — D a X ,
px OLDSa (OLDSay(X)) ° ° y( ) (58)
o_ _1+0"Dsy(x)?
otDs? (otDs?y (X)) -
Further, for the case 0§ (x)| << 1, that we consider in linear bending, Eq.(21) yields
d?s = d®+ o(d?x)? (59)
with
0"Ds” () = 0"Dx* () (60)
and
p% = Ir%| ~ : . (61)
o-Dx% (0-Dx7y (X))

Let us consider a fractional beam with its source point £%:3(0,0,0). That means, the fractional u Caputos derigativ
of any function, concerning the beam, are defined by,

paf(y) — T u_f'(9)
o Dy f(U)— I'(l—a)o/ (U—S)ads’

where, u might be one of the variables (x,y,z).
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10 Applications

a. The Fractional Geometry of a parabola. Let r be a parabeldt,t?). Then, we have

r(t) =te + t%e. (62)
Hence
cP,a(+2
_ o°D¢ (t ) - 2t
ra(t) et o ®=at; @ (63)
and
2
ra(t) = 5— €
Then, the centers of curvature of the parabola describevacur
c(t) = ci(t)er +co(t)en. (64)
Satisfying Egs.(48 and 49) with
2t 2t3
= Co=t4 —
Cl—|-2_a02 —|—2_a, (65)
2 2t2 42
= 1
Z_aCz 2_a+ +(2_a)2 (66)

Solving the system of Eqgs.(65,66) we get

43
(—2+a)
4+ a%+8t2—2a(2+1?)
@=- (4—2a) (68)

Fig.3 shows the tangent space of the parabola at the poirs fof various values of the fractional dimensian=
(1,0.7,0.3).

Parabola with its tangent spaces

~

=1

——a=07

——3=0.]

V 3 1 15 2 25
4

s

Fig. 3: The parabola with its tangent spaces-atl.5fora =1, a =0.7,a = 0.3.

It is clear that the tangent spaces for= 0.7 anda = 0.3 intersect the parabola at the point t=1.5, although the
conventional tangent space with fractional dimengioa 1.0 touches the parabola at t=1.5. Furthermore the centers of
curvature for various values of the fractional dimensgiothe point t=1,5 are (for the conventional case)
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a=10 c1=-13.5 ancc,=7.25
a=07 c1=-7.98 anac,=6.36
a=03 c1=-4.67 andc,=5.75

b. The tangent and curvature center of the Weierstrassifumdtet us consider the function

W (t) = znzlm)\‘““{sin (/\_Z”t> —sin(ZA”t)} (69)

the well known Weierstrass function, continuous with diggmuous conventional derivatives at any poi2t]][ The
parameter has been proved to be related to the fractionaindiion of the function W(t). Restricting the function to v(t
with

w(t) = ane)\“”{sin<)\—2nt> —sin(Z)\”t)} (70)

and fora = 0.5 andA = 2, the fractional tangent to the curve at the point t=1.0 fenldrawn, Fig.4, with the help
of the Mathematica computerized pack.

Weirstrass Function

Fig. 4: The function w(t) with its fractiongla = 0.5) tangent at t=1.0.

c. Bending of fractional beams
Considering the pure fractional bending problem of a beath microcracks, microvoids, various other defects, we get
the fractional strain,

& = _pla’ (71)
where the fractional curvature is defined by
1 1 o {0Dx¥w(X)
i = Do) = oDy (2 72)
with w(x) denoting the elastic line of the beam. Likewisee fhactional bending moment is expressed by:
h/2 -~ a,,qo El“
M=—-2 Oy dly = o (73)
0
with the fractional stress, see Lazopoulos and Lazopo@lls [
M
O-XXC{ - _l_ay (74)
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Hence the fractional bending of beams formula is revisitetlexpressed as

ElY 0°Dx9w(x)
M= ElaDZW(X) - 0®Dx?x OCDXG < OCTDan ’ (75)

Therefore, the deflection curve w(x) is defined by

W(x):/X /sl\él(? d?t | d9s+cix+ co. (76)
o \o

In conventional integration, the deflection curve is defibgd

_ [x s"° M) tHe 1 ds
W(X)_o/ r@-a O/E'“ r(2—00/'(c1r)(s—t)1*"dt (x—s)1*”+clx+cz' (77)

11 The Fractional Tangent Plane of a Surface
Let us consider a manifold, with points M(u,v), defined by tieetors
M (u,v) = X(u,V) (78)
with
X =% (U,v), uusu<su, vi<v<yy, =123 (79)
The infinitesimal distance between two points P and Q on tha&fold M is defined by

o OCDUC{X a OCDUC{X

a a
dx = OCDu“ud u+ o°Du"Vd V. (80)
In fact for the surface
z=UA? (81)
see, Fig. 2, the tangent space according to Eq.(16) is esqutdry
a [0V (oA WH 2Xy a a
d“r =d“xi+d yj+(2_a) (ydx+xd?y) k. (82)

Fig. 5: The surface = u?\V2.

Fig.6. shows the surface defined by Eq.(72) with its fracidangent plane (space) at the point (u,v)=( 0.5, 0.5)
for two fractional dimensiongy = 1 (the conventional case) awmd= 0.3. It is clear that the fractional tangent plane is
different from the conventional or{e = 1).
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tangent plane for =1
[ : fangent plane for ¢=0.3
z
1
. %
0.1
0 ..-
u.
Fig. 6: The tangent planes for various values of the fraafidimensiona.
12 Fundamental Differential Formson Fractional Differential Manifolds
a. The First Fractional Fundamental Form Following fornralgedure 86], the quantity
cDyx Dy x “Dyx “Dy?x
19 = d9. d% = <° S LT d"v) : <° Y LT d"v)
0°Dyau 0°Dvav oDyu oDV (83)

=Edu?+ 2Fd%ud®v+ Gdo\V?

defined upon the tangent space of the manifold, as it has Hasfied earlier, thd * stands for the first fractional
differential form, with the dot meaning the inner product.

E— OCDuaX ) OCDuaX
OcDuau OcDuau’

F— 0°Du’x o°Dyx (84)
OcDuau OchaV’

G— QCDVGX ) OCDVO’X
Ochch OchaV’

corresponding to

19 = EdP+ 2Fdudv+ Gd\A.

Furthermore the first fundamental form is positive definieg, 0< 1 with ¥ = 0 if and only ifdu andd®v are equal
to zero. Hence,

EG-F2>0.

b. The Second Fractional Fundamental Form. Consider théfofthiM (u,v) = x(u,v). Then, at each point of the

manifold, there is a fractional unit normal N to the fractibtangent plane,

oDux oDvIx
Dy%u Dyov
N = o2 oDy (85)
oDu%x oDvIX
oDuu oDyov
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that is a function of u and v with the fractional differential

D, DN

a olu ay 0 u o

dN = Dd ud oDu"Vd V. (86)
Restricting only to Caputo fractional derivatives with fhi@perty of zero fractional derivative of any constant, and

taking into consideration th&t-N = 1, we get,

d*N-N=0, (87)
where the vectod?N is parallel to the fractional tangent space. The secordfifr@al fundamental form is defined by

[36]

Dy D,? cp, o cp o
_daX-daN - — (Oguazl(dau_’_ [¢] DDUa\i(dC{V> . <0 Du Ndau—|— Du Nda >
ou oYu

oDuyu oDV (88)
=Ldu?+2Md%ud?v+ N d9v?
with
L— _oCDuaX ] o°DuN
oDuu  oDyou’
M — _} <ocDuaX ) o°DVvIN  o°Dy“N ) oCDvax) (89)
2\ o°Dyfu o°DyAV - DU oCDVAV )’

o’DvX o°DyN
o°DVAV oDV’

It is pointed again that the geometric procedures, that usatities not defined upon the correct tangent spaces, are
guestionable. Even if analytically may yield the same rtssgleometrically are confusing.

N=—

13 The Fractional Normal Curvature

Let P be a point on a surfage= x (u,v) andx (t) = x (u(t),v(t)) aregular curve C at P. The fractional curvature of curves
has been discussed in chapter 6. The normal curviffreector of C at P is the vector projection of the curvature@ect
k9 onto the normal vector N at P. The componenk®fin the direction of the normal N is called the normal fractbn
curvature of C at P and is denotedlyy . Therefore,

ka® =K% -N. (90)
Since the unit tangent to C at P is the vector,
dx  d% ,|d9x
= @s ~ dat/ |dat) 1)

where s denotes the fractional arc length of the curve antheisinit perpendicular to the normal N along the curve,
we get,

do(t-N) d9 dN
=———>=_— N+t- . 2
0=—Ga ~gu Nt Gm (92)
Therefore, the normal curvature of a curve is equal to
dot dox dN , |d9x
a _ . [ — _ = —T. _—
k" =k-N dat / dat d"t/ dat
__d 0N |dox?
~odot dat’|dat
(OCDUO'X dau CDuaX dov ) (OcDuaN dau CDuO’N day ) (93)
oD, Tu a7t T oD,V ot D, 7u A7t T oeD,AV ot
(OCDuax deu | o®Dy%x dav) ( o®Dux du 4 o°Dyx dv
o®DuTU At T otDyav dot oSDuTU At T otD,av dot
L(d“u/d"t) +2M (d%u/d) (d9v/d9) + N(d"v/d“t)
E(dou/dat)? 4 2F (d9u/dat) (dov/dat) + G(dav/dat)?’
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Recalling Egs.(83, 88), the normal curvature is defined by

kn® = I (94)

14 Fractional Vector Operators

In the present section the fractional tangent spaces alithgheir fractional normal vectors should be reminded hayt
were defined in the preceding sections 4 and 5. For Cartesiandioates, fractional generalizations of the divergesrce
gradient operators are defined by

o wCD| af (X)

0@ f(x) =grad® f(x) = 0@ f (x)& = 2 =—>& = "Di?*f (x) &, (95)
w®DidXi

where,,°D;? are Caputo fractional derivatives of ordeand the sub line meaning no contraction. Furtited; “ f (x)
is Leibnitzs derivative, Eq.(18). Hence, the gradient efvkctor x is

0@y = | (96)
with | denoting the identity matrix. Consequently for a \ardield
F(X1,X2,X3) = €1F1(X1, X2, X3) + €2F2(X1, X2, X3) + €3F3(X1, %2, X3), 97)

whereF; (x1, X2, X3) are absolutely integrable, the circulation is defined by:

CLOF) = (ol ®,F) = / (dL,F) = ol @ (Fd¥%q) + ol @1 (F2d¥x0) + ol @1 (F3d%x3). (98)
L

Furthermore, the divergence of a vector F(x) is defined by

0@ . g (X) = div(a)F(X) _ % _ wLDkaFk(X)7 (99)
w Yk Ak

where the sub-line denotes no contraction.
Moreover, the fractional cuff (curl @F (x)) of a vector F is defined by

CD aF
curl@F =g E'm”% = & Emnw" Dm?Fo. (100)
w

a
m“Xm

A Fractional flux of the vector F expressed in Cartesian coatds across surface S is a fractional surface integral of
the field with

07 (F) = (o, F) = @ / / (FLd%p0%xg + F2d%xadx; + Fad®xodxg). (101)
s
A fractional volume integral of a triple fractional intedaf a scalar fieldf = f(x1,X2,%3) is defined by
Vo @ [f] = olo@ [x1, X2, %3] f (X1,%2, X3) = '@ /// f (x1,X2,%3) %10 %20 X3. (102)
Q

It should be pointed out that the triple fractional integsahot a volume integral, since the fractional derivativeaof
variable with respect to itself is different from one. Sorthés a clear distinction between the simple, double oréripl
integrals and the line, surface and volume integrals resede
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15 Fractional Vector Field Theorems

In the present section only an outline of the various franilofield theorems will be presented, pointing out the
non-conventional tangent spaces, along with the non-caioreal unit normal that should be taken into consideration
Vector field theorems have been appeared by Tarak®)27] too. Nevertheless, the missing tangent spaces, do not help
in accurate application of those field theorems. That is whyfiwd different definitions of strains, stresses in various
places, since the definition of the tangent spaces had notdiefied. Extensive discussion of the Fractional veceldfi
theorems may be found in Lazopould@5]. The geometrically correct forms of the various field theos are given
below.

a)Fractional Green’s formula
Green's theorem relates a line integral around a simpledloarvedB and a double integral over the plane region B with
boundary. With positively oriented bounda?i3, the conventional Greens theorem for a vector field F,, e; + F e is
expressed by:

_ d(F) d(R)
/ (Fadxq + Fade) = / / (G~ G, (103)
oB B
Recalling that
d® = (dq, d¥2) = (0 Dx, *[X1] dXx1 %, Dy, ?[%2] dx%) (104)

and substituting into conventional Green'’s theorem Ed e get

cH. a cpH. a
w/(“)(Fld"leerd"xz) :w/(a)/(w Dx,”(F1) L w Dy, *(F2) )d%%; d%%,.
w

oW wCDXZa(XZ) wCDxla(Xl) (105)

b.Fractional Stokes formula:
Restricting in the consideration of a simple surface W, ifdemote its boundary byW and if F is a vector field
defined on W, then the conventional Stokes Theorem assatts th

]{F-dL - #curlF-dS. (106)
W W
It yields in Cartesian coordinates
[ (Fudx + Fadhi + Fade)
oW
(107)

B // (%;3) - %(—FF,DZ,))dXZdXGhL (@ - ®> dxgdxg + (0“:2) — NFl)) dxdxe,
W

0X3 0X1 0xq X2

whereF (x1,X2,X3) = €1F1(X1, X2, X3) + €2F2(X1, X2, X3) + €3F3(X1, X2, X3).
In this case the fractional curl operation is defined by

curl,® (F)=4q glmnwLDxma(Fn) =€ (wLszaFa - wLDX3aF2) +

(108)
€ (wL DX3aF1 - wLDxlaFS) +e3 (wLDxlaFZ - wLszaFl) .
Therefore transforming the conventional Stokes theoraathe fractional form we get
w(a) ?gw (Fld an_ =+ de aXz + F3d C{X3) =w () //\N { (wLszaFS - wLDX3aF2) daXZdaX3 (109)

+ (wLDX3aF1 - wLDxlaFS) dax3daxl + (wL DXlan - wL DXZaFl) dan_daXZ} .

c. Fractional Gauss formula
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For the conventional fields theory, [Et= e;F; + &, F> + e3 F3. be a continuously differentiable real-valued function
in a domain W with boundary. Then the conventional diverggBauss theorem is expressed by

//F-dS:///dideV (110)

oW w
since

d¥s= €1d9%od %3 + eod¥ x3d Xy + e3dYx1d T %o, (111)
whered?x; , i=1,2,3 is expressed by Eq.(15)

d@V = d¥%;d"%d . (112)
Furthermore, see Eq.(99)
. °Dy@F(x)
(a) — 0 2k K\
divi¥F(x) —SDyax Am-

The Fractional Gauss divergence theorem becomes

L@ / F.d@s— @ // div@Ed@y
oW w

16 Conclusions

Correcting the picture of fractional differential of a fuiwn, the fractional tangent space of a manifold was defined,
introducing also Leibnitzs L-fractional derivative thatthe only one having physical meaning. Further, the L-ioact
chain rule is introduced, that is necessary for the exigtafdractional differential. After establishing the framtal
differential of a function, the theory of fractional diffemtial geometry of curves is developed. In addition, thedfasms
concerning the first and second differential forms of théasas were defined, through the tangent spaces defined gearlie
having mathematical meaning without any confusion, cowptta the existing procedures. Further the field theorems
have been outlined in an accurate way, that may not causesionfin their application. The present work will help in
discussion of many applications concerning mechanicstgnamechanics and relativity, that need a clear descriptio
based upon the fractional differential geometry.
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