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Abstract: The paper contains some results on the existence of saufiiwra nonlinear Erdélyi-Kober fractional quadratic el
equation with deviating arguments. That result is provedieumather general hypotheses. Our equation containsteufaquadratic
integral equation of Chandrasekhar type as a special cagemain tools used in our considerations are the concept aumes of
noncompactness and the classical Schauder fixed poinfgean€he investigations of this equation are placed in thed&h space of
real functions, defined, continuous and bounded on an umisolimterval. Moreover, we show that solutions of this inéégquation
are asymptotically stable. We give some examples for ittidigahe natural realizations of our results presentedigghper.
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1 Introduction

Fractional integrals and derivatives are most effectiwdstto characterize the nonlinear oscillations of eartkgaareal
fractal structure of matter, many physical phenomena sad®apage flow in porous media, as well as in fluid dynamic
traffic model, and the medium in many physics problem2][ Especially, Erdélyi-Kober fractional integrals are etter
approach to describe the medium with non-integer mass dilmenporous media, electrochemistry and viscoelasticity
[3,4,5,6,7,8,9,10,11,12].

We recall from [L1] that the Erdélyi-Kober fractional integral operaﬂ@(r”, where > 0,n > 0 andv € R, for a

sufficiently well-behaved functior(t) is given as

t
vy — L amew [V ()
|an(t)_l_(n)t n+ 0/ R ds (1)

Particularly, if we takey = 0, Erdélyi-Kober fractional integral operator takes thenf

120%(t) = ¢ t—f”/t s x(s) ds
¢ OGS

* Corresponding author e-makkavi.Agarwal@tamuk.edu

(@© 2016 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/pfda/020301

154 NS 2 L. N. Mishra et al.: Solvability and asymptotic behavior fmme nonlinear...

or equivalently,

t
R ¢ / $lx(s)
e, X(t) HO) J = ds

When( =1, the above integral reduces to Riemann-Liouville frawiontegral operator. Although there are great number
of papers about fractional differential and integral eureg involving the Riemann-Liouville fractional operatar the
Caputo fractional operator have occurred in the literatsee [L3,14,15,7,16,17,18,19,20,21,22,23,24,25,26,27,28,29,
30]), only a few papers are on Erdélyi-Kober type integralaopn of fractional order are studied by some researchers,
see B1,32,33,34].

In this paper, we consider the following Erdélyi-Koberdtianal quadratic integral equation with deviating arguise

t
_ Z9(t.X(B(1)) [ S p(t,s)a(s x(y(s)). (uX)(6(s)))
() = T(tx(a) + S0 / P d

wheret € R = [0,),0< n <1,{ >0andu: BC(R; ) — BC(R. ) such thatjux—uy|| < [|x—y|| with ||| = sup{|x(f)| :

t € R} forx € BC(R,). The spac®C(R, ) is the Banach space consisting of all real functions deficedtinuous and
bounded orR;. This space is equipped with the standard ndsdh = sup{|x(t)| : t € R4 }. Moreover, the functions
p:Ry xRy Ry, q: Ry xRxR—=R, a,B,y,06: Ry - R, andf,g: R, x R — R satisfies reliable assumptions
which will be given in Section 3.

Particularly, if we takel = n = f(t,x) =1, g(t,x) =%, B(t) = y(t) =t, p(t,s) = %s andq(s,x,y) = @(s)x, whereg
is a continuous function ang(0) = 0, then integral equatior2) has the following form

S (2

t

X(t) = 1+ x(t) / &S P(s)x(9)ds 3)
0

The above equatior3] is the \Volterra counterpart of the famous quadratic irdegquation of Chandrasekhar type
appeared in many papers and monographs @&86,37,38,39,40,41] for instance) which is applied in the theories of
neutron transport, radiative transfer, traffic theory, kimetic energy of gases (cf36,37,38,42,43,44,45,46)).

The goal here, is to prove the existence of solutions of aineat integral equatior®] in the space of real functions
which are defined, bounded and continuous on an unbounderd/aht Furthermore, we will find some asymptotic
characterization of solutions of integral equatid). (The technique used here is the measure of noncompactness
associated with the Schauder fixed point principle to obtainresults.

2 Notations, Definitions and Auxiliary Facts

Let (E, |.||) be an infinite dimensional Banach space with the zero ele@ieffthe symbolsX, ConvX will denote the
closure and convex closure of a subXeif E, respectively. Denote bg(x,r) the closed ball centeredxand with radius
r. The symboB; stands for the baB(e’, r). Moreover, letZ¢ indicate the family of all nonempty and bounded subsets
of E and./g indicate its subfamily consisting of all nonempty and rigklyy compact subsets.

The notion of measure of noncompactnetg pre as follows.

Definition 1.A mappingu : .#g — R, is said to be a measure of nhoncompactness in E if it satisfiedalfowing
conditions:

(i)The family keru = {X € .#¢ : u(X) =0 } is nonempty and keu C ¢.
(X Y = p(X) < p(Y).
(if) 11 (X) = p(X).
(iv)u(Conv X)= u(X).
MHAX+(L=2)Y) <ApX)+ (L—=A)u(Y) for A €[0,1].
(Vi)If (Xn) is a sequence of closed sets frost such that X.1 C X, (n=1,2,...) and iflimp. 4 (Xn) = O, then the
intersection % = N7_1 Xn is nonempty.

The family ket defined in axiom (i) is called the kernel of the measure of nongactness.
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Remarkl Let us mention that the intersection Xgtfrom (vi) is a member of the kernel of the measure of noncorimess

u. Indeed, from the inequality (X ) < p(Xy) for n=1,2,..., we infer thatu(X») = 0, s0X. € ker . This property

of the intersection s, will be essential in our study. Further facts concerning sneas of noncompactness and their
properties may be found idF].

Next, we gather the construction of the measure of noncotneas inBC(R.) which will be applied as main tool of
the proof of our main results (se4q,?] and some references therein).

Let us fix a nonempty and bounded subseif BC(R,) and numbers > 0 andT > 0. For arbitrary functiox € X,
let us denote bw' (x, ) the modulus of continuity of the functionon the interval0, T, i.e.,

W' (x,€) = sup{|x(t) —x(s)| :t,s€ [0, T], [t — 5 < &}.
Further, we consider the following quantities
w' (X, &) = supw' (x,€) : x € X},

wg (X) = LiLnOWT (X,¢€),
and
Wo(X) = lim w' (X, g).
—»00

Moreover, ift is fixed number fronRR ,, let us define
X(t) = {x(t) : xe X}
and
diamX(t) = sup{|x(t) — y(t)| : X,y € X}.

Finally, consider the functiop defined on the familyZpcr . ) by the formula
©(X) :WO(X)+tIi_r>rgosupdiamX(t). 4)

Then, the functioru is a measure of noncompactness in the s, ) (see f17,48]).

Remark2 The kernel ke of this measure is the family of all nonempty and boundedXetsch that functions fronx
are locally equicontinuous dR. and the thickness of the bundle generated by functions ¥dends to zero at infinity.
This property can help us in establishing the behavior oftiiations for the fractional integral equatia?) {n the next
section.

In order to introduce some other concepts used in the papeslsuppose thal is a nonempty subset of the space
BC(R.). Moreover, letQ be an operator which is defined éhwith values inBC(R.).
Consider the operator equation of the form

X(t) = (QX)(t),t e Ry. ()

Below we give the following characterizations for the swlos of the above operator equatids) 6n R, introduced in
the paper15].

Definition 2.0ne says that the solutions of equati®) are locally attractive if there exists a closed bal(Xg,r) in the
space BCR ;) such that for arbitrary solutions x x(t) and y= y(t) of equation(5) belonging to Bxp,r) N Q satisfying

lim (x(t) — y(t)) = 0. (6)

t—oo0
In the case when the lim{®) is uniform with respect to the se{’®,r) N Q, i.e., for eache > 0 there exists T> 0 such

that
x(t) —y(t)| <&, @)

forall x,y € B(Xo,r)NQ and fort> T, then the solutions of equati@®) are uniformly locally attractive or asymptotically
stable.
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3 Main Results

Now we prove the main results of the paper. For that we condiigefollowing assumptions:

(A1)The functionsf,g: Ry x R — R are continuous and there exist continuous functioms R, — R such that
(%) — FEt,y)[ < 1) [x=Yl,
lg(t,x) —g(t,y)| <m(t) [x—-VY],
for anyt € R and for allx,y € R. Moreover, the function — f(t,0) is bounded ofR ;. such that
f =sup{|f(t,0)] :teR,},

and the function is also bounded oR, . Putl = sup{|I(t)| :t € R, }.

(A2)The functions, 3,y,0 : R, — R are continuous and(t), 3(t) — c ast — co.

(Ag)The functionp: Ry x Ry — Ry is continuous and there exists a functiansR; — R being continuous oft ;
such that

Pt s)| < a(t),

for anyt,se R;.
(A4)The functiong: R x R x R — R is continuous and there exists a functipnR; x R, — R, being continuous and
nondecreasing in each variable, wit0,0) = 0 and a constarg > 0 such that

la(t, xe,y1) —a(t, x2,y2)| < & @(|x1 — X2/, [y1 — yo|),

foranyt,se R, and forallx,yi e R (i=1,2) .
(As)The functionu: BC(R. ) — BC(R..) is a nonexpansive mapping, i.e.

[Jux—uy|| < [jx =y,

for anyx,y € BC(R. ).
(As)The functions,b,c,d : R, — R, defined by

a(t) = Emt)a(t) t", b(t)=m(t)a(t) qt",

c(t) =& a(t) [g(t,0)|t*", d(t) =qa(t)[g(t,0)t",
are boundedof® ., q: R, — R, is defined by
g=max{|q(t,0,0)|:t e R }.

Moreover, the functiona andc vanish at infinity, i.e., life a(t) = limi_. c(t) = 0.
For brevity, define

A=supa(t):teR;}, B=supb(t):teR;},
C=supc(t):tcRy}, D=sup{d(t):teR:}.

(A7)There exists a positive solutiop satisfying the following inequality
(Ir + ) (14 1) +Arg(r,r + |uO||) + Br +Ce(r,r + [|u0|)) + D < rI (1+n),

and the inequality

e Ap(ro,ro -+ [|u0l)) +B <1

r(1+n) ’

also holds.

Theorem 1Under assumptions (A~ A7), equation(2) has at least one solution % x(t) which belongs to the space
BC(R.). Moreover, all solutions of equatigi2) belonging to the ball B are asymptotically stable.
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ProofIn order to prove our Theoref we introduce the operatdV defined on the spad&C(R ) in the following way

(WX)(t) = (FX)(t) + (GX)(1) - (VX)(1),

where

(Fx)(t) = f(t,x(a (1)),

(GX)(t) = 9(t,x(B(1))),

b1
(VX)(t) = Z)/sZ p(t,s)cg(s,x(y(s)),(ux)(e(s)))d

rn) )i S
We split the proof into several steps.

Step 1:We verify thatW is continuous operator.

To achieve our aim, we only need to verify thakiE BC(R..) thenW xis continuous orR . In fact, for any function

x € BC(Ry), it is clear that the functionsx andGx are continuous oiR ;. We only need to show that the same holds
also for the functiorV x. For an arbitraryx € BC(R) and fix T > 0 ande > 0. Without loss of generality, we may
assume that & t; <t, < T with |t —t1] < g, then we obtain

(VX (t2) = (VX)(ta)|

¢ /sZ pltz,9)a(s X(¥(5)). (1) (6(5))) ds_7sz—lpaz,s)q(s,x(v(s)),(ux)(ﬂs)))%

- r(n) 0 (tZZ _Sz)lin 0 (tZZ _Sz)lin

L@ /sZ LGSO ><e<s>>>ds_7sz—lpal,s)q(s,x(v(s)),<ux><e<s>>>d%

rn) 0 ( —s0)1- (tf—sz)1*’7

0

S

/SZ "p(t2,9a(s X(1(5)), (W) (6(9)))

rn) (t5 —0)1n (t — &)1n

/SZ "p(t2,9a(s X(1(3)), (W) (8(9)) L ¢
r(n)

t1 0

/sZ "p(t1, (S X(¥(5). (W(8(9) 4, /sZ "p(t2. A X(V(5). (W (B(5)))
/ (t5 — )10 (t5 — )10

S

/sZ "p(ts. A X(¥(8). (W (B(5))
; (tf —s6)i-n

P / S 1p(t2,9)la(s X(¥(9), (W (B(3)]

rmy (tg —)2n
6]
¢ [ S Hp(tz;s) — p(t,9)la(s X(V(9), (U (6(9))|
+I'(n>/ (t§ — LN @
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6]

4 _ 1 1

+WO/SZ Yp(te,9)lla(s x(y(s)), (uX)(8(s)))] &) _(tf—sz)l—'l ds
< {a(t2) /tzSz_l[IQ(SaX(V(S))a(UX)(Q(S))) —q(s,0,0)[ +|a(s, 0, O)”ds

rn) (t5 —f)tn
n {wi (p.€) /tlszl[IQ(S,X(V(S)), (ux)(8(s))) —d(s.0,0)| +[q(s, 0, O)”ds

r(n) (t5 —s%)t-n

{o(ty) t 1 1

-1 _
) /SZ [la(s,x(y(s)), (ux)(6(s)))[ — a(s,0,0)| +[a(s, 0,0)]] ds

-~ ()b

to 6]
{or [ SHEP(X(v(9))];1(ux)(6(s))]) +a] qwi(p,e) [ HE@(X(Y(9)], [(uX)(8(s)]) +q]
< ”’”J o as+ <P O/ o ds

{or

ty
0 /SZ—1[5§0(|X(V(S))|7|(UX)(9(S))|)+dj.[(tf_sf)n—l_(tzz_sg)n_l]ds

[Efp(HXII IIUXI\)H—{[(tZ tz)n+W1(p, &)[E @I, [lux) +d

[t (t5 —t{)"]

- r(l1+n) r(1+n)
or[Ee(|IX[, ux]) +a] .zn ¢ Z 0w
+ rii+n) [ty 1 t2”4'“2 —t7)"]
20t [EQUIXL XD+ ¢ ¢vn , WL(R,E)[E@(IXI], lux]) + ] <
e A U i g

where we denote
or =max{o(t):te[0,T|},

wj (p,€) = sup{|p(tz,S) — p(t1,9)| : S,tr,t2 € [0, T], [t —ta] < €}

Observe that the uniform continuity of the functipft, s) on the compact s¢®, T| x [0, T], we deduce that] (p, &) —
0 ase — 0.

Further, keeping in mind the above estimates, we obtain

. E(IIx]. [lux) + G
W (vxe) < LI

207 + W] (p,&)T4N]. (8)
From the inequality&) together with the above established facts we infer thafuhetionVx is continuous on the
interval [0, T] for anyT > 0. This proceeds the continuity ¥xonR, .

Step 2:Forx € R, boundedness of the functidvixonR...
Now, taking a functiorx € BC(R..), for an arbitrarily fixed € R, we have

(WX < [(FX)O]+ (G 1)] - [(VX) ()]
<[f(t:x(a(t)) - f(t,0)[ +[f(t,0)[ + %[Ig(tax(ﬁ(t))) —9(t,0)| +g(t, 0)]]
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t
S p(t,9)[[Jas,x(v(s)), (uX)(6(s))) —a(s,0,0)| + |q(s,0,0)]]
><0/ (-t ds

_ Pt
<1+ T+ O] + o0y | S I UELN IO+,
0

<+ 7+ [m“"rf”li'ﬁ?’o’” a®)[E (I, lux]) +qt"
<Al e a(t)|[xl|@(||x, [[ux]) + b(t)||x]| 4 c(t)@(||x]|, |ux]) +d(t) o

ra+n) ’
by using the imposed assumptions, we have the above inggsalvhich shows that the functiddxis bounded ofR ;.

Step 3:The operatoWV transforms the balB, into itself.
Now, let us take

[Jux|| < [lux—uOl| + [|uO| < [[x[| +- [[uOll,
and the nondecreasing functignfrom the established estima®@),(we obtain

= AllX||o(|[x]], |Ix]| + [[uO||) + BJ|x|| + Ce(||X||, ||X|| + ||uO||) + D
W] < TX] + F+ [IX|I (]I, [Ix[[ + [[uO][) + Bf|x]| (XL lIXI[ +lTuol)
r(1+n)

From the above estimate and assumpti&y), we conclude that the operatdf transforms the bal,, into itself.

Step 4:W is continuous operator on the bal,.
To achieve our aim, it is sufficient to show th&x)(t) = f(t,x(a(t))) is continuous on the bal,, and

U1
(1) = {o(t.x(B(t))) /5Z p(t,s)q(s,x(y(s)),(ux)(e(s)))d

(G (VX)(t) = (GX)(t) (VX )t S

o

is also continuous on the ba},.
Taking into account a sequenég,} C By, such thatx, — x with x € By,. For this, first of all we have to prove that
Fxn — FXx, fort € Ry and in view of assumptio(d), it follows that

|(Fxa)(t) = (FX) ()]

Hence, it proves thét is continuous on the baly,.
Next, we have to show théaGx,) - (Vx,) — (GX) - (Vx), fort € Ry and taking into account of our imposed assumptions,
we obtain

[(Gx0) (Vn) (1) — (GX)(VX)(1)] =

S

L9t x(B (1)) /‘sz—lpa,s)q(s,xn(v(s)),<uxn><e<s>>> .
Fn) (=)

_ Zgtx(B) /‘sz—1p<t,s>q<s,x<y<s>>7(ux><e<s>>>d;{
()b

0

< ot (B I/SZ Hp(t. 9)lla(s X (V(S)). (ux) (B(s)

)) — A8 X(y(5)), (UX)(8(9)] 4o
rn n

(-
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 Lttalpe)- D) /sZ 9. (O o
< StoaP0) (0 + (-0 )€ 0(3) X190 O3~ (WO
B rn) ) (t¢ —s{)1n

| &m0 XA [0S (90S) ~as00) + =00l

r(n) e

< UOPl BN IO 012 g o . o ~ €]+ T P ot o). ) + T

e Mo 02 g~ o =X+ TP o0 € gl ] + 0]+ Gt
< SR ot o) + HEE ORI X .

Combining this estimates with our assumptididg), we conclude thal(Gx,) (V) (t) — (GX)(VX)(t)] — O when
n — oo, Which shows thatV is continuous on the baly,.

Step 5:For ¢ # X C By, andx,y € X, an estimate of lif,. supdiam(Wx)(t).
Then, fort € R and in view of imposed assumptions, it follows

L1
) e e

0

(WX)(t) — (Wy)(1)] < [F(tx(a(t) - fty(a()] + %

1
gt y(B(1))) / s 1p(t, 9)a(sy(Y(9), (Uy)(e(s)))ds‘

(€=

o

1
<10)x(a ) —y(a(t)| + JIEXEC |/5Z |I0t5|l<:zs><sZ ). (W) (B(S)] 4

 AHE ) /sf p(t,9) a8 X(V(9)). (W) (6(9))) ~ A(S.Y(V(S). ()OS
(€ =y

, Im®)x(B(1) —yBM)| [ tat)[|alsx(v(s)), (ux)(8(s))) —a(s,0,0)| +[a(s,0,0)|]
<1(t)diamX(a(t)) + oo / T i ds

Z[Ig(t,y(B()) 0)[ +19(t,0)]] /tsZ Lo (OEP(X(V(S) —Y(V(S)], [ (6(5)) — (uy)(B(s)])

' e

S
0

. Zm(t)x(B(1) ~y(BW)| [ Lo(®)Ep(X(y(S)].|uX)(8($)]) +d
<I(t)diamX(a(t)) + H) / (=) ds
t

ZU(t)E[m(t)IY(B(t))I+|@J(t70)|]/SZ L(Ix =y [Jux—uvi]) o
rn) (t¢—st)rn

+
0
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< diamxa(t) + SOETO B+ (L)) / (X ux]) 4

Fm T —si
t
¢m(t)o(t)gix(B(t)) —y(B(1))] -t t ) /s o(x—yll, [Ix—ylI)
+ o o/(tf_sZ)lndS+ / tz S ds

+

S

{aft f|g 0) /s to(llx—=yll, [x=yl)
/ Wi

<I(t)diamX(a(t)) + 2m(t)E a(t)ro@(ro,ro+ UO|NET  m(t)o(t)qtén

diamX(B(t))

r(1+n) ril+n)
N m(t)& a(t)ro@(2rg, 2ro)té"n N Ea(t)|g(t,0)|@(2ro, 2ro)téN
r(1+n) r1+n)
2a(t)ro@(ro,ro+ [|u0l|) b(t) a(t)ro(2ro, 2ro) , c(t)¢(2ro,2ro)

< I(t)diamX(a(t)) + diamX(B(t)) +

r(1+n) r(1+n) r(1+n) r1+n)

From the above estimate, we derive the following inequality

2a(t)ro

a(t
r(1+n)€0(fo,fo+ [|uof|) +

diamWx)(t) <I(t)diamX(a(t)) + I_(?_(i_?n)diamX(B(t)) +

Keeping in mind assumptiofs), we have

Jim supdiam(WX)(t) < <|_+ >tlmsupdian(x)(t). (10)

B
ra+n)

Step 6:For ¢ # X C By,, an estimate ofig(Wx).
Fix € > 0 andx € X, for T > 0 we choosé;,t; € [0, T] such thaft, —t;| < € and assume th#t < t,. Then, taking into
account of our imposed assumptions and using the previobsiined estimatesf, we get

[(WX)(t2) — (WX (t2)| < [f(t2,x(a
<|f(t2,x(a

t2))) —
t2))) —
+(GX)(t2) (VX)(t2) — (GX)(t2) (VX) (t2)| + [(GX) (t2) (VX) (t2) — (GX) (t) (VX) (ta) |
<I(t2)Ix(a(t2)) — x(a(ta))| +wi (f,€) + [(GX)(t2) — (GX)(t1) | (VX)(t2)]
+(GX) () [[(VX)(t2) — (VX)(ta)]

) (ta)]|
(VT (a,€))+wW (f,€)+ Z|9(t27X(B(t2)I)_)(;)@J(t1aX(B(tl)))|

(tr,X(a(t2)))] + [(GX) (t2) (VX)(t2) — (GX)(t2) (VX) (ta)]
(t2,X(a(t1)))| + [ f(tz,x(a(t1))) — f(te,x(a(t1)))|

—  —h

(
(

<l (tz)WT

to

/SZllp(tzas)ll(H(S,X(V(S)),(UX)(Q(S)))l
0 (tZZ _Sz)lin

<l (tZ)WT(vaT(avg)) +WI(f7£)

{llg(t2, x(B(t2))) — 9(t2, X(B(t1))) [ + |9(t2, X(B(t1))) — 9(ts, X(B(t1))) ]

ds+[g(te,x(B(t))) W' (VX £)

- )
/‘Zsz1a<t2>[q(5,x<y(s)),(ux)(e(s))) ~a(5.0,0)+/a(s.0,0)[]
0 (tZZ _Sz)lin

+[|9(te,x(B(t))) — 9(t1,0)| + |g(ts, 0) W' (V. €)
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< |(t2)WT(X,VT(G,E)) +WI(f78)

t2

. {mt2)[x(B(tz) — x(B(ta))| +wi(g,6)]o(t2) / SHEQ(XVS)] [(W(B(s)D +4] 4

rn) / (t5 —)rn
, [mita)X(B(ta))] + |Ig((tif)’|7])[f€0(||x|a HUX||)+Q[[20T£07 Wl (p, &) T4

< [ (tZ)WT (X,VT(G, 8)) +WI(f78)
[m(t2)w" (x,v (B, €)) +wi (g,€)]0(t2)

+ € (] ux]) +ts"”

ra+n)
100 Ot g, ) + 20w + ] )T
<1t)W (VT (a, )+ Wl (f,€) + a(tzm’(r"’rr‘z 11”:?”) +b) v T e)
14 a1l
I
+ IS £ gt + 0]+ Ql2ore?™ +w] (p. )TV ay

where we denote

wi (f,€) = sup{|f(t2,x) — f(t1,X)| : t1,t2 € [0, T], [tz —ta] < &,x € [—To,T0]},
Wi (9,€) = sup{[g(tz,X) — g(t,X)|  t1,t2 € [0, T, |t —ta| < &,X € [—r0, o]},
VI (a,€) = sup{|a(ty) —a(ty)| :t1,t € [0,T],|ta —tg| < €},
VI (B.€) =sup{|B(tz) — B(ta)| :ta,t2 € [0, T, [t —ta| < €},

m(T) = max{m(t) : t € [0,T]},

g(T) =max{|g(t,0)| : t € [0, T]}.

Now, using the uniform continuity of the functiorist,x) andg(t,x) on the sef0, T] x [—ro,ro], we derivew] (f,¢)
andw] (g,&) — 0 ase — 0. Hence, from the estimat&1), we conclude

Ag@(ro,ro+||u0|)) +B
Fm )Wg(x)'

Wy (WX) < (I_+

Consequently,

Wo(WX) < (I_+ (12)

Ag(ro,ro+||u0f)) +B
ra+n )WO(X)'

Step 7:W is contraction with respect to the measure of noncompasines

Combining the estimate4 () and (L2) and keeping in mind the definition of the measure of noncartm@ssu given by
the formula 4), we deduce the following inequality

HIWX) = Wo(WX) -+ Jim supdiam(WX)(t)

— A@(ro,ro+||uoj|) +B — B . :
< <I+ FaTn) )Wo(X)+ <I+m>tlmsupd|am(x)(t)

< (74 2010 EIEER ) )+ fm supdiam 1)

= AQ(ro,ro+||udl|) +B
u<WX><(|+ L )u(X)- (13)
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Obviously, in view of assumptiofA7), we have that

L A@(ro,ro+ ||u0f)) +B
ra+n)

From the above results, it is clear tWeiX is a contraction with respect to the measure of noncompssitne

Step 8:Construction of a nonempty, bounded, closed and convex.set
Then, we will employ a fixed point theorem on the &etFurther, let us assume that the seque(®¢), where

= ConvW(By,), B Coan(Bl ), and so on. Observe that this sequence is decreasmB“TeC By, C B, for
n=12,..., and also t%e sets of this’ sequence are nonempty, boundsddcind convex. Thus, takmg into account of
estimate 13) we conclude that lim,. (B} ) = 0. Further, keeping in mind the axiom (vi) of Definitidnwe infer that
the sety = N;_, Bf, is nonempty, boundeci convex and closed subsBtofFurthermore, in view of Remark we have
thatY € ker .

Particularly,
tIm)supdmlm Y(t) = tIir(]odmlm Y(t) =0. (14)
Also, observe that the operatédf transforms the séf into itself.

Step 9: Continuity of W on the seY.

Fix € > 0 and take arbitrary functionsy € Y such thaf|x—y|| < €. Follows equation14) and the fact tha?vY C Y,
there exist§ > 0 such that for alk,y € Y andt > T we have thafx(t) — y(t)| < €.

Since W transformsy into itself, we havéNx Wye Y. Thus fort > T we obtain

[(WXY(E) — (Wy)(t)] < e (15)

Now we have to examine the case [0, T]. Taking into account of our assumptions, after some stahcamputations,
we obtain

[(WX)(t) — (Wy) (1) <T(1)[x(a(t) —y(a(t))]

L M) a®XB) —y(BO))] /t SHE(XVS)] (W (B(s)D +4] 4
0

rn) (=)t
| AmOIY(B)|+ l9t.0)Jo()¢ /sZ H(X(Y(9) YY) (O(3) ~ (W) (B(E))
rn) ) (t{ —)n
Imt)o()E@(roro+ u0))+q [ S
=1+ ) go/af )
, &Imit)ro-+1g(t.0)Jo(VE gl ux—uyi) / o
rn) ) (t¢ — 61~
EMU)()@(ro,ro+ WO mOTOFET  mt)a®)Erep(e, [x—y|)téT
st Fan Fn © " FLin)
o(V)[o(t, 0)[@(e, |x— y|)té"
ra+n)
at)@(ro,ro+ W) bt) _ a)rep(s.e) . ct)e(ee)
SO TR T Faen)  Tn)
— Ag@(ro,ro+ ||u0j|)+B Arg+C
<('+ EE )”(r(lm))"’(g’”' (16)

(@© 2016 NSP
Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

164 NS 2 L. N. Mishra et al.: Solvability and asymptotic behavior fmme nonlinear...

In view of equation {5), (16) and taking into account the assumptighs), we conclude that the operatdf is
continuous on the sat.

Finally, taking into account all the above obtained factsudtthe sel and the operatd/ : Y — Y established above
and using the classical Schauder fixed point principle weidethat the operat®¥ has at least one fixed poixt= x(t) in
the sety. Hence, the functior(t) is a solution of the Erdélyi-Kober fractional quadratiteigral equationZ). Moreover,
keeping in mind the fact that € ker i and characterization of sets belonging to kemwe have that all solutions of
equation @) belonging to the balB;, are asymptotically stable in the sense of Defini2on

4 Examples

In this section, we provide two examples to illustrate thefulmess of our main results.
Firstly, we give an example of functian: BC(R. ) — BC(R. ) illustrating the assumptiofAs) of Theoreml.

Example 1Let a given functiorx € BC(R.; ) then

(SX(6(f)) =max{|x(6(t))| : 0 <t <},
is a function belonging tBC(R ).

In this way, It becomes as follows,

[(SX(6())] = Imax{|x(6(t))] : 0 <t <t}
< IXleeqog I
< [III-

From the above, it is clear that the functiSris bounded orR ...
Next, we have to show th&xis continuous function oiR ... To do this, let us take arbitrary numbdrs> 0 ande > 0.
Fix T > 0 andty,t; € [0,T] such thaft, —t1] < g, assume thag < to. Since,Sxis nondecreasing function, we obtain

[(SX(6(t2)) — (SX(6(t2))| = (SX(6(t2)) — (SX(8(ta))
=max{|X(0(t))|:0<t <t} —max{|x(0(t))|:0<t <t}

= [x(8(&1))[ — [x(8(&2))],
whered; <t, andd, <tj.

Now, we assume thak <t; then we have thaiSX (6(t2)) = (SX(6(t1)) and|(SX(O(t2)) — (SX(6(t1))| = 0.
If t; < & <ty, we obtain

we have als@; —t; <t, —t; < €. Thus,

(SX(6(t2)) — (SX(O(t1))

<
w' (SXVi(6,€)) <W'(x,V3(6,¢)),

where
VI(@,E) = sup{|6(t2) — 9(t1)| Mt e [O,T], |t2 —t1| < 8},

V3 (8,€) =sup{|6(&1) — B(t1)] : 11,81 € [0, T], |81 —ta| < €}.

From the above estimates together with continuity of fuorction the interval0, T], we conclude

wg (SX) < wg (X).
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In view of the above established facts we conclude &xas$ continuous o0, T| for anyT > 0. HenceSxe BC(R..).
Furthermore, for any,y € BC(R..), we obtain

[(S(0(F) — (SY(8(f))| = |max{[x(8(t))] : 0 < t <} —max{|y(8(1))| : 0 <t <}

< IXleerog | = ¥lerog |
< IX=Ylefog
< [x=yll-
Hence,
[[Sx— Syl < [[x—yI|.

Which shows thaSis a nonexpansive mapping BC(R ).
Now, we present a numerical example as an application of fEmed.
Example Zonsider the following quadratic integral equation witld&yi-Kober fractional operator:

e (+X(S/3>+ max|x(f /5)|>
d

O<s

X(t) = VA2 _S2)1/3 S

17
6+ 11t r(2/3) (7

t4 + varctarix(t /7)) %(t3/2e2‘+t1/2x (t/4)) /t
0

wheret € R andv is a positive constant.

Observe that the above equation can be treated as a particdse of equation 2§ if we put

n=2/3,{=3/2,a(t)=t/7,B(t) =t/4,y(t) =t/3,6(t) =t/5 and

t* 4+ varctarx
X =5 1w

g(t,x) =t%2e 2 4-t1/2%x,

ef3t
p(t,S) - ma
q(t,x,y) =In (1+ |X|2+y),

andux= Sx whereSis nonexpansive mapping satisfies assump(the) of Theoreml as shown in Examplg.
Itis easily seen that the functiongt), B(t), y(t) andO(t) satisfy assumptiofA;).

In fact, we have that the functiorfgt, x) andg(t,x) are continuous functions dR; x R, for anyt € R, andx,y € R,
we get

[f(t,x)— f(t,y)] < |arctarx — arctary| <

Vv Vv |X |
6+ 11t EETCARE

and
lg(t.x) — g(t,y)| = tY2x—y].

4
andm(t) = t¥/2. Clearly, f(t,0) = —*

" and|(t) is bounded

Thus, from the above we havé) = 61 114" 11

6+ 1]14
function onR, with | = 5' Hence, assumptiof#; ) of Theoreml is satisfied.

Further observe that the functiqit,s) satisfies assumptioifs) with o(t) = e . Now, to check that assumptida,)

is satisfied, fot € R, andx,yi € R (i=1,2).
n (1+ |xl|2+y1> i (1+ |xZ|2+yz>‘

o |l tyr  Pre[tye
2 2

|Q(t7X17Yl) - q(t7X27YZ)| =

[Ixa| = [xal[ + Iy2 = Y]]

NII—‘I\)II—‘

[IX1 —X2| + |y1 —¥2|].
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Thus, assumptiofA4) of Theoreml is satisfied and hence we gét= 1 and @(ag,by) = a; + by with ¢(0,0) = 0.

2
Moreover,/g(t,0)| =t¥/2e 2,
Next, we have to verify that the assumptiohs) is satisfied, let us note that the functicm®, c andd appearing in that
assumption takes the form

a(t) = %e‘atw, b(t) =0,

ot) = %e*&ts/z, d(t) =0.

_ o 1\%?2
Clearly,q(t,0,0) = 0 andq = 0. It is easily seen thai(t) — 0 ast — c andA = (5) e %2, Moreover, we have that

. 1\"? .
B = 0. Further, it is also easy to check tfwét) — 0 ast — o andC = <§> e %2, andD = 0. Thus, the assumption

(Ag) of Theoreml is satisfied.
Further, the inequality from the assumpti@ky) of Theoreml has the form

(%H 1i1> [ (5/3)+ Ar2r +C.2r < 1T (5/3). (18)

Hence, taking into account that5/3) ~ 0.902745, we have that the numbigr= 1 is a solution of the inequalityL ) if
we takev = 1.

Moreover, the second inequality of assumpt{da) of Theoreml is also satisfied.

Finally, by Theoreni, we conclude that equatiof ) has at least one solution in the sp&®&R ;) belonging to the ball
B, providedv = 1 and all solutions of integral equatioh7) which belongs to balB;, are asymptotically stable in the
sense of Definitior2.
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