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Abstract: In this paper we define a new average code-word lengthLα
β (P) of orderα and typeβ and its relationship with generalized

Reyniś entropyHα
β (P) has been discussed. UsingLα

β (P) , some coding theorems for discrete noiseless channel has been proved. The

measures defined in this communication are not only new but some known measures are the particular cases of our proposed measures.
The noiseless coding theorems for discrete channel proved in this paper are verified by considering Huffman and Shannon-Fano coding
schemes on taking empirical data.Also we study the monotonic behavior ofHα

β (P) with respect to parametersα andβ . The important

properties ofHα
β (P) have also been studied.
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1 Introduction

The growth of telecommunication in the early twentieth
century led several researchers to study the information
control of signals , the seminal work of Shannon [1] based
on papers by Nyquists [2,3] and Hartley [4] rationalized
these early efforts into a coherent mathematical theory of
communication and initiated the area of research now
known as information theory. The central paradigm of
classical information theory is the engineering problem of
the transmission of information over a noisy channel. The
most fundamental results of this theory are Shannon’s
source coding theorem which establishes that on average
the number of bits needed to represent the result of an
uncertain event is given by its entropy; and Shannon’s
noisy-channel coding theorem which states that reliable
communication is possible over noisy channels provided
that the rate of communication is below a certain
threshold called the channel capacity. Information theory
is a broad and deep mathematical theory, with equally
broad and deep applications, amongst which is the vital
field of coding theory. Information theory is a new branch
of probability and statistics with extensive potential

application to communication system. The term
information theory does not possess a unique definition.
Broadly speaking, information theory deals with the study
of problems concerning any system.This includes
information processing, information storage and decision
making. In a narrow sense, information theory studies all
theoretical problems connected with the transmission of
information over communication channels. This includes
the study of uncertainty (information) measure and
various practical and economical methods of coding
information for transmission.

2 Shannon’s Entropy

Let X is a discrete random variable taking values
x1,x2, ...,xn with respective probabilitiesp1, p2, ..., pn
pi ≥ 0 ∀i = 1,2,3, ...,n and ∑n

i=1 pi = 1. Shannon [1]
gives the following measure of information and call it
entropy.

H(P) =−
n

∑
i=1

pi logD pi (1)
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The measure (1) serves as a suitable measure of entropy.
Let p1, p2, p3, , pn be the probabilities of n codewords to
be transmitted and let their lengthsl1, l2, , ln satisfy Kraft
[5] inequality,

n

∑
i=1

D−li ≤ 1 (2)

For uniquely decipherable codes, Shannon [1] showed that
for all codes satisfying (2),the lower bound of the mean
codeword length,

L =
n

∑
i=1

pili (3)

lies between H(P) and H(P)+1.Where D is the size of code
alphabet.

Generalized coding theorems by considering different
information measure under the condition of uniquely
decipherability were investigated by several authors; see
for instance the papers: On Useful Information of order
by Gurdial and F Pessoa [6], A generalized useful
information measure and coding theorems by D. S.
Hooda and U. S. Bhaker [7], Some results on a
generalized useful information measure by A. B. Khan,
B. A. Bhat and S. Pirzada [8], A noiseless coding theorem
for sources having utilities by G. Longo [9], Noiseless
coding theorems corresponding to fuzzy entropies by Om
Parkash and P. K. Sharma [10], Application of Holders
inequality in information theory by R. P. Singh, R. Kumar
and R. K. Tuteja [11] and Generalized entropy of orderα
and typeβ by J. N. Kapur [12].

In this particular paper we study some noiseless
coding theorems by considering generalized Reynis
information measure and generalized average code-word
length of orderα and typeβ in section 3. The results
obtained here are not only new but some information
measures are the particular cases of our proposed measure
that already exist in the literature. In section 4 we verify
the noiseless coding theorems by considering
Shannon-Fano coding scheme and Huffman coding
scheme on taking empirical data.Also we have also
studied the monotonic behavior ofHα

β (P) with respect to
parametersα and typeβ in section 5. And the important
properties ofHα

β (P) have also been studied in section 6.

3 Noiseless Coding Theorems

Define a generalized Reyni’s entropy of orderα and type
β as:

Hα
β (P) =

β
1−α

logD

[

n

∑
i=1

pαβ
i

]

(4)

Where 0< α < 1,0< β ≤ 1,pi ≥ 0 ∀i = 1,2,3, ...,n and
∑n

i=1 pi = 1.

Remarks for (4)

1.Whenβ = 1 (4) reduces to Reynis entropy,i.e.,

Hα(P) =
1

1−α
logD

[

n

∑
i=1

pα
i

]

(5)

2.Whenβ = 1 andα → 1 (4) reduces to Shannons [1]
entropy i.e.,

H(P) =−
n

∑
i=1

pi logD pi (6)

3.Whenβ = 1, α → 1 andpi =
1
n∀i = 1,2,3, ...,n then

(4) reduces to maximum entropy i.e.,

H(
1
n
) = logD n (7)

Further we define a new generalized code-word length
of orderα and typeβ corresponding to (4) and is given by

Lα
β (P) =

αβ
1−α

logD

[

n

∑
i=1

pβ
i D−li

(

α −1
α

)

]

0< α < 1,0< β ≤ 1

(8)

Where D is the size of code alphabet.

Remarks for (8)

1.For β = 1 (8) reduces to code-word length
corresponding to entropy (5) i.e.,

Lα(P) =
α

1−α
logD

[

n

∑
i=1

piD
−li

(

α −1
α

)

]

(9)

2.Forβ = 1 andα → 1 (8) reduces to optimal code-word
length corresponding to Shannon [1] entropy i.e.,

L =
n

∑
i=1

pili (10)

3.Forβ = 1 andl1 = l2 = = ln = 1 then (8) reduces to
1. i.e.,Lα = 1

Now we found the bounds of (8) in terms of (4) under
the condition

n

∑
i=1

D−li ≤ 1 (11)

Which is Kraft [5] inequality, where D is the size of
code alphabet.

Theorem 3.1. For all integers(D > 1) the code word
lengths l1, l2, , ln satisfies the condition (11), then the
generalized code-word length (8) satisfies the inequality

Lα
β (P)≥ Hα

β (P),where0< α < 1,0< β ≤ 1. (12)
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Where equality holds good iff

li =− logD

[

pαβ
i

∑n
i=1 pαβ

i

]

(13)

Proof. By Holder’s Inequality we have

n

∑
i=1

xiyi ≥

(

n

∑
i=1

xp
i

) 1
p
(

n

∑
i=1

yq
i

) 1
q

(14)

For all xi,yi > 0, i = 1,2,3, ...,n and 1
p +

1
q = 1, p < 1(6=

0),q < 0 or q < 1(6= 0), p < 0. We see the equality holds
iff there exists a positive constant c such that,

xp
i = cyq

i (15)

Making the substitution

xi = p
αβ

α−1
i D−li ,yi = p

αβ
α−1
i , p =

α −1
α

,q = 1−α

Using these values in (14) we get

n

∑
i=1

D−li ≥

[

n

∑
i=1

pβ
i D−li

(

α −1
α

)

]
α

α−1
[

n

∑
i=1

pαβ
i

]
1

1−α

(16)
Now using Kraft [5] inequality we get,

[

n

∑
i=1

pβ
i D−li

(

α −1
α

)

]
α

α−1
[

n

∑
i=1

pαβ
i

]
1

1−α

≤ 1 (17)

Or (17) can be written as

[

n

∑
i=1

pαβ
i

]
1

1−α

≤

[

n

∑
i=1

pβ
i D−li

(

α −1
α

)

]
α

1−α

(18)

Taking logarithms to both sides with base D to equation
(18) we get

1
1−α

log

[

n

∑
i=1

pαβ
i

]

≤
α

1−α
log

[

n

∑
i=1

pβ
i D−li

(

α −1
α

)

]

(19)
As 0< β ≤ 1,multiply equation (18) both sides byβ > 0,
we get

β
1−α

log

[

n

∑
i=1

pαβ
i

]

≤
αβ

1−α
log

[

n

∑
i=1

pβ
i D−li

(

α −1
α

)

]

(20)
Or equivalently,Lα

β (P) ≥ Hα
β (P), where 0< α < 1,0 <

β ≤ 1. Hence the result.
From equation (13) we have

li =− logD

[

pαβ
i

∑n
i=1 pαβ

i

]

or equivalently,

D−li =
pαβ

i

∑n
i=1 pαβ

i

(21)

Raising both sides to the power
α −1

α
to equation (21) and

after simplification, we get

D−li

(

α −1
α

)

= pβ (α−1)
i

[

n

∑
i=1

pαβ
i

]
1−α

α

(22)

Multiply equation (22) both sides bypβ
i and then summing

overi = 1,2, ,n, and after simplification, we get

[

n

∑
i=1

pβ
i D−li

(

α −1
α

)

]

=

[

n

∑
i=1

pαβ
i

] 1
α

(23)

Taking logarithms both sides with base D to equation (23),

then multiply both sides by
αβ

1−α
, we get

Lα
β (P) = Hα

β (P) Hence the result.

Theorem 3.2. For every code with lengthsl1, l2, , ln
satisfies Kraft’s inequalityLα

β can be made to satisfy the
inequality,

Lα
β (P)< Hα

β (P)+β ,where0< α < 1,0< β ≤ 1. (24)

Proof.From the theorem 3.1 we have

Lα
β (P) = Hα

β (P)

Holds if and only if

D−li =
pαβ

i

∑n
i=1 pαβ

i

,0< α < 1,0< β ≤ 1.

Or equivalently we can write

li =− logD pαβ
i + logD

[

n

∑
i=1

pαβ
i

]

We choose the code-word lengthsli, i = 1,2, ,n in such a
way that they satisfy the inequality,

− logD pαβ
i + logD

[

n

∑
i=1

pαβ
i

]

≤ li <− logD pαβ
i + logD

[

n

∑
i=1

pαβ
i

]

+1 (25)

Consider the interval

δi =

[

− logD pαβ
i + logD

[

n

∑
i=1

pαβ
i

]

,− logD pαβ
i + logD

[

n

∑
i=1

pαβ
i

]

+1

]

of length unity.In everyδi, there lies exactly one positive
integerli, such that,

0<− logD pαβ
i + logD

[

n

∑
i=1

pαβ
i

]

≤ li <− logD pαβ
i + logD

[

n

∑
i=1

pαβ
i

]

+1 (26)
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We will first show that the sequencel1, l2, , ln, thus defined
satisfies the Kraft [5] inequality. From the left inequality of
(26), we have

− logD pαβ
i + logD

[

n

∑
i=1

pαβ
i

]

≤ li

Or equivalently we can write

D−li ≤
pαβ

i

∑n
i=1 pαβ

i

(27)

Taking sum over i=1,2,,n, on both sides to the equation
(27) we get,∑n

i=1D−li ≤ 1,which is Kraft [5] inequality.
Now the last inequality of (26) gives

li <− logD pαβ
i + logD

[

n

∑
i=1

pαβ
i

]

+1

Or we can write

Dli <

[

pαβ
i

∑n
i=1 pαβ

i

]−1

D (28)

As 0<α < 1, then(1−α)> 0, and
(

1−α
α
〉

0), raising both
sides to the power

(

1−α
α
)

> 0, to equation (28), we get

Dli

(

1−α
α

)

<

[

pαβ
i

∑n
i=1 pαβ

i

]
α−1

α

D
1−α

α (29)

Or (29) can be written as

D−li

(

α −1
α

)

< pβ (α−1)
i

[

n

∑
i=1

pαβ
i

]
1−α

α

D
1−α

α (30)

Multiply equation (30) both sides bypβ
i and then summing

overi = 1,2, ,n, and after simplification, we get,

n

∑
i=1

pβ
i D−li

(

α −1
α

)

<

[

n

∑
i=1

pαβ
i

] 1
α

D
1−α

α (31)

Taking logarithms to both sides with base D to equation
(31), we get,

logD

[

n

∑
i=1

pβ
i D−li

(

α −1
α

)

]

<
1
α

logD

[

n

∑
i=1

pαβ
i

]

+
1−α

α
(32)

As 0< α < 1,0< β ≤ 1 then(1−α)> 0 and
(

αβ
1−α

)

> 0,

multiply both sides equation (32) by
(

αβ
1−α

)

> 0, we get

Lα
β (P)< Hα

β (P)+β , where 0< α < 1,0< β ≤ 1.
Thus from above two coding theorems we have shown

thatHα
β (P)≤ Lα

β (P)< Hα
β (P)+β , where 0< α < 1,0<

β ≤ 1.

4 Illustration

In this section we illustrate the veracity of the theorems
3.1 and 3.2 by taking empirical data as given in table (4.1)
and (4.2) on the lines of Om Parkash and Priyanka Kakkar
[13].

Using Huffman coding scheme the values of
Hα

β (P),Hα
β (P)+β ,Lα

β (P) andη for different values ofα
andβ are shown in the following table:

Table(4.1)
Probabilities Huffman li α β Hα

β (P) Lα
β (P) η = Hα

β (P)+1

pi codewords
Hα

β (P)

Lα
β

×100

0.41 1 1 0.9 1 2.279327 2.359635 96.5666 3.279327
0.18 000 3 0.9 0.9 3.944197 4.031190 97.842 4.844197
0.15 001 3 0.8 1 2.309614 2.420838 95.40555 3.309614
0.13 010 3
0.1 0110 4
0.03 0111 4

Now using Shannon-Fano coding scheme the values of
Hα

β (P),Hα
β (P)+β ,Lα

β (P) andη for different values ofα
andβ are shown in the following table:

Table(4.2)
Probabilities Shannon li α β Hα

β (P) Lα
β (P) η = Hα

β (P)+1

Fano
Hα

β (P)

Lα
β

×100

pi codewords
0.41 00 2 0.9 1 2.279327 2.409698 94.58972 3.279327
0.18 01 2 0.9 0.9 3.944197 4.046642 97.4684 4.844197
0.15 10 2 0.8 1 2.309614 2.435809 94.81917 3.309614
0.13 110 3
0.1 1110 4
0.03 1111 4

From table (4.1) and (4.2) we infer the following:

1.Theorems 3.1 and 3.2 hold both the cases of Shannon-
Fano codes and Huffman codes. i.e.
Hα

β (P)≤ Lα
β (P)< Hα

β (P)+1,0< α < 1,0< β ≤ 1.
2.Huffman mean code-word length is less than Shannon-

Fano mean code-word length.
3.Coefficient of efficiency of Huffman codes is greater

than coefficient of efficiency of Shannon-Fano codes
i.e. it is concluded that Huffman coding scheme is
more efficient than Shannon-Fano coding scheme.

5 Monotonic Behavior of the New
Generalized Information Measure Hα

β (P)

In this section we study the monotonic behavior of the new
generalized information measureHα

β (P) given in (4) with
respect to the parametersα andβ .

Let P = (0.41,0.18,0.15,013,0.10,0.03) be a set of
probabilities. Assumingβ = 1. We calculates the values of

Hα
β (P) for different values ofα as shown in the following

table:

Table 5.1: Monotonic behaviour ofHα
β (P)

with respect toα for fixed β = 1
α 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Hα
β (P) 2.5470 2.5101 2.4743 2.4394 2.4056 2.3727 2.3407 2.3096 2.2793
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Next we draw the graph of the table (5.1) and
illustrate from fig. 1 thatHα

β (P) is monotonic decreasing
with increasing values ofα

Fig. 1: Monotonic behaviour ofHα
β (P)with respect toα for fixed

β = 1

Now assumingα = 0.5. We calculates the values of
Hα

β (P) for different values ofβ as shown in the following
table:

Table 5.2: Monotonic behaviour ofHα
β (P)

with respect toβ for fixed α = 0.5

β 0.2 0.4 0.6 0.8 1.0

Hα
β (P) 0.9169 1.6065 2.0784 2.3419 2.4056

Next we draw the graph of the table (5.2) and
illustrate from fig. 2 thatHα

β (P) is monotonic increasing
with increasing values ofβ

6 Properties of the New Generalized
Information Measure Hα

β (P)

In this section we will discuss some properties of the new
generalized information measureHα

β (P) given in (4)
Property 6.1. Hα

β (P) is non-negative.

Fig. 2: Monotonic behaviour ofHα
β (P) with respect toβ for fixed

α = 0.5

Proof. From (4) we have,

Hα
β (P) =

β
1−α

logD

[

n

∑
i=1

pαβ
i

]

,0< α < 1,0< β ≤ 1

From table (4.1) and (4.2) it is observed thatHα
β (P) is

non-negative for given values ofα andβ
Property 6.2. Hα

β (P) is a symmetric function on every
pi, i = 1,2,3, ...,n.

Proof. It is obvious thatHα
β (P) is a symmetric function on

everypi, i = 1,2,3, ...,n. i.e.,

Hα
β (p1, p2, ..., p(n−1), pn) = Hα

β (pn, p1, p2, ..., p(n−1))

Property 6.3. Hα
β (P) is maximum when all the events

have equal probabilities.

Proof. When pi =
1
n∀i = 1,2,3, ...,n, β = 1, andα → 1.

ThenHα
β (P) = logD n, which is maximum entropy.

Property 6.4. Hα
β (P) satisfies the additivity of the

following form:

Hα
β (P∗Q) = Hα

β (P)+Hα
β (Q)

where
P∗Q = (p1q1, ..., p1qm, p2q1, ..., p2qm, ..., pnq1, ..., pnqm)

Proof. Let Hα
β (P∗Q) = Hα

β (P)+Hα
β (Q)
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Talking R.H.S =Hα
β (P)+Hα

β (Q)

=
β

1−α
logD

[

n

∑
i=1

pαβ
i

]

+
β

1−α
logD

[

m

∑
j=1

qαβ
i

]

=
β

1−α

[

logD

[

n

∑
i=1

pαβ
i

]

+ logD

[

m

∑
j=1

qαβ
j

]]

=
β

1−α

[

logD

[

n

∑
i=1

pαβ
i

][

m

∑
j=1

qαβ
j

]]

=
β

1−α
logD

[(

n

∑
i=1

pαβ
i

)(

m

∑
j=1

qαβ
j

)]

=
β

1−α
logD

[

n

∑
i=1

m

∑
j=1

(

pαβ
i

)(

qαβ
j

)

]

=
β

1−α
logD

[

n

∑
i=1

m

∑
j=1

(piq j)
αβ

]

= Hα
β (P∗Q)

= L.H.S.

Hence L.H.S = R.H.S.

Property 6.5. Hα
β (P) is concave function forp1, p2, ..., pn.

Proof. From (4) we have,

Hα
β (P) =

β
1−α

logD

[

n

∑
i=1

pαβ
i

]

,0< α < 1,0< β ≤ 1

If β = 1,α → 1, then the first derivative of (4) with respect
pi is given by

[

d
d pi

Hα
β (P)

]

α→1
β=1

=−n−
n

∑
i=1

logD pi

and the second derivative is given by

[

d2

d p2
i

Hα
β (P)

]

α→1
β=1

=−
n

∑
i=1

(

1
pi

)

≤ 0.∀pi ∈ [0,1], i= 1,2, ...n

Since the second derivative ofHα
β (P)with respect topi

is negative on given intervalpi ∈ [0,1]i = 1,2, ,n. asβ = 1
andα → 1, therefore,

Hα
β (P) is concave function forp1, p2, , pn.

7 Conclusion

In this paper we define a new generalized entropy
measure i.e.,Hα

β (P) of orderα and typeβ . This measure
also generalizes some well-known information measures
already existing in the literature of information theory.
Also we define a new generalized code-word mean length
i.e., Lα

β (P) of order α and type β corresponding to
Hα

β (P), then we characterizeLα
β (P) in terms of new

generalized entropy measureHα
β (P) of orderα and type

β and showed thatHα
β (P) ≤ Lα

β < Hα
β (P) + 1 where

0< α < 1,0< β ≤ 1.
Further we have established the noiseless coding

theorems proved in this paper with the help of two
different techniques by taking experimental data and
prove that Huffman coding scheme is more efficient than
Shannon-Fano coding scheme. Also we study the
monotonic behavior ofHα

β (P) with respect to parameters
α and typeβ and the important properties ofHα

β (P) have
also been studied.
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