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Abstract: Following the concepts of fractional differential and Leibnitz’s L-Fractional Derivatives, proposed by the author [1], the
L-fractional chain rule is introduced. Furthermore, the theory of curves and surfaces is revisited, into the context ofFractional Calculus.
The fractional tangents, normals, curvature vectors and radii of curvature of curves are defined. Moreover, the Serret-Frenet equations
are revisited, into the context of fractional calculus. Theproposed theory is implemented into a parabola and the curveconfigured by
the Weierstrass function as well. The fractional bending problem of an inhomogeneous beam is also presented, as implementation of
the proposed theory. Further, the theory is extended on manifolds, defining the fractional first differential (tangent)spaces, along with
the revisiting first and second fundamental forms for the surfaces. In addition revisited operators like fractional gradient, divergence
and rotation are introduced, outlining revision of the vector field theorems..
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1 Introduction

Fractional calculus, originated by Leibnitz [2], Liouville [ 3], and Riemann [4], has recently applied to modern advances
in physics and engineering. Fractional derivative models account for long-range (non-local) dependence of phenomena,
resulting in better description of their behavior. Variousmaterial models, based upon Fractional time derivatives, have
been presented, describing their viscoelastic interaction, Refs [5,6]. Lazopoulos [7] has proposed an elastic uniaxial
model, based upon fractional derivatives for lifting Noll’s axiom of local-action. Carpinteri et al. [8] have also proposed a
fractional approach to non-local mechanics. Applicationsin various physical areas may also be found in various books
Refs. [9,10,11,12]. Since the need for Fractional Differential Geometry has extensively been discussed in various places,
researchers have presented different aspects, concerningFractional Geometry of Manifolds [13,14] with applications in
fields of mechanics, quantum mechanics, relativity, finance, probabilities etc. Nevertheless, researchers are raising
doubtfulness about the existence of Fractional Differential Geometry and their argument is not easily rejected. Basically,
the classical differentiald f(x) = f ′(x)dx has been substituted by the fractional one introduced by Adda [16,17] in the
form

da f = g(x)(dx)a

.
Nevertheless that definition of the differential is valid inthe case of positive increments dx, whereas in the case of

negative increments, the differentialda f (x) may be complex. That is exactly the reason why many researchers
reasonably reject the existence of Fractional Differential Geometry. However the variable x accepts its own fractional
differential

dax= σ(x)(dx)a

with σ(x) 6= 1, differently of the conventional case whena= 1, whereσ(x) is always one. Relating both equations, it
appears that
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da f =
g(x)
σ(x)

dax

. In this casedσ x is always a real quantity accepting positive or negative incremental real values alike. On those bases,
the development of Fractional Differential Geometry may beestablished. Further, fractal functions exhibiting
self-similarity are non-differentiable functions, but they exhibit fractional differentiability of order 0< α < 1. See Ref.
[18,19,20,21]. Golmankhaneh and Baleanu [15] introduced the generalized fractional Riemann-Liouville and Caputo
like derivatives for functions defined on fractal sets. Fractional Calculus in mechanics has been suggested by many
researchers, Tarasov [13,22], Drapaca & Sivaloganathan [23], Sumelka [24], Lazopoulos & Lazopoulos [25], in
problems of continuum mechanics with microstructure wherenon-local elasticity is necessary. Fractional Continuum
mechanics has been applied to various problems in hydrodynamics Ref [13,26]. Recently Fractional Calculus has been
introduced by the author [27] for the description of peridynamic theory [28,29]. Yet, fractional calculus has been
considered as the best frame for describing viscoelastic problems [5,6]. In addition Fractional Differential Geometry
affects rigid body dynamics, in holonomic and non-holonomic systems [30,31,32]. Recent applications in Quantum
Mechanics, Physics and relativity demand differential geometry revisited by Fractional Calculus [33,34]. In the present
work, the fractional differential established in Lazopoulos [1] will be recalled along with the introduced Leibnitz
L-fractional derivatives. Those differentials are alwaysreal and proper for establishing the Fractional Differential
Geometry. Correcting the picture of fractional differential of a function, the fractional tangent space of a manifold was
defined, introducing also Leibnitz L-fractional derivative that is the only one having physical meaning. Moreover, the
present work reviews the theory of Fractal Geometry of curves, describing their tangent spaces, their normals, the
curvature vectors and the corresponding radii of curvature. In addition the Serret-Frenet equations will be revisitedinto
the fractional calculus context. The theory is implementedto a parabola, to the Weierstrass function and the beam
bending [35], considered as applications of the curves theory to the solid mechanics. Yet, the theory is extended on
manifolds, just to describe the fractional differential geometry of surfaces. Finally outline of fractional vector field theory
is included, along with the revisited fractional vector field theorems.

2 Basic Properties of Fractional Calculus

Fractional Calculus has recently become a branch of pure mathematics, with many applications in Physics and
Engineering, Tarasov [13,22]. Many definitions of fractional derivatives exist. In fact, Fractional Calculus originated by
Leibniz, is looking for the possibility of defining the derivative dng

dxn when n = 1
2. The various types of the fractional

derivatives exhibit some advantages over the others. Nevertheless they are almost all non local, contrary to the
conventional ones. The detailed properties of fractional derivatives may be found in Kilbas et al. [9], Podlubny[10],
Samko et al.[11]. Starting from Cauchy formula for the n-fold integral of a primitive function f (x).

In f (x) =
∫

0

x f (s) (ds)n =
∫

a

xdxn

∫

a

xndxn−1

∫

a

xn−1dxn−2.....
∫

a

x2 f (x1)dx1 (1)

expressed by

aIx
n f (x) =

1
(n−1)!

∫

a

x(x− s)n−1 f (s)ds, x> 0,n∈ N (2)

and

xIb
n f (x) =

1
(n−1)!

∫

x

b(s− x)n−1 f (s)ds, x> 0,n∈ N (3)

the left and right fractional integral of f are defined as

aIx
a f (x) =

1
Γ (α)

∫

a

x f (s)

(x− s)1−ads, (4)

xIb
a f (x) =

1
Γ (α)

∫

x

b f (s)

(s− x)1−a ds. (5)
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In Eqs.(4,5) we assume that is the order of fractional integrals with 0< a6 1, consideringΓ (x) = (x−1)! with Γ (α)
Euler’s Gamma function. Thus the left and right Riemann-Liouville (R-L) derivatives are defined by

aDx
a f (x) =

d
dx

(aIx
1−a f (x)) (6)

and

xDb
a f (x) =−

d
dx

(bIx
1−a f (x)). (7)

Pointing out that the R-L derivatives of a constant c are non zero, Caputos derivative has been introduced, yielding
zero for any constant. Thus, it is considered as more suitable in the description of physical systems.
In fact Caputos derivative is defined by

a
cDx

a f (x) =
1

Γ (1−α)

∫

a

x f ′(s)
(x− s)a

ds (8)

and

x
cDb

a f (x) =−
1

Γ (1−α)

∫

x

b f ′(s)
(s− x)a

ds. (9)

Evaluating Caputos derivatives for functions of the type
f (x) = (x−a)nor f (x) = (b− x)n we get

a
cDx

a(x−a)ν =
Γ (ν +1)

Γ (−α +ν +1)
(x−a)ν−α (10)

and for the corresponding right Caputos derivative

xDb
a(b− x)ν =

Γ (ν +1)
Γ (−α +ν +1)

(b− x)ν−α

.
Likewise, Caputos derivatives are zero for constant functions

f (x) = c. (11)

3 The Geometry of Fractional Differential

It is reminded, the n-fold integral of the primitive function f (x), Eq.(1) is

In f (x) =
∫

a

x f (s) (ds)n (12)

which is real for any positive or negative increment ds. Passing to the fractional integral

Iα ( f (x)) =
∫

a

x f (s)(ds)α (13)

the integer n is simply substituted by the fractional number. Nevertheless, that substitution is not at all straightforward.
The major difference between passing from Eq.(11) to Eq.(12) is that although(ds)n is real for negative values of ds,
(ds)α is complex. Therefore, the fractional integral, Eq.(13), is not compact for any increment ds. Hence the integral of
Eq.(13) is misleading. In other words, the differential, necessary for the existence of the fractional integral, Eq.(13), is
wrong. Hence, a new fractional differential, real and validfor positive and negative values of the increment ds, shouldbe
established. It is reminded that the a-Fractional differential of a function f(x) is defined by, [17]

da f (x) = a
cDx

a f (x)(dx)a. (14)
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It is evident that the fractional differential, defined by Eq.(14), is valid for positive incremental dx, whereas for negative
ones, that differential might be complex. Hence considering for the moment that the increment dx is positive, and recalling
thata

cDx
ax 6= 1, the a-fractional differential of the variable x is

dax= a
cDx

ax(dx)a. (15)

Hence

da f (x) = a
cDx

a f (x)

a
cDx

ax
dax. (16)

It is evident thatda f (x) is a non-linear function of dx, although it is a linear function of dax. That fact suggests
the consideration of the fractional tangent space that we propose. Now the definition of fractional differential, Eq.(16),
is imposed either for positive or negative variable differentialsdαx. In addition the proposed L-fractional (in honour of
Leibnitz) derivative0

LDx
a f (x) is defined by,

da f (x) = 0
LDx

a f (x)dax (17)

with the Leibnitz L-fractional derivative,

0
LDx

a f (x) = a
cDx

a f (x)

a
cDx

ax
. (18)

Hence only Leibnizs derivative has any geometrical of physical meaning. In addition, Eq.(3), is deceiving and the
correct form of Eq.(3), should be substituted by,

f (x)− f (a) = a
LIx

a(
a
LDx

α f (x)
)

=
1

Γ (α)Γ (2−a)

∫

a

x (s−a)1−α

(x− s)1−a 0
LDx

α f (s)ds. (19)

It should be pointed out that the correct forms are defined forthe fractional differential by Eq.(17), the Leibniz
derivative, Eq.(18), and the fractional integral by Eq.(19). All the other forms are misleading. Configurating the fractional
differential, along with the first fractional differentialspace (fractional tangent space), the function y=f(x) has been drawn
in Fig.1, with the corresponding first differential space ata point x, according to Adda’s definition, Eq.(14).

Fig. 1: he non-linear differential of f(x).

The tangent space , according to Adda’s [17] definition, Eq. (14), is configurated by the nonlinear curvedα f (x)
versus dx. Nevertheless, there are some questions concerning the correct picture of the configuration, Fig. 1, concerning
the fractional differential presented by Adda [17]. Indeed,

(a)The tangent space should be linear. There is not conceivable reason for the nonlinear tangent spaces.
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(b)The differential should be configured for positive and negative increments dx. However, the tangent spaces, in the
present case, do not exist for negative increments dx.

(c)The axisdα f (x), in Fig.1, presents the fractional differential of the function f(x), however dx denotes the conventional
differential of the variable x. It is evident that both axes along x and f(x) should correspond to differentials of the same
order.

Therefore, the tangent space (first differential space), should be configured in the coordinate system with axes
(dαx, dα f (x)) . Hence, the fractional differential, defined by Eq. (17), isconfigured in the plane(dαx, dα f (x)) by a
line, as it is shown in Fig.2.

Fig. 2: The virtual tangent space of the f(x) at the pointx= x0.

It is evident that the differential space is not tangent (in the conventional sense) to the function atx0, but intersects
the figurey = f (x) at least at one pointx0. This space, we introduce, is the tangent space. Likewise, the normal is
perpendicular to the line of the fractional tangent. Hence we are able to establish Fractional Differential Geometry of
curves and surfaces with the Fractional Field Theory. Consequently whenα = 1, the tangent spaces, we propose, coincide
with the conventional tangent spaces.

4 The L-Fractional Chain Rule and Fractional Differential

It is evident the fractional differential may be valid when the variable changes. Nevertheless the chain rule is not valid in
Fractional Calculus, [12], p.80. Therefore the idea of fractional differential may seem useless. However variation of chain
rule may be considered for L-Fractional derivatives. Let usconsider the function

f (x) = xβ , (20)

whereβ may be a rational number. Then the L-fractional derivative is defined by

a
LDx

a f (x) =
Γ (β +1)Γ (2−α)

Γ (β +1−α)
xβ−1. (21a)

In case thatx= tγ , the L-fractional derivative is

LDt
a f (x) = LDt

atγ =
Γ (γ +1)Γ (2−α)

Γ (γ +1−α)
xγ−1. (21b)

Hence the conventional chain rule applied in the present case yields

LDt
ax(t) =

Γ (γ +1)Γ (β +1)(Γ (2−α))2

Γ (γ +1−α)Γ (β +1−α)
xβ−1 · tγ−1. (22a)
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Nevertheless:
LDt

a f (x(t)) = cDt
a =

Γ (β γ +1)Γ (2−α)
Γ (β γ +1−α)

tβ γ−1. (22b)

Hence a fractional chain rule may be established for any monomial f (x) = xβ wherex= tγ with

LDt
a f (x(t)) = κγ

β LDx
a f (x)LDt

ax(t) (23)

with

κγ
β =

Γ (β γ +1)Γ (β +1−α)Γ (γ +1−α)
Γ (β γ +1−α)Γ (β +1)Γ (γ +1)Γ (2−α)

. (24)

Example:
Let us considerβ = 2.5 andγ = 1

3
then

κ1/3
2.5 =

Γ (2.5/3+1)Γ (2.5−α)Γ (1/3+1−α)
Γ (2.5/3+1−a)Γ (2.5+1)Γ (1/3+1)Γ (2−α)

. (25)

Furthermore

a
LDx

a f (x) = a
LDx

ax2.5 =
Γ (2.5+1)Γ (2−α)

Γ (2.5+1−a)
x1.5 (26a)

and
LDt

ax(t) = LDt
at1/3 =

Γ (1/3+1)Γ (2−α)
Γ (1/3+1−a)

t−2/3. (26b)

Hence,

LDt
a f (x(t)) = k1/3

2.5
a
LDx

α f (x) LDt
ax(t) =

Γ (2.5/3+1)Γ (2−α)

Γ (2.5/3+1−a)
t−0.5/3. (27)

Although the procedure of L-fractional chain rule is valid up to now for rational monomials, it may be valid for any
rational polynomial

f (x) = ∑βi yβι with x= ∑
γ j

tγi . (28)

Likewise the Fractional Chain rule for rational polynomials may be expressed by:

LDt
ax(t) = ∑βi∑

γ j

κγ j
βi LDx

a f (x)LDt
ax(t). (29)

However, another view, maybe more physical, may reject the chain rule, since the influence of both theβ andγ should
be present and the path fromβ to γ should be expressed. That quite physical idea cancels the independence of the L-chain
rule from the powersβ andγ.

5 The Fractional Arc Length

Let y=f(x) be a function, which may be non-differentiable but has a fractional derivative of order , 0< α < 1. The
fractional differential of y=f(x) in the differential space is defined by

day= 0Dx
a f (x)

0Dx
ax

dax= 0
LDx

a f (x)dax. (30)

Therefore, the arc length is defined by

s1(x,a) = 0Ix
a[(day)2+(dax)2]1/2 = 0Ix

a[(
0Dx

a f (x)

0Dx
ax

)2+1]
1
2 dax. (31)
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Furthermore, for parametric curves of the type

y= f (t), x= g(t). (32)

The fractional -differentials are defined by:

dax= 0Dt
ag(t)

0Dt
at

dat,

day= 0Dt
a f (t)

0Dt
at

dat

(33)

and the fractional differential of the arc-length is expressed by

das=
√

(day)2+(dax)2 = [(
0Dt

a f (t)

0Dt
at

)2+(
0Dt

ag(t)

0Dt
at

)2]
1
2 dat (34)

and

s= 0
LIx

adas= 0
LIt

a[(
0Dt

a f (t)

0Dx
at

)2+(
0Dt

ag(t)

0Dx
at

)2]
1
2 dα t

= 0
LIt

a[(0
LDt

a f (t))2+(0
LDt

ag(t))2]
1
2 dαt.

(35)

6 The Fractional Tangent Space

Let r = r(s) be a natural representation of a curve C, where s is the -fractional length of the curve. Since the velocity of
a moving material point on the curve r(s) defines the tangent space, the fractional tangent space of the curver = r(s) is
defined by the first derivative

r1 =
dar
das

=
0Ds

ar

0Ds
as

= 0
LDs

ar. (36)

Recalling

da |r|= das (37)

the length|r1| of the fractional tangent vector is unity.
The tangent space line of the curver = r(s) at the pointr0 = r(s0) is defined by

r = r0+ kt0 0< k< ∞, (38)

wheret0 = t(s0) is the unit tangent vector atr.
The plane throughr0, orthogonal to the tangent line atr0, is called the normal plane to the curve C ats0. The points

of that orthogonal plane are defined by

(y− r0) · t(s0) = (y− r0) · r1(s0) = 0. (39)

7 Fractional Curvature of Curves

Considering the fractional tangent vector

t = r1(s) =
0Ds

ar

0Ds
as

= 0
LDs

ar (40)

its fractional derivative may be considered

r2(s) =
dat
das

=
0Ds

at

0Ds
as

= 0
LDs

at = t1(s). (41)

The vectort1(s) is called the fractional curvature vector on C at the point r(s) and is denoted byκ = κ(s) = t1(s).
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Since is a unit vector

t · t = 1. (42)

Restricted to fractional derivatives that yield zero for a constant function, such as Caputos derivatives, the curvature
vectort1(s) on C is orthogonal tot and parallel to the normal plane. The magnitude of the fractional curvature vector:

κ = |κ(s)| (43)

is called the fractional curvature of C at r(s).The reciprocal of the curvaturek is the fractional radius of curvature at
r(s)

ρ =
1
κ
=

1
|κ(s)|

. (44)

8 The Fractional Radius of Curvature of a Curve

Following Porteous [37], for the fractional curvature of a plane curver, we study at each pointr(t) of the curve, how
closely the curve approximates there to a parameterized circle. Now in the tangent or first differential space at a point
r(t0) , the circle, with centre c and radiusρ , consists of allr(t) in the differential space such that

(r− c) · (r− c) = ρ2. (45)

Further Eq.(35) yields

c · r−
1
2

r · r =
1
2
(c · c−ρ2) (46)

with the right hand side been constant. Therefore, the derivation of the function

V(c) : t → c · r(t)−
1
2

r(t) · r(t). (47)

Hence

V(c)1 = (c− r(t)) · r1(t) = 0, (48)

V(c)2 = (c− r(t)) · r2(t)− r1(t) · r1(t) = 0. (49)

Suppose that r is a parametric curve withr(t) in the virtual tangent space. ThenV(c)1(t) = 0 when the vectorc− r(t)
in the tangent space is orthogonal to the tangent vectorr1(t). Indeed when the point c, in the tangent space, lies on the
normal tor1(t) at t, the line through is orthogonal to the tangent line. Whenr2(t) is not linearly dependent uponr1(t),
there will be a unique pointc 6= r(t),on the normal line, such that alsoV(c)2(t) = 0.

9 The Serret-Frenet Equations

Let r be a curve with unit speed, where the fractional velocity vector [36]

t(s) = r1(s) =
0

cDs
ar(s)

0
cDs

as
= 0

LDs
ar(s) (50)

is of unit length. Letr(s) be such a curve. The vector

t1(s) = r2(s) =
0

cDs
ar1(s)

0
cDs

as
=

0
cDs

a

0
cDs

as
(

0
cDs

ar(s)

0
cDs

as
) = 0

LDs
a(

0
LDs

ar(s)
)

(51)

is normal to the curver= r(s) sincet(s) · t(s) = 1 and

t1(s) · t(s) = 0 (52)
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since for Caputos derivative0Ds
ac= 0 for any constant c.

Considert1(s) = κ(s)n(s), wheren(s) is the unit principal normal to r at s, provided thatκ(s) 6= 0 whereκ(s) is the
curvature of r at s.

Hence the equations for the focal line are defined by:

(c− r(s)) · r1(s) = 0 ,

(c− r(s)) ·κ(s)n(s) = 1.
(53)

Thus, the principal centre of curvature c at s is the pointr(s)+ρ(s)n(s), whereρ(s) = 1
κ(s) .

Furthermore, the principal normal vector n(s) orthogonal to the tangent line is pointing towards the focal line (locus
of the curvature centers). Likewise, the (unit) binormal b(s) is defined to be the vectort(s)×n(s), the triad of unit vectors
t(s),n(s),b(s) forming a right-handed orthonormal basis for the tangent vector space to the curvaturer(s).
Each of the derivative vectorst1(s), n1(s), b1(s) linearly depends ont(s), n(s), b(s). Considering the equations:

t1 · t = 0 andt1 ·n = 0 with t1 ·n+n1 · t = 0, we get the fractional Serret-Frenet equations:

t1=κn,
n1=−κt+τb,
b1=−τn.

(54)

The coefficient is defined to be the torsion of the curve r. These equations are the Fractional Equations for the fractional
Serret Frenet system. Considering plane curves,

r(x) = xi+ y(x) j. (55)

Eqs.(38,39), defining the fractional centres of curvaturec = cxi+ cyj become,

(cx− x)+ (cy− y(x)) 0
LDx

αy(x) = 0

(cy− y(x))0
LDx

α (

0
LDx

αy(x)
)

−
(

1+ 0
LDx

αy(x)2
)

= 0.
(56)

Since, the fractional radius of curvature is defined by

ρα = ρx
α i+ρy

α j = (cx− x) i+(cy− y(x)) j (57)

the components of the fractional curvature are given by

ρx
α =−

1+ 0
LDs

αy(x)2

0
LDs

α (0
LDs

αy(x)) 0
LDs

αy(x) ,

ρy
α =

1+ 0
LDs

αy(x)2

0
LDs

α (0
LDs

αy(x))
.

(58)

Further, for the case of|y(x)|<< 1, that we consider in linear bending, Eq.(21) yields

das= dax+o(dax)2 (59)

with

0
LDs

α () = 0
LDx

α () (60)

and

ρα = |rα | ≈
1

0
LDx

α (0
LDx

αy(x))
. (61)

Let us consider a fractional beam with its source point (x,y,z)=(0,0,0). That means, the fractional u Caputos derivatives
of any function, concerning the beam, are defined by,

0
cDu

a f (u) =
1

Γ (1−α)

∫

0

u f ′(s)
(u− s)a

ds,

where, u might be one of the variables (x,y,z).
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10 Applications

a. The Fractional Geometry of a parabola. Let r be a parabolat → (t, t2). Then, we have

r(t) = te1 + t2e2. (62)

Hence

r1(t) = e1 +
0

cDt
a(t2)

0
cDt

at
e2 = e1 +

2t
2−a

e2 (63)

and

r2(t) =
2

2−a
e2.

Then, the centers of curvature of the parabola describe a curve:

c(t) = c1(t)e1 + c2(t)e2. (64)

Satisfying Eqs.(48 and 49) with

c1+
2t

2−a
c2 = t +

2t3

2−a
, (65)

2
2−a

c2 =
2t2

2−a
+1+

4t2

(2−a)2
. (66)

Solving the system of Eqs.(65,66) we get

c1 =−
4t3

(−2+a)2
, (67)

c2 =−
4+a2+8t2−2a(2+ t2)

(4−2a)
. (68)

Fig.3 shows the tangent space of the parabola at the point t=1.5 for various values of the fractional dimensionα =
(1,0.7,0.3).

Fig. 3: The parabola with its tangent spaces att = 1.5 f orα = 1,α = 0.7,α = 0.3.

It is clear that the tangent spaces forα = 0.7 andα = 0.3 intersect the parabola at the point t=1.5, although the
conventional tangent space with fractional dimensionα = 1.0 touches the parabola at t=1.5. Furthermore the centers of
curvature for various values of the fractional dimensionα the point t=1,5 are (for the conventional case)
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α = 1.0 c1= -13.5 andc2=7.25
α = 0.7 c1= -7.98 andc2=6.36
α = 0.3 c1= -4.67 andc2=5.75

b. The tangent and curvature center of the Weierstrass function. Let us consider the function

W (t) = ∑n=1
∞λ−αn

{

sin

(

λ nt
2

)

− sin(2λ nt)

}

(69)

the well known Weierstrass function, continuous with discontinuous conventional derivatives at any point, [21]. The
parameter has been proved to be related to the fractional dimension of the function W(t). Restricting the function to w(t)
with

w(t) = ∑n=1
6λ−αn

{

sin

(

λ nt
2

)

− sin(2λ nt)

}

(70)

and forα = 0.5 andλ = 2, the fractional tangent to the curve at the point t=1.0 has been drawn, Fig.4, with the help
of the Mathematica computerized pack.

Fig. 4: The function w(t) with its fractional(α = 0.5) tangent at t=1.0.

c. Bending of fractional beams
Considering the pure fractional bending problem of a beam with microcracks, microvoids, various other defects, we get
the fractional strain,

εxx
α =−

y
ρα , (71)

where the fractional curvature is defined by

1
ρα = D2w(x) =

1

0Dx
αx0Dx

α
(

0Dx
αw(x)

0Dx
αx

)

(72)

with w(x) denoting the elastic line of the beam. Likewise, the fractional bending moment is expressed by:

M =−2
∫

0

h/2σxx
αydαy=

EIα

ρα (73)

with the fractional stress, see Lazopoulos and Lazopoulos [35],

σxx
α =−

M
Iα y. (74)
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Hence the fractional bending of beams formula is revisited and expressed as

M = EIαD2w(x) =
EIα

0
cDx

αx 0
cDx

α
(

0
cDx

αw(x)

0
cDx

αx

)

, (75)

Therefore, the deflection curve w(x) is defined by

w(x) =
∫

0

x





∫

0

sM (t)
EIα dα t



dαs+ c1x+ c2. (76)

In conventional integration, the deflection curve is definedby

w(x) =
∫

0

x s1−α

Γ (2−α)





∫

0

sM (t)
EIα

t1−α

Γ (2−α)
1

Γ (α) (s− t)1−α dt





ds

(x− s)1−α + c1x+ c2. (77)

11 The Fractional Tangent Plane of a Surface

Let us consider a manifold, with points M(u,v), defined by thevectors

M (u,v) = x(u,v) (78)

with

xi = xi (u,v) , u1 6 u6 u2 , v1 6 v6 v2, i = 1,2,3. (79)

The infinitesimal distance between two points P and Q on the manifold M is defined by

dαx =
0

cDu
α x

0
cDu

αu
dαu+ 0

cDu
α x

0
cDu

αv
dαv. (80)

In fact for the surface

z= u2v2 (81)

see, Fig. 2, the tangent space according to Eq.(16) is expressed by

dαr = dαxi+dαyj+
2xy

(2−α)
(ydαx+ xdαy)k. (82)

Fig. 5: The surfacez= u2v2.

Fig.6. shows the surface defined by Eq.(72) with its fractional tangent plane (space) at the point (u,v)=( 0.5, 0.5)
for two fractional dimensions,α = 1 (the conventional case) andα = 0.3. It is clear that the fractional tangent plane is
different from the conventional one(α = 1).
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Fig. 6: The tangent planes for various values of the fractional dimensionα.

12 Fundamental Differential Forms on Fractional Differential Manifolds

a. The First Fractional Fundamental Form Following formal procedure [36], the quantity

Iα = dα x ·dαx =

(

0
cDu

α x

0
cDu

αu
dαu+ 0

cDv
α x

0
cDv

αv
dαv

)

·

(

0
cDu

α x

oDu
αu

dαu+ 0
cDv

α x

oDv
αv

dαv

)

= E dαu2+2Fdαudαv+Gdαv2
(83)

defined upon the tangent space of the manifold, as it has been clarified earlier, theIα stands for the first fractional
differential form, with the dot meaning the inner product.

E =
0

cDu
α x

0
cDu

αu
·

0
cDu

α x

0
cDu

αu
,

F =
0

cDu
α x

0
cDu

αu
·

0
cDv

α x

0
cDv

αv
,

G=
0
cDv

α x

0
cDv

αv
·

0
cDv

α x

0
cDv

αv
,

(84)

corresponding to

Iα = E du2+2Fdudv+Gdv2.

Furthermore the first fundamental form is positive definite i.e., 06 Iα with Iα = 0 if and only ifdαu anddαv are equal
to zero. Hence,

EG−F2 > 0.

b. The Second Fractional Fundamental Form. Consider the manifold M (u,v) = x(u,v). Then, at each point of the
manifold, there is a fractional unit normal N to the fractional tangent plane,

N =
oDu

α x
oDuα u ×

oDv
α x

oDvα v
∣

∣

∣

oDuα x
oDuα u ×

oDvα x
oDvα v

∣

∣

∣

(85)
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that is a function of u and v with the fractional differential

dα N =
oDu

α N

oDu
αu

dαu+ oDu
α N

oDu
αv

dαv. (86)

Restricting only to Caputo fractional derivatives with theproperty of zero fractional derivative of any constant, and
taking into consideration thatN ·N = 1, we get,

dα N ·N = 0, (87)

where the vectordαN is parallel to the fractional tangent space. The second fractional fundamental form is defined by
[36]

II α =−dα x ·dαN =−

(

o
cDu

α x

oDu
αu

dαu+ o
cDu

α x

oDu
αv

dαv

)

·

(

o
cDu

α N

oDu
αu

dαu+ o
cDu

α N

oDu
αv

dαv

)

= Ldαu2+2Mdαudαv+N dαv2
(88)

with

L =−
o
cDu

α x

oDu
αu

·
o
cDu

α N

oDu
αu

,

M =−
1
2

(

o
cDu

α x

o
cDu

αu
·

o
cDv

α N

o
cDv

αv
+

o
cDu

α N

o
cDu

αu
·

o
cDv

α x

o
cDv

αv

)

,

N =−
o

cDv
α x

o
cDv

αv
·

o
cDu

α N

o
cDv

αv
.

(89)

It is pointed again that the geometric procedures, that use quantities not defined upon the correct tangent spaces, are
questionable. Even if analytically may yield the same results, geometrically are confusing.

13 The Fractional Normal Curvature

Let P be a point on a surfacex = x(u,v) andx(t) = x(u(t) ,v(t)) a regular curve C at P. The fractional curvature of curves
has been discussed in chapter 6. The normal curvaturekn

α vector of C at P is the vector projection of the curvature vector
kα onto the normal vector N at P. The component ofkα in the direction of the normal N is called the normal fractional
curvature of C at P and is denoted bykn

α . Therefore,

kn
α = kα ·N. (90)

Since the unit tangent to C at P is the vector,

t =
dαx
dαs

=
dα x
dα t

/

∣

∣

∣

∣

dα x
dα t

∣

∣

∣

∣

, (91)

where s denotes the fractional arc length of the curve and t isthe unit perpendicular to the normal N along the curve,
we get,

0=
dα (t ·N)

dαt
=

dα t
dα t

·N+ t ·
dα N
dα t

. (92)

Therefore, the normal curvature of a curve is equal to

kn
α = k ·N =

dαt
dα t

·N/

∣

∣

∣

∣

dα x
dα t

∣

∣

∣

∣

=−t ·
dα N
dαt

/

∣

∣

∣

∣

dα x
dα t

∣

∣

∣

∣

=−
dαx
dα t

·
dα N
dα t

/

∣

∣

∣

∣

dαx
dα t

∣

∣

∣

∣

2

=−

(

o
cDu

α x
ocDuα u

dα u
dα t +

o
cDu

α x
ocDuα v

dα v
dα t

)

·
(

o
cDu

α N
ocDuα u

dα u
dα t +

o
cDu

α N
ocDuα v

dα v
dα t

)

(

ocDuα x
ocDuα u

dα u
dα t +

ocDuα x
ocDuα v

dα v
dα t

)

·
(

ocDuα x
ocDuα u

dα u
dα t +

ocDuα x
ocDuα v

dα v
dα t

)

=
L(dαu/dαt)2+2M (dαu/dαt) (dαv/dαt)+N(dαv/dαt)2

E(dαu/dαt)2+2F (dαu/dαt) (dαv/dαt)+G(dαv/dα t)2 .

(93)
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Recalling Eqs.(83, 88), the normal curvature is defined by

kn
α =

II α

Iα . (94)

14 Fractional Vector Operators

In the present section the fractional tangent spaces along with their fractional normal vectors should be reminded, as they
were defined in the preceding sections 4 and 5. For Cartesian coordinates, fractional generalizations of the divergenceor
gradient operators are defined by

∇(a) f (x) = grad(a) f (x) = ∇i
(α) f (x)ei =

ω
cDi

a f (x)

ω cD i−
ax i−

ei =o
LDi

a f (x)ei , (95)

where,ω cDi
a are Caputo fractional derivatives of orderα and the sub line meaning no contraction. Further,o

LDi
α f (x)

is Leibnitzs derivative, Eq.(18). Hence, the gradient of the vector x is

∇(α)x = I (96)

with I denoting the identity matrix. Consequently for a vector field

F(x1,x2,x3) = e1F1(x1,x2,x3)+ e2F2(x1,x2,x3)+ e3F3(x1,x2,x3), (97)

whereFi(x1,x2,x3) are absolutely integrable, the circulation is defined by:

CL
(α)(F) = (ω IL

(a),F) =
∫

L

(dL,F) = ω I (a)L (F1dαx1)+ω I (a)L (F2dαx2)+ω I (a)L (F3dαx3) . (98)

Furthermore, the divergence of a vector F(x) is defined by

∇(a) ·F(x) = div(a)F(x) = ω
cDk

aFk(x)

ω cDk−
axk−

= ω
LDk

aFk(x), (99)

where the sub-line denotes no contraction.
Moreover, the fractional curlF(curl(a)F(x)) of a vector F is defined by

curl(a)F = el εlmn
ω

cDm
aFn

ω cDm−
axm−

= el εlmnω
LDm

aFn. (100)

A Fractional flux of the vector F expressed in Cartesian coordinates across surface S is a fractional surface integral of
the field with

Φs
α (F) = (ω Is

α ,F) = ω
(α)

∫∫

S

(F1dαx2dαx3+F2dαx3dαx1+F3dαx2dαx3). (101)

A fractional volume integral of a triple fractional integral of a scalar fieldf = f (x1,x2,x3) is defined by

ωVΩ
(a)[ f ] = ω IΩ

(a)[x1,x2,x3] f (x1,x2,x3) = ω
(α)

∫∫∫

Ω

f (x1,x2,x3)dαx1dαx2dαx3. (102)

It should be pointed out that the triple fractional integralis not a volume integral, since the fractional derivative ofa
variable with respect to itself is different from one. So there is a clear distinction between the simple, double or triple
integrals and the line, surface and volume integrals respectively.
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15 Fractional Vector Field Theorems

In the present section only an outline of the various fractional field theorems will be presented, pointing out the
non-conventional tangent spaces, along with the non-conventional unit normal that should be taken into consideration.
Vector field theorems have been appeared by Tarasov [13,22] too. Nevertheless, the missing tangent spaces, do not help
in accurate application of those field theorems. That is why we find different definitions of strains, stresses in various
places, since the definition of the tangent spaces had not been clarified. Extensive discussion of the Fractional vector field
theorems may be found in Lazopoulos [25]. The geometrically correct forms of the various field theorems are given
below.

a)Fractional Green’s formula
Green’s theorem relates a line integral around a simple closed curve∂B and a double integral over the plane region B with
boundary. With positively oriented boundary∂B, the conventional Greens theorem for a vector fieldF = Fx1e1+Fxxe2 is
expressed by:

∫

∂B

(F1dx1+F2dx2) =

∫ ∫

B

(
∂ (F1)

∂x2
−

∂ (F2)

∂x1
)dx1dx2. (103)

Recalling that

dax = (dax1,d
ax2) = (ω

cDx1
a[x1] dx1

α ,cDx2
a[x2]dx2

α) (104)

and substituting into conventional Green’s theorem Eq.(104) we get

ω

∫

∂W

(α)(F1dαx1+F2dαx2) = ω

∫

(α)
∫

W

(
ω

cDx2
a(F1)

ω cDx2
a(x2)

−
ω

cDx1
a(F2)

ω cDx1
a(x1)

)dαx1dαx2.
(105)

b.Fractional Stokes formula:
Restricting in the consideration of a simple surface W, if wedenote its boundary by∂W and if F is a vector field

defined on W, then the conventional Stokes Theorem asserts that
∮

W

F ·dL =
∫∫

©

W

curlF ·dS. (106)

It yields in Cartesian coordinates

∫

∂W

(F1dx1+F2dx2+F3dx3)

=

∫ ∫

W

(

∂ (F3)

∂x2
−

∂ (F2)

∂F3

)

dx2dx3+

(

∂ (F1)

∂x3
−

∂ (F3)

∂x1

)

dx3dx1+

(

∂ (F2)

∂x1
−

∂ (F1)

∂x2

)

dx1dx2,

(107)

whereF(x1,x2,x3) = e1F1(x1,x2,x3)+e2F2(x1,x2,x3)+e3F3(x1,x2,x3).
In this case the fractional curl operation is defined by

curlw
α (F) = el εlmnω

LDxm
a (Fn) = e1

(

ω
LDx2

aF3−ω
LDx3

aF2
)

+

e2
(

ω
LDx3

aF1−ω
LDx1

aF3
)

+ e3
(

ω
LDx1

aF2−ω
LDx2

aF1
)

.
(108)

Therefore transforming the conventional Stokes theorem into the fractional form we get

ω
(α)

∮

∂W
(F1dαx1+F2d

αx2+F3d
αx3) =ω

(α)
∫∫

W

{(

ω
LDx2

aF3−ω
LDx3

aF2
)

dαx2dαx3

+
(

ω
LDx3

aF1−ω
LDx1

aF3
)

dαx3dαx1+
(

ω
LDx1

aF2−ω
LDx2

aF1
)

dαx1dαx2
}

.
(109)

c. Fractional Gauss formula
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For the conventional fields theory, letF = e1F1+e2 F2+e3 F3. be a continuously differentiable real-valued function
in a domain W with boundary. Then the conventional divergence Gauss theorem is expressed by

∫∫

∂W

F ·dS =

∫∫∫

W

divFdV (110)

since

d
(α)

S = e1dαx2dαx3+ e2dαx3dαx1+ e3dαx1d αx2, (111)

wheredaxi , i=1,2,3 is expressed by Eq.(15)

d(α)V = dαx1dαx2dαx3. (112)

Furthermore, see Eq.(99)

div(a)F(x) = ω
cDk

aFk(x)

ω cDk
axi

δkm.

The Fractional Gauss divergence theorem becomes

ω
(α)

∫∫

∂W
F ·d(α)S = ω

(α)
∫∫∫

w
div(α)Fd(α)V

.

16 Conclusions

Correcting the picture of fractional differential of a function, the fractional tangent space of a manifold was defined,
introducing also Leibnitzs L-fractional derivative that is the only one having physical meaning. Further, the L-fractional
chain rule is introduced, that is necessary for the existence of fractional differential. After establishing the fractional
differential of a function, the theory of fractional differential geometry of curves is developed. In addition, the basic forms
concerning the first and second differential forms of the surfaces were defined, through the tangent spaces defined earlier,
having mathematical meaning without any confusion, contrary to the existing procedures. Further the field theorems
have been outlined in an accurate way, that may not cause confusion in their application. The present work will help in
discussion of many applications concerning mechanics, quantum mechanics and relativity, that need a clear description
based upon the fractional differential geometry.
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