
Progr. Fract. Differ. Appl.2, No. 3, 153-168 (2016) 153

Progress in Fractional Differentiation and Applications
An International Journal

http://dx.doi.org/10.18576/pfda/020301

Solvability and Asymptotic Behavior for Some Nonlinear
Quadratic Integral Equation Involving Erdélyi-Kober
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Abstract: The paper contains some results on the existence of solutions for a nonlinear Erdélyi-Kober fractional quadratic integral
equation with deviating arguments. That result is proved under rather general hypotheses. Our equation contains the famous quadratic
integral equation of Chandrasekhar type as a special case. The main tools used in our considerations are the concept of measures of
noncompactness and the classical Schauder fixed point principle. The investigations of this equation are placed in the Banach space of
real functions, defined, continuous and bounded on an unbounded interval. Moreover, we show that solutions of this integral equation
are asymptotically stable. We give some examples for indicating the natural realizations of our results presented in this paper.
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1 Introduction

Fractional integrals and derivatives are most effective tools to characterize the nonlinear oscillations of earthquakes, real
fractal structure of matter, many physical phenomena such as seepage flow in porous media, as well as in fluid dynamic
traffic model, and the medium in many physics problems [1,2]. Especially, Erdélyi-Kober fractional integrals are a better
approach to describe the medium with non-integer mass dimension, porous media, electrochemistry and viscoelasticity
[3,4,5,6,7,8,9,10,11,12].

We recall from [11] that the Erdélyi-Kober fractional integral operatorIν,η
ζ , whereζ > 0,η > 0 andν ∈ R, for a

sufficiently well-behaved functionx(t) is given as

Iν,η
ζ x(t) =

ζ
Γ (η)

t−ζ (η+ν)
t

∫

0

sζ (ν+1)−1x(s)

(tζ − sζ )1−η ds. (1)

Particularly, if we takeν = 0, Erdélyi-Kober fractional integral operator takes the form

I0,η
ζ x(t) =

ζ
Γ (η)

t−ζη
t

∫

0

sζ−1x(s)

(tζ − sζ )1−η ds,
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or equivalently,

tζη I0,η
ζ x(t) =

ζ
Γ (η)

t
∫

0

sζ−1x(s)

(tζ − sζ )1−η ds.

Whenζ = 1, the above integral reduces to Riemann-Liouville fractional integral operator. Although there are great number
of papers about fractional differential and integral equations involving the Riemann-Liouville fractional operatoror the
Caputo fractional operator have occurred in the literature(see [13,14,15,?,16,17,18,19,20,21,22,23,24,25,26,27,28,29,
30]), only a few papers are on Erdélyi-Kober type integral equation of fractional order are studied by some researchers,
see [31,32,33,34].

In this paper, we consider the following Erdélyi-Kober fractional quadratic integral equation with deviating arguments:

x(t) = f (t,x(α(t)))+
ζg(t,x(β (t)))

Γ (η)

t
∫

0

sζ−1p(t,s)q(s,x(γ(s)),(ux)(θ (s)))
(tζ − sζ )1−η ds, (2)

wheret ∈R+ = [0,∞), 0< η < 1,ζ > 0 andu : BC(R+)→BC(R+) such that‖ux−uy‖≤ ‖x−y‖ with ‖x‖= sup{|x(t́)| :
t́ ∈ R+} for x∈ BC(R+). The spaceBC(R+) is the Banach space consisting of all real functions defined,continuous and
bounded onR+. This space is equipped with the standard norm‖x‖ = sup{|x(t)| : t ∈ R+}. Moreover, the functions
p : R+×R+ → R+,q : R+×R×R→ R, α,β ,γ,θ : R+ → R+ and f ,g : R+ ×R→ R satisfies reliable assumptions
which will be given in Section 3.

Particularly, if we takeζ = η = f (t,x) = 1, g(t,x) = x, β (t) = γ(t) = t, p(t,s) =
t

t + s
, andq(s,x,y) = φ(s)x, whereφ

is a continuous function andφ(0) = 0, then integral equation (2) has the following form

x(t) = 1+ x(t)

t
∫

0

t
t + s

φ(s)x(s)ds. (3)

The above equation (3) is the Volterra counterpart of the famous quadratic integral equation of Chandrasekhar type
appeared in many papers and monographs (see [35,36,37,38,39,40,41] for instance) which is applied in the theories of
neutron transport, radiative transfer, traffic theory, andkinetic energy of gases (cf. [36,37,38,42,43,44,45,46]).

The goal here, is to prove the existence of solutions of a nonlinear integral equation (2) in the space of real functions
which are defined, bounded and continuous on an unbounded interval. Furthermore, we will find some asymptotic
characterization of solutions of integral equation (2). The technique used here is the measure of noncompactness
associated with the Schauder fixed point principle to obtainour results.

2 Notations, Definitions and Auxiliary Facts

Let (E,‖.‖) be an infinite dimensional Banach space with the zero elementθ ′
. The symbolsX̄, ConvX will denote the

closure and convex closure of a subsetX of E, respectively. Denote byB(x, r) the closed ball centered atx and with radius
r. The symbolBr stands for the ballB(θ ′

, r). Moreover, letME indicate the family of all nonempty and bounded subsets
of E andNE indicate its subfamily consisting of all nonempty and relatively compact subsets.

The notion of measure of noncompactness [47] are as follows.

Definition 1.A mappingµ : ME → R+ is said to be a measure of noncompactness in E if it satisfies the following
conditions:

(i)The family kerµ = {X ∈ ME : µ(X) = 0 } is nonempty and kerµ ⊂ NE.
(ii)X ⊂Y ⇒ µ(X)≤ µ(Y).
(iii) µ(X̄) = µ(X).
(iv)µ(Conv X)= µ(X).
(v)µ(λX+(1−λ )Y)≤ λ µ(X)+ (1−λ )µ(Y) for λ ∈ [0,1].
(vi)If (Xn) is a sequence of closed sets fromME such that Xn+1 ⊂ Xn (n = 1,2, ...) and if limn→∞ µ(Xn) = 0, then the

intersection X∞ =
⋂∞

n=1Xn is nonempty.

The family kerµ defined in axiom (i) is called the kernel of the measure of noncompactnessµ .
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Remark.1 Let us mention that the intersection setX∞ from (vi) is a member of the kernel of the measure of noncompactness
µ . Indeed, from the inequalityµ(X∞) ≤ µ(Xn) for n = 1,2, ..., we infer thatµ(X∞) = 0, soX∞ ∈ ker µ . This property
of the intersection setX∞ will be essential in our study. Further facts concerning measures of noncompactness and their
properties may be found in [47].

Next, we gather the construction of the measure of noncompactness inBC(R+) which will be applied as main tool of
the proof of our main results (see [48,?] and some references therein).

Let us fix a nonempty and bounded subsetX of BC(R+) and numbersε > 0 andT > 0. For arbitrary functionx∈ X,
let us denote bywT(x,ε) the modulus of continuity of the functionx on the interval[0,T], i.e.,

wT(x,ε) = sup{|x(t)− x(s)| : t,s∈ [0,T], |t − s| ≤ ε}.

Further, we consider the following quantities

wT(X,ε) = sup{wT(x,ε) : x∈ X},

wT
0 (X) = lim

ε→0
wT(X,ε),

and
w0(X) = lim

T→∞
wT(X,ε).

Moreover, ift is fixed number fromR+, let us define

X(t) = {x(t) : x∈ X}

and
diamX(t) = sup{|x(t)− y(t)| : x,y∈ X}.

Finally, consider the functionµ defined on the familyMBC(R+) by the formula

µ(X) = w0(X)+ lim
t→∞

supdiamX(t). (4)

Then, the functionµ is a measure of noncompactness in the spaceBC(R+) (see [47,48]).

Remark.2 The kernel kerµ of this measure is the family of all nonempty and bounded setsX such that functions fromX
are locally equicontinuous onR+ and the thickness of the bundle generated by functions fromX tends to zero at infinity.
This property can help us in establishing the behavior of thesolutions for the fractional integral equation (2) in the next
section.

In order to introduce some other concepts used in the paper let us suppose thatΩ is a nonempty subset of the space
BC(R+). Moreover, letQ be an operator which is defined onΩ with values inBC(R+).
Consider the operator equation of the form

x(t) = (Qx)(t), t ∈ R+. (5)

Below we give the following characterizations for the solutions of the above operator equation (5) onR+ introduced in
the paper [15].

Definition 2.One says that the solutions of equation(5) are locally attractive if there exists a closed ball B(x0, r) in the
space BC(R+) such that for arbitrary solutions x= x(t) and y= y(t) of equation(5) belonging to B(x0, r)∩Ω satisfying

lim
t→∞

(x(t)− y(t)) = 0. (6)

In the case when the limit(6) is uniform with respect to the set B(x0, r)∩Ω , i.e., for eachε > 0 there exists T> 0 such
that

|x(t)− y(t)| ≤ ε, (7)

for all x,y∈B(x0, r)∩Ω and for t≥ T, then the solutions of equation(5) are uniformly locally attractive or asymptotically
stable.

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


156 L. N. Mishra et al.: Solvability and asymptotic behavior forsome nonlinear...

3 Main Results

Now we prove the main results of the paper. For that we consider the following assumptions:

(A1)The functionsf ,g : R+×R→ R are continuous and there exist continuous functionsl ,m : R+ → R+ such that

| f (t,x)− f (t,y)| ≤ l(t) |x− y|,

|g(t,x)−g(t,y)| ≤ m(t) |x− y|,
for anyt ∈R+ and for allx,y∈ R. Moreover, the functiont → f (t,0) is bounded onR+ such that

f̄ = sup{| f (t,0)| : t ∈R+},

and the functionl is also bounded onR+. Put l̄ = sup{|l(t)| : t ∈ R+}.
(A2)The functionsα,β ,γ,θ : R+ →R+ are continuous andα(t),β (t)→ ∞ ast → ∞.
(A3)The functionp : R+ ×R+ → R+ is continuous and there exists a functionsσ : R+ → R+ being continuous onR+

such that
|p(t,s)| ≤ σ(t),

for anyt,s∈ R+.
(A4)The functionq : R+×R×R→ R is continuous and there exists a functionφ : R+×R+ →R+ being continuous and

nondecreasing in each variable, withφ(0,0) = 0 and a constantξ ≥ 0 such that

|q(t,x1,y1)−q(t,x2,y2)| ≤ ξ φ(|x1− x2|, |y1− y2|),

for anyt,s∈ R+ and for allxi ,yi ∈ R (i = 1,2) .
(A5)The functionu : BC(R+)→ BC(R+) is a nonexpansive mapping, i.e.

‖ux−uy‖≤ ‖x− y‖,

for anyx,y∈ BC(R+).
(A6)The functionsa,b,c,d : R+ →R+ defined by

a(t) = ξ m(t)σ(t) tζη , b(t) = m(t)σ(t) q̄ tζη ,

c(t) = ξ σ(t) |g(t,0)| tζη , d(t) = q̄ σ(t)|g(t,0)| tζη ,

are bounded onR+, q̄ : R+ →R+ is defined by

q̄= max{|q(t,0,0)| : t ∈ R+}.

Moreover, the functionsa andc vanish at infinity, i.e., limt→∞ a(t) = limt→∞ c(t) = 0.
For brevity, define

A= sup{a(t) : t ∈ R+}, B= sup{b(t) : t ∈ R+},

C= sup{c(t) : t ∈ R+}, D = sup{d(t) : t ∈ R+}.
(A7)There exists a positive solutionr0 satisfying the following inequality

(l̄r + f̄ )Γ (1+η)+Arφ(r, r + ‖u0‖)+Br+Cφ(r, r + ‖u0‖)+D≤ rΓ (1+η),

and the inequality

l̄ +
Aφ(r0, r0+ ‖u0‖)+B

Γ (1+η)
< 1,

also holds.

Theorem 1.Under assumptions (A1 −A7), equation(2) has at least one solution x= x(t) which belongs to the space
BC(R+). Moreover, all solutions of equation(2) belonging to the ball Br0 are asymptotically stable.
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Proof.In order to prove our Theorem1, we introduce the operatorW defined on the spaceBC(R+) in the following way

(Wx)(t) = (Fx)(t)+ (Gx)(t) · (Vx)(t),

where

(Fx)(t) = f (t,x(α(t))),

(Gx)(t) = g(t,x(β (t))),

(Vx)(t) =
ζ

Γ (η)

t
∫

0

sζ−1p(t,s)q(s,x(γ(s)),(ux)(θ (s)))
(tζ − sζ )1−η ds,

We split the proof into several steps.

Step 1:We verify thatW is continuous operator.
To achieve our aim, we only need to verify that ifx ∈ BC(R+) thenWx is continuous onR+. In fact, for any function
x ∈ BC(R+), it is clear that the functionsFx andGx are continuous onR+. We only need to show that the same holds
also for the functionVx. For an arbitraryx ∈ BC(R+) and fix T > 0 andε > 0. Without loss of generality, we may
assume that 0≤ t1 < t2 ≤ T with |t2− t1| ≤ ε, then we obtain

|(Vx)(t2)− (Vx)(t1)|

≤ ζ
Γ (η)

∣

∣

∣

∣

∣

∣

t2
∫

0

sζ−1p(t2,s)q(s,x(γ(s)),(ux)(θ (s)))
(tζ

2 − sζ )1−η
ds−

t1
∫

0

sζ−1p(t2,s)q(s,x(γ(s)),(ux)(θ (s)))
(tζ

2 − sζ )1−η
ds

∣

∣

∣

∣

∣

∣

+
ζ

Γ (η)

∣

∣

∣

∣

∣

∣

t1
∫

0

sζ−1p(t2,s)q(s,x(γ(s)),(ux)(θ (s)))
(tζ

2 − sζ )1−η
ds−

t1
∫

0

sζ−1p(t1,s)q(s,x(γ(s)),(ux)(θ (s)))
(tζ

1 − sζ )1−η
ds

∣

∣

∣

∣

∣

∣

≤ ζ
Γ (η)

∣

∣

∣

∣

∣

∣

t2
∫

t1

sζ−1p(t2,s)q(s,x(γ(s)),(ux)(θ (s)))
(tζ

2 − sζ )1−η
ds

∣

∣

∣

∣

∣

∣

+
ζ

Γ (η)

∣

∣

∣

∣

∣

∣

t1
∫

0

sζ−1p(t2,s)q(s,x(γ(s)),(ux)(θ (s)))
(tζ

2 − sζ )1−η
ds

−
t1
∫

0

sζ−1p(t1,s)q(s,x(γ(s)),(ux)(θ (s)))
(tζ

2 − sζ )1−η
ds+

t1
∫

0

sζ−1p(t1,s)q(s,x(γ(s)),(ux)(θ (s)))
(tζ

2 − sζ )1−η
ds

−
t1
∫

0

sζ−1p(t1,s)q(s,x(γ(s)),(ux)(θ (s)))
(tζ

1 − sζ )1−η
ds

∣

∣

∣

∣

∣

∣

≤ ζ
Γ (η)

t2
∫

t1

sζ−1|p(t2,s)||q(s,x(γ(s)),(ux)(θ (s)))|
(tζ

2 − sζ )1−η
ds

+
ζ

Γ (η)

t1
∫

0

sζ−1|p(t2,s)− p(t1,s)||q(s,x(γ(s)),(ux)(θ (s)))|
(tζ

2 − sζ )1−η
ds
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+
ζ

Γ (η)

t1
∫

0

sζ−1|p(t1,s)||q(s,x(γ(s)),(ux)(θ (s)))|
∣

∣

∣

∣

∣

1

(tζ
2 − sζ )1−η

− 1

(tζ
1 − sζ )1−η

∣

∣

∣

∣

∣

ds

≤ ζσ(t2)
Γ (η)

t2
∫

t1

sζ−1[|q(s,x(γ(s)),(ux)(θ (s)))−q(s,0,0)|+ |q(s,0,0)|]
(tζ

2 − sζ )1−η
ds

+
ζwT

1 (p,ε)
Γ (η)

t1
∫

0

sζ−1[|q(s,x(γ(s)),(ux)(θ (s)))−q(s,0,0)|+ |q(s,0,0)|]
(tζ

2 − sζ )1−η
ds

+
ζσ(t1)
Γ (η)

t1
∫

0

sζ−1[|q(s,x(γ(s)),(ux)(θ (s)))|−q(s,0,0)|+ |q(s,0,0)|]
∣

∣

∣

∣

∣

1

(tζ
1 − sζ )1−η

− 1

(tζ
2 − sζ )1−η

∣

∣

∣

∣

∣

ds

≤ ζσT

Γ (η)

t2
∫

t1

sζ−1[ξ φ(|x(γ(s))|, |(ux)(θ (s))|)+ q̄]

(tζ
2 − sζ )1−η

ds+
ζwT

1 (p,ε)
Γ (η)

t1
∫

0

sζ−1[ξ φ(|x(γ(s))|, |(ux)(θ (s))|)+ q̄]

(tζ
2 − sζ )1−η

ds

+
ζσT

Γ (η)

t1
∫

0

sζ−1[ξ φ(|x(γ(s))|, |(ux)(θ (s))|)+ q̄] · [(tζ
1 − sζ )η−1− (tζ

2 − sζ )η−1]ds

≤ σT [ξ φ(‖x‖,‖ux‖)+ q̄]
Γ (1+η)

(tζ
2 − tζ

1 )
η +

wT
1 (p,ε)[ξ φ(‖x‖,‖ux‖)+ q̄]

Γ (1+η)
[tζη

2 − (tζ
2 − tζ

1 )
η ]

+
σT [ξ φ(‖x‖,‖ux‖)+ q̄]

Γ (1+η)
[tζη

1 − tζη
2 +(tζ

2 − tζ
1 )

η ]

≤ 2σT [ξ φ(‖x‖,‖ux‖)+ q̄]
Γ (1+η)

(tζ
2 − tζ

1 )
η +

wT
1 (p,ε)[ξ φ(‖x‖,‖ux‖)+ q̄]

Γ (1+η)
tζη
2 ,

where we denote

σT = max{σ(t) : t ∈ [0,T]},

wT
1 (p,ε) = sup{|p(t2,s)− p(t1,s)| : s, t1, t2 ∈ [0,T], |t2− t1| ≤ ε}.

Observe that the uniform continuity of the functionp(t,s) on the compact set[0,T]× [0,T], we deduce thatwT
1 (p,ε)→

0 asε → 0.
Further, keeping in mind the above estimates, we obtain

wT(Vx,ε)≤ ξ φ(‖x‖,‖ux‖)+ q̄
Γ (1+η)

[2σTεζη +wT
1 (p,ε)T

ζη ]. (8)

From the inequality (8) together with the above established facts we infer that thefunctionVx is continuous on the
interval[0,T] for anyT > 0. This proceeds the continuity ofVx onR+.

Step 2:Forx∈ R+, boundedness of the functionWxonR+.
Now, taking a functionx∈ BC(R+), for an arbitrarily fixedt ∈R+, we have

|(Wx)(t)| ≤ |(Fx)(t)|+ |(Gx)(t)| · |(Vx)(t)|

≤ | f (t,x(α(t)))− f (t,0)|+ | f (t,0)|+ ζ
Γ (η)

[|g(t,x(β (t)))−g(t,0)|+ |g(t,0)|]
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×
t

∫

0

sζ−1|p(t,s)|[|q(s,x(γ(s)),(ux)(θ (s)))−q(s,0,0)|+ |q(s,0,0)|]
(tζ − sζ )1−η ds

≤ l(t)|x(α(t))|+ f̄ +
ζ

Γ (η)
[m(t)|x(β (t))|+ |g(t,0)|]

t
∫

0

sζ−1σ(t)[ξ φ(|x(γ(s))|, |(ux)(θ (s))|+ q̄]

(tζ − sζ )1−η ds

≤ l̄‖x‖+ f̄ +
[m(t)‖x‖+ |g(t,0)|]

Γ (1+η)
σ(t)[ξ φ(‖x‖,‖ux‖)+ q̄]tζη

≤ l̄‖x‖+ f̄ +
a(t)‖x‖φ(‖x‖,‖ux‖)+b(t)‖x‖+ c(t)φ(‖x‖,‖ux‖)+d(t)

Γ (1+η)
, (9)

by using the imposed assumptions, we have the above inequalities, which shows that the functionWx is bounded onR+.

Step 3:The operatorW transforms the ballBr0 into itself.
Now, let us take

‖ux‖ ≤ ‖ux−u0‖+ ‖u0‖≤ ‖x‖+ ‖u0‖,

and the nondecreasing functionφ , from the established estimate (9), we obtain

‖Wx‖ ≤ l̄‖x‖+ f̄ +
A‖x‖φ(‖x‖,‖x‖+ ‖u0‖)+B‖x‖+Cφ(‖x‖,‖x‖+‖u0‖)+D

Γ (1+η)
.

From the above estimate and assumption(A7), we conclude that the operatorW transforms the ballBr0 into itself.

Step 4:W is continuous operator on the ballBr0.
To achieve our aim, it is sufficient to show that(Fx)(t) = f (t,x(α(t))) is continuous on the ballBr0 and

(Gx)(Vx)(t) = (Gx)(t)(Vx)(t) =
ζg(t,x(β (t)))

Γ (η)

t
∫

0

sζ−1p(t,s)q(s,x(γ(s)),(ux)(θ (s)))
(tζ − sζ )1−η ds,

is also continuous on the ballBr0.
Taking into account a sequence{xn} ⊂ Br0 such thatxn → x with x ∈ Br0. For this, first of all we have to prove that
Fxn → Fx, for t ∈ R+ and in view of assumption(A1), it follows that

|(Fxn)(t)− (Fx)(t)|= | f (t,xn(α(t)))− f (t,x(α(t)))|
≤ l(t)|xn(α(t))− x(α(t))|
≤ l̄ ‖xn− x‖.

Hence, it proves thatF is continuous on the ballBr0.
Next, we have to show that(Gxn) · (Vxn)→ (Gx) · (Vx), for t ∈ R+ and taking into account of our imposed assumptions,
we obtain

|(Gxn)(Vxn)(t)− (Gx)(Vx)(t)|=

∣

∣

∣

∣

∣

∣

ζg(t,xn(β (t)))
Γ (η)

t
∫

0

sζ−1p(t,s)q(s,xn(γ(s)),(uxn)(θ (s)))
(tζ − sζ )1−η ds

−ζg(t,x(β (t)))
Γ (η)

t
∫

0

sζ−1p(t,s)q(s,x(γ(s)),(ux)(θ (s)))
(tζ − sζ )1−η ds

∣

∣

∣

∣

∣

∣

≤ ζ |g(t,xn(β (t)))|
Γ (η)

t
∫

0

sζ−1|p(t,s)||q(s,xn(γ(s)),(uxn)(θ (s)))−q(s,x(γ(s)),(ux)(θ (s)))|
(tζ − sζ )1−η ds
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+
ζ |g(t,xn(β (t)))−g(t,x(β (t)))|

Γ (η)

t
∫

0

sζ−1|p(t,s)||q(s,x(γ(s)),(ux)(θ (s)))|
(tζ − sζ )1−η ds

≤ ζ |g(t,xn(β (t)))−g(t,0)|+ |g(t,0)|
Γ (η)

t
∫

0

sζ−1σ(t)ξ φ(|xn(γ(s))− x(γ(s))|, |(uxn)(θ (s))− (ux)(θ (s))|)
(tζ − sζ )1−η ds

+
ζm(t)|xn(β (t))− x(β (t))|

Γ (η)

t
∫

0

sζ−1σ(t)[|q(s,x(γ(s)),(ux)(θ (s)))−q(s,0,0)|+ |q(s,0,0)|]
(tζ − sζ )1−η ds

≤ m(t)|xn(β (t))|+ |g(t,0)|
Γ (1+η)

[σ(t)ξ φ(‖xn− x‖,‖uxn−ux‖)tζη ]+
m(t)‖xn− x‖

Γ (1+η)
σ(t)[ξ φ(‖x‖,‖ux‖)+ q̄]tζη

≤ m(t)‖xn‖+ |g(t,0)|
Γ (1+η)

[σ(t)ξ φ(‖xn− x‖,‖xn− x‖)tζη ]+
m(t)‖xn− x‖

Γ (1+η)
σ(t)[ξ φ(‖x‖,‖x‖+ ‖u0‖)+ q̄]tζη

≤ a(t)r0+ c(t)
Γ (1+η)

φ(‖xn− x‖,‖xn− x‖)+ a(t)φ(r0, r0+ ‖u0‖)+b(t)
Γ (1+η)

‖xn− x‖.

Combining this estimates with our assumptions(A6), we conclude that|(Gxn)(Vxn)(t)− (Gx)(Vx)(t)| → 0 when
n→ ∞. Which shows thatW is continuous on the ballBr0.

Step 5:For ϕ 6= X ⊂ Br0 andx,y∈ X, an estimate of limt→∞ supdiam(Wx)(t).
Then, fort ∈R+ and in view of imposed assumptions, it follows

|(Wx)(t)− (Wy)(t)| ≤ | f (t,x(α(t)))− f (t,y(α(t)))|+ ζ
Γ (η)

∣

∣

∣

∣

∣

∣

g(t,x(β (t)))
t

∫

0

sζ−1p(t,s)q(s,x(γ(s)),(ux)(θ (s)))
(tζ − sζ )1−η ds

−g(t,y(β (t)))
t

∫

0

sζ−1p(t,s)q(s,y(γ(s)),(uy)(θ (s)))
(tζ − sζ )1−η ds

∣

∣

∣

∣

∣

∣

≤ l(t)|x(α(t))− y(α(t))|+ ζ |g(t,x(β (t)))−g(t,y(β (t)))|
Γ (η)

t
∫

0

sζ−1|p(t,s)||q(s,x(γ(s)),(ux)(θ (s)))|
(tζ − sζ )1−η ds

+
ζ |g(t,y(β (t)))|

Γ (η)

t
∫

0

sζ−1|p(t,s)||q(s,x(γ(s)),(ux)(θ (s)))−q(s,y(γ(s)),(uy)(θ (s)))|
(tζ − sζ )1−η ds

≤ l(t)diamX(α(t))+
ζm(t)|x(β (t))− y(β (t))|

Γ (η)

t
∫

0

sζ−1σ(t)[|q(s,x(γ(s)),(ux)(θ (s)))−q(s,0,0)|+ |q(s,0,0)|]
(tζ − sζ )1−η ds

+
ζ [|g(t,y(β (t)))−g(t,0)|+ |g(t,0)|]

Γ (η)

t
∫

0

sζ−1σ(t)ξ φ(|x(γ(s))− y(γ(s))|, |(ux)(θ (s))− (uy)(θ (s))|)
(tζ − sζ )1−η ds

≤ l(t)diamX(α(t))+
ζm(t)|x(β (t))− y(β (t))|

Γ (η)

t
∫

0

sζ−1σ(t)[ξ φ(|x(γ(s))|, |(ux)(θ (s))|)+ q̄]

(tζ − sζ )1−η ds

+
ζσ(t)ξ [m(t)|y(β (t))|+ |g(t,0)|]

Γ (η)

t
∫

0

sζ−1φ(‖x− y‖,‖ux−uy‖)
(tζ − sζ )1−η ds
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≤ l(t)diamX(α(t))+
ζm(t)ξ σ(t)(|x(β (t))|+ |y(β (t))|)

Γ (η)

t
∫

0

sζ−1φ(‖x‖,‖ux‖)
(tζ − sζ )1−η ds

+
ζm(t)σ(t)q̄|x(β (t))− y(β (t))|

Γ (η)

t
∫

0

sζ−1

(tζ − sζ )1−η ds+
ζm(t)ξ σ(t)|y(β (t))|

Γ (η)

t
∫

0

sζ−1φ(‖x− y‖,‖x− y‖)
(tζ − sζ )1−η ds

+
ζσ(t)ξ |g(t,0)|

Γ (η)

t
∫

0

sζ−1φ(‖x− y‖,‖x− y‖)
(tζ − sζ )1−η ds

≤ l(t)diamX(α(t))+
2m(t)ξ σ(t)r0φ(r0, r0+ ‖u0‖)tζη

Γ (1+η)
+

m(t)σ(t)q̄tζη

Γ (1+η)
diamX(β (t))

+
m(t)ξ σ(t)r0φ(2r0,2r0)tζη

Γ (1+η)
+

ξ σ(t)|g(t,0)|φ(2r0,2r0)tζη

Γ (1+η)

≤ l(t)diamX(α(t))+
2a(t)r0φ(r0, r0+ ‖u0‖)

Γ (1+η)
+

b(t)
Γ (1+η)

diamX(β (t))+
a(t)r0φ(2r0,2r0)

Γ (1+η)
+

c(t)φ(2r0,2r0)

Γ (1+η)
.

From the above estimate, we derive the following inequality

diam(Wx)(t)≤ l(t)diamX(α(t))+
b(t)

Γ (1+η)
diamX(β (t))+

2a(t)r0

Γ (1+η)
φ(r0, r0+ ‖u0‖)+ a(t)r0+ c(t)

Γ (1+η)
φ(2r0,2r0).

Keeping in mind assumption(A6), we have

lim
t→∞

supdiam(WX)(t)≤
(

l̄ +
B

Γ (1+η)

)

lim
t→∞

supdiam(X)(t). (10)

Step 6:For ϕ 6= X ⊂ Br0, an estimate ofw0(Wx).
Fix ε > 0 andx∈ X, for T > 0 we chooset1, t2 ∈ [0,T] such that|t2− t1| ≤ ε and assume thatt1 < t2. Then, taking into
account of our imposed assumptions and using the previouslyobtained estimate (8), we get

|(Wx)(t2)− (Wx)(t1)| ≤ | f (t2,x(α(t2)))− f (t1,x(α(t1)))|+ |(Gx)(t2)(Vx)(t2)− (Gx)(t1)(Vx)(t1)|
≤ | f (t2,x(α(t2)))− f (t2,x(α(t1)))|+ | f (t2,x(α(t1)))− f (t1,x(α(t1)))|

+ |(Gx)(t2)(Vx)(t2)− (Gx)(t1)(Vx)(t2)|+ |(Gx)(t1)(Vx)(t2)− (Gx)(t1)(Vx)(t1)|
≤ l(t2)|x(α(t2))− x(α(t1))|+wT

1 ( f ,ε)+ |(Gx)(t2)− (Gx)(t1)||(Vx)(t2)|
+ |(Gx)(t1)||(Vx)(t2)− (Vx)(t1)|

≤ l(t2)w
T(x,vT(α,ε))+wT

1 ( f ,ε)+
ζ |g(t2,x(β (t2)))−g(t1,x(β (t1)))|

Γ (η)
t2
∫

0

sζ−1|p(t2,s)||q(s,x(γ(s)),(ux)(θ (s)))|
(tζ

2 − sζ )1−η
ds+ |g(t1,x(β (t1)))|wT(Vx,ε)

≤ l(t2)w
T(x,vT(α,ε))+wT

1 ( f ,ε)

+
ζ [|g(t2,x(β (t2)))−g(t2,x(β (t1)))|+ |g(t2,x(β (t1)))−g(t1,x(β (t1)))|]

Γ (η)
t2
∫

0

sζ−1σ(t2)[q(s,x(γ(s)),(ux)(θ (s)))−q(s,0,0)|+ |q(s,0,0)|]
(tζ

2 − sζ )1−η
ds

+[|g(t1,x(β (t1)))−g(t1,0)|+ |g(t1,0)|]wT(Vx,ε)
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≤ l(t2)w
T(x,vT(α,ε))+wT

1 ( f ,ε)

+
ζ [m(t2)|x(β (t2))− x(β (t1))|+wT

1 (g,ε)]σ(t2)
Γ (η)

t2
∫

0

sζ−1[ξ φ(|x(γ(s))|, |(ux)(θ (s))|)+ q̄]

(tζ
2 − sζ )1−η

ds

+
[m(t1)|x(β (t1))|+ |g(t1,0)|][ξ φ(‖x‖,‖ux‖)+ q̄]

Γ (1+η)
[2σTεζη +wT

1 (p,ε)T
ζη ]

≤ l(t2)w
T(x,vT(α,ε))+wT

1 ( f ,ε)

+
[m(t2)wT(x,vT(β ,ε))+wT

1 (g,ε)]σ(t2)
Γ (1+η)

[ξ φ(‖x‖,‖ux‖)+ q̄]tζη
2

+
[m(t1)‖x‖+ |g(t1,0)|]

Γ (1+η)
[ξ φ(‖x‖,‖ux‖)+ q̄][2σTεζη +wT

1 (p,ε)T
ζη ]

≤ l(t2)w
T(x,vT(α,ε))+wT

1 ( f ,ε)+
a(t2)φ(r0, r0+ ‖u0‖)+b(t2)

Γ (1+η)
wT(x,vT(β ,ε))

+
ξ Tζη φ(r0, r0+ ‖u0‖)+ q̄Tζη

Γ (1+η)
σTwT

1 (g,ε)

+
m̄(T)r0+ ḡ(T)

Γ (1+η)
[ξ φ(r0, r0+ ‖u0‖)+ q̄][2σTεζη +wT

1 (p,ε)T
ζη ], (11)

where we denote

wT
1 ( f ,ε) = sup{| f (t2,x)− f (t1,x)| : t1, t2 ∈ [0,T], |t2− t1| ≤ ε,x∈ [−r0, r0]},

wT
1 (g,ε) = sup{|g(t2,x)−g(t1,x)| : t1, t2 ∈ [0,T], |t2− t1| ≤ ε,x∈ [−r0, r0]},

vT(α,ε) = sup{|α(t2)−α(t1)| : t1, t2 ∈ [0,T], |t2− t1| ≤ ε},
vT(β ,ε) = sup{|β (t2)−β (t1)| : t1, t2 ∈ [0,T], |t2− t1| ≤ ε},

m̄(T) = max{m(t) : t ∈ [0,T]},
ḡ(T) = max{|g(t,0)| : t ∈ [0,T]}.

Now, using the uniform continuity of the functionsf (t,x) andg(t,x) on the set[0,T]× [−r0, r0], we derivewT
1 ( f ,ε)

andwT
1 (g,ε)→ 0 asε → 0. Hence, from the estimate (11), we conclude

wT
0 (WX)≤

(

l̄ +
Aφ(r0, r0+ ‖u0‖)+B

Γ (1+η)

)

wT
0 (X).

Consequently,

w0(WX)≤
(

l̄ +
Aφ(r0, r0+ ‖u0‖)+B

Γ (1+η)

)

w0(X). (12)

Step 7:W is contraction with respect to the measure of noncompactnessµ .
Combining the estimates (10) and (12) and keeping in mind the definition of the measure of noncompactnessµ given by
the formula (4), we deduce the following inequality

µ(WX) = w0(WX)+ lim
t→∞

supdiam(WX)(t)

≤
(

l̄ +
Aφ(r0, r0+ ‖u0‖)+B

Γ (1+η)

)

w0(X)+

(

l̄ +
B

Γ (1+η)

)

lim
t→∞

supdiam(X)(t)

≤
(

l̄ +
Aφ(r0, r0+ ‖u0‖)+B

Γ (1+η)

)

(w0(X)+ lim
t→∞

supdiam(X)(t))

µ(WX)≤
(

l̄ +
Aφ(r0, r0+ ‖u0‖)+B

Γ (1+η)

)

µ(X). (13)
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Obviously, in view of assumption(A7), we have that

l̄ +
Aφ(r0, r0+ ‖u0‖)+B

Γ (1+η)
< 1.

From the above results, it is clear thatWX is a contraction with respect to the measure of noncompactnessµ .

Step 8:Construction of a nonempty, bounded, closed and convex setY.
Then, we will employ a fixed point theorem on the setY. Further, let us assume that the sequence(Bn

r0
), where

B1
r0
= ConvW(Br0), B2

r0
= ConvW(B1

r0
), and so on. Observe that this sequence is decreasing, i.e.Bn+1

r0
⊂ Bn

r0
⊂ Br0 for

n = 1,2, ..., and also the sets of this sequence are nonempty, bounded, closed and convex. Thus, taking into account of
estimate (13), we conclude that limn→∞ µ(Bn

r0
) = 0. Further, keeping in mind the axiom (vi) of Definition1, we infer that

the setY =
⋂∞

n=1Bn
r0

is nonempty, bounded, convex and closed subset ofBr0. Furthermore, in view of Remark1, we have
thatY ∈ ker µ .

Particularly,

lim
t→∞

supdiam Y(t) = lim
t→∞

diam Y(t) = 0. (14)

Also, observe that the operatorW transforms the setY into itself.

Step 9:Continuity ofW on the setY.
Fix ε > 0 and take arbitrary functionsx,y ∈ Y such that‖x− y‖ ≤ ε. Follows equation (14) and the fact thatWY⊂ Y,
there existsT > 0 such that for allx,y∈Y andt ≥ T we have that|x(t)− y(t)| ≤ ε.
Since,W transformsY into itself, we haveWx,Wy∈Y. Thus fort ≥ T we obtain

|(Wx)(t)− (Wy)(t)| ≤ ε. (15)

Now we have to examine the caset ∈ [0,T]. Taking into account of our assumptions, after some standard computations,
we obtain

|(Wx)(t)− (Wy)(t)| ≤ l(t)|x(α(t))− y(α(t))|

+
ζm(t)σ(t)|x(β (t))− y(β (t))|

Γ (η)

t
∫

0

sζ−1[ξ φ(|x(γ(s))|, |(ux)(θ (s))|)+ q̄]

(tζ − sζ )1−η ds

+
ζ [m(t)|y(β (t))|+ |g(t,0)|]σ(t)ξ

Γ (η)

t
∫

0

sζ−1φ(|x(γ(s))− y(γ(s))|, |(ux)(θ (s))− (uy)(θ (s))|)
(tζ − sζ )1−η ds

≤ l(t)ε +
ζm(t)σ(t)[ξ φ(r0, r0+ ‖u0‖)+ q̄]

Γ (η)
ε

t
∫

0

sζ−1

(tζ − sζ )1−η ds

+
ζ [m(t)r0+ |g(t,0)|]σ(t)ξ φ(ε,‖ux−uy‖)

Γ (η)

t
∫

0

sζ−1

(tζ − sζ )1−η ds

≤ l(t)ε +
ξ m(t)σ(t)φ(r0, r0+ ‖u0‖)tζη

Γ (1+η)
ε +

m(t)σ(t)q̄tζη

Γ (1+η)
ε +

m(t)σ(t)ξ r0φ(ε,‖x− y‖)tζη

Γ (1+η)

+
σ(t)ξ |g(t,0)|φ(ε,‖x− y‖)tζη

Γ (1+η)

≤ l(t)ε +
a(t)φ(r0, r0+ ‖u0‖)

Γ (1+η)
ε +

b(t)
Γ (1+η)

ε +
a(t)r0φ(ε,ε)

Γ (1+η)
+

c(t)φ(ε,ε)
Γ (1+η)

≤
(

l̄ +
Aφ(r0, r0+ ‖u0‖)+B

Γ (1+η)

)

ε +
(

Ar0+C
Γ (1+η)

)

φ(ε,ε). (16)
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In view of equation (15), (16) and taking into account the assumption(A6), we conclude that the operatorW is
continuous on the setY.

Finally, taking into account all the above obtained facts about the setY and the operatorW : Y →Y established above
and using the classical Schauder fixed point principle we deduce that the operatorW has at least one fixed pointx= x(t) in
the setY. Hence, the functionx(t) is a solution of the Erdélyi-Kober fractional quadratic integral equation (2). Moreover,
keeping in mind the fact thatY ∈ ker µ and characterization of sets belonging to kerµ , we have that all solutions of
equation (2) belonging to the ballBr0 are asymptotically stable in the sense of Definition2.

4 Examples

In this section, we provide two examples to illustrate the usefulness of our main results.
Firstly, we give an example of functionu : BC(R+)→ BC(R+) illustrating the assumption(A5) of Theorem1.

Example 1.Let a given functionx∈ BC(R+) then

(Sx)(θ (t́)) = max{|x(θ (t))| : 0≤ t ≤ t́},

is a function belonging toBC(R+).

In this way, It becomes as follows,

|(Sx)(θ (t́))|= |max{|x(θ (t))| : 0≤ t ≤ t́}|
≤ ‖x|t∈[0,t́]‖
≤ ‖x‖.

From the above, it is clear that the functionSxis bounded onR+.
Next, we have to show thatSxis continuous function onR+. To do this, let us take arbitrary numbersT > 0 andε > 0.
Fix T > 0 andt1, t2 ∈ [0,T] such that|t2− t1| ≤ ε, assume thatt1 < t2. Since,Sxis nondecreasing function, we obtain

|(Sx)(θ (t2))− (Sx)(θ (t1))|= (Sx)(θ (t2))− (Sx)(θ (t1))
= max{|x(θ (t))| : 0≤ t ≤ t2}−max{|x(θ (t))| : 0≤ t ≤ t1}
= |x(θ (δ1))|− |x(θ (δ2))|,

whereδ1 ≤ t2 andδ2 ≤ t1.
Now, we assume thatδ1 ≤ t1 then we have that(Sx)(θ (t2)) = (Sx)(θ (t1)) and|(Sx)(θ (t2))− (Sx)(θ (t1))|= 0.

If t1 < δ1 ≤ t2, we obtain

|(Sx)(θ (t2))− (Sx)(θ (t1))|= |x(θ (δ1))|− |x(θ (δ2))|
≤ |x(θ (δ1))|− |x(θ (t1))|
≤ |x(θ (δ1))− x(θ (t1))|,

we have alsoδ1− t1 ≤ t2− t1 ≤ ε. Thus,

|(Sx)(θ (t2))− (Sx)(θ (t1))| ≤ |x(θ (δ1))− x(θ (t1))|
wT(Sx,vT

1 (θ ,ε))≤ wT(x,vT
2 (θ ,ε)),

where
vT

1 (θ ,ε) = sup{|θ (t2)−θ (t1)| : t1, t2 ∈ [0,T], |t2− t1| ≤ ε},

vT
2 (θ ,ε) = sup{|θ (δ1)−θ (t1)| : t1,δ1 ∈ [0,T], |δ1− t1| ≤ ε}.

From the above estimates together with continuity of functionx on the interval[0,T], we conclude

wT
0 (SX)≤ wT

0 (X).
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In view of the above established facts we conclude thatSxis continuous on[0,T] for anyT > 0. Hence,Sx∈ BC(R+).
Furthermore, for anyx,y∈ BC(R+), we obtain

|(Sx)(θ (t́))− (Sy)(θ (t́))|=
∣

∣max{|x(θ (t))| : 0≤ t ≤ t́}−max{|y(θ (t))| : 0≤ t ≤ t́}
∣

∣

≤
∣

∣‖x|t∈[0,t́]‖−‖y|t∈[0,t́]‖
∣

∣

≤ ‖x− y|t∈[0,t́]‖
≤ ‖x− y‖.

Hence,
‖Sx−Sy‖≤ ‖x− y‖.

Which shows thatS is a nonexpansive mapping inBC(R+).

Now, we present a numerical example as an application of Theorem1.

Example 2.Consider the following quadratic integral equation with Erdélyi-Kober fractional operator:

x(t) =
t4+ν arctan(x(t/7))

6+11t4 +
3
2

(

t3/2e−2t + t1/2x(t/4)
)

Γ (2/3)

t
∫

0

e−3t

(1+s) ln

(

1+ |x(s/3)|
2 + 1

2 max
0≤t́≤s

|x(t́/5)|
)

√
s(t3/2− s3/2)1/3

ds, (17)

wheret ∈R+ andν is a positive constant.
Observe that the above equation can be treated as a particular case of equation (2) if we put
η = 2/3,ζ = 3/2,α(t) = t/7,β (t) = t/4,γ(t) = t/3,θ (t) = t/5 and

f (t,x) =
t4+ν arctanx

6+11t4 ,

g(t,x) = t3/2e−2t + t1/2x,

p(t,s) =
e−3t

1+ s
,

q(t,x,y) = ln

(

1+
|x|+ y

2

)

,

andux= Sx, whereS is nonexpansive mapping satisfies assumption(A5) of Theorem1 as shown in Example1.
It is easily seen that the functionsα(t),β (t),γ(t) andθ (t) satisfy assumption(A2).

In fact, we have that the functionsf (t,x) andg(t,x) are continuous functions onR+×R, for anyt ∈R+ andx,y∈R,
we get

| f (t,x)− f (t,y)| ≤ ν
6+11t4 |arctanx−arctany| ≤ ν

6+11t4 |x− y|,

and
|g(t,x)−g(t,y)|= t1/2|x− y|.

Thus, from the above we havel(t) =
ν

6+11t4 andm(t) = t1/2. Clearly, f (t,0) =
t4

6+11t4 , f̄ =
1
11

andl(t) is bounded

function onR+ with l̄ =
ν
6

. Hence, assumption(A1) of Theorem1 is satisfied.

Further observe that the functionp(t,s) satisfies assumption(A3) with σ(t) = e−3t . Now, to check that assumption(A4)
is satisfied, fort ∈ R+ andxi ,yi ∈ R (i = 1,2).

|q(t,x1,y1)−q(t,x2,y2)|=
∣

∣

∣

∣

ln

(

1+
|x1|+ y1

2

)

− ln

(

1+
|x2|+ y2

2

)∣

∣

∣

∣

≤
∣

∣

∣

∣

|x1|+ y1

2
− |x2|+ y2

2

∣

∣

∣

∣

≤ 1
2
[||x1|− |x2||+ |y1− y2|]

≤ 1
2
[|x1− x2|+ |y1− y2|].

c© 2016 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


166 L. N. Mishra et al.: Solvability and asymptotic behavior forsome nonlinear...

Thus, assumption(A4) of Theorem1 is satisfied and hence we getξ =
1
2

andφ(a1,b1) = a1 + b1 with φ(0,0) = 0.

Moreover,|g(t,0)|= t3/2e−2t .
Next, we have to verify that the assumption(A6) is satisfied, let us note that the functionsa,b,c andd appearing in that
assumption takes the form

a(t) =
1
2

e−3tt3/2, b(t) = 0,

c(t) =
1
2

e−5tt5/2, d(t) = 0.

Clearly,q(t,0,0) = 0 andq̄= 0. It is easily seen thata(t)→ 0 ast → ∞ andA=

(

1
2

)5/2

e−3/2. Moreover, we have that

B= 0. Further, it is also easy to check thatc(t)→ 0 ast → ∞ andC =

(

1
2

)7/2

e−5/2, andD = 0. Thus, the assumption

(A6) of Theorem1 is satisfied.
Further, the inequality from the assumption(A7) of Theorem1 has the form

(

ν
6

r +
1
11

)

Γ (5/3)+Ar.2r +C.2r ≤ rΓ (5/3). (18)

Hence, taking into account thatΓ (5/3)≃ 0.902745, we have that the numberr0 = 1 is a solution of the inequality (18) if
we takeν = 1.
Moreover, the second inequality of assumption(A7) of Theorem1 is also satisfied.
Finally, by Theorem1, we conclude that equation (17) has at least one solution in the spaceBC(R+) belonging to the ball
Br0 providedν = 1 and all solutions of integral equation (17) which belongs to ballBr0 are asymptotically stable in the
sense of Definition2.
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