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Abstract: In this paper we define a new average code-word Iehg(lﬁ’) of ordera and typef and its relationship with generalized
Reynis entropy-Ig(P) has been discussed. Usihg(P) , some coding theorems for discrete noiseless channel leaspoeved. The

measures defined in this communication are not only new lmédamown measures are the particular cases of our propos&slines.
The noiseless coding theorems for discrete channel promédsi paper are verified by considering Huffman and Sharrare coding

schemes on taking empirical data.Also we study the monotoeiavior oﬂ-lg(P) with respect to parametecsandf. The important

properties ng (P) have also been studied.
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1 Introduction application to communication system. The term

information theory does not possess a unique definition.
Broadly speaking, information theory deals with the study
of problems concerning any system.This includes
Thformation processing, information storage and decision
making. In a narrow sense, information theory studies all
fheoretical problems connected with the transmission of
nformation over communication channels. This includes
he study of uncertainty (information) measure and

various practical and economical methods of coding
information for transmission.

The growth of telecommunication in the early twentieth
century led several researchers to study the informatio
control of signals , the seminal work of Shanna@hljased

on papers by Nyquist®[3] and Hartley §] rationalized
these early efforts into a coherent mathematical theory o
communication and initiated the area of research no
known as information theory. The central paradigm of
classical information theory is the engineering problem of
the transmission of information over a noisy channel. The

most fundamental results of this theory are Shannon’s

source coding theorem which establishes that on average

the number of bits needed to represent the result of a2 Shannon’s Entropy

uncertain event is given by its entropy; and Shannon’s

noisy-channel coding theorem which states that reliabl . . . .
communication is possible over noisy channels provideg'et X Is a .dlscrete rgndom Va“?.b.'e taking values
that the rate of communication is below a certain X:X2:%n With respective ErObab'l't'eSpl’ P2,..-, Pn
threshold called the channel capacity. Information theorypi 20 Vi =1, 2,.3,...,n and 5=, Pi = 1 Shannon [1] .
is a broad and deep mathematical theory, with equall ives the following measure of information and call it
broad and deep applications, amongst which is the vitaP"tropy-

field of coding theory. Information theory is a new branch H(P) = — s pi10gp P )

of probability and statistics with extensive potential i; 1EDH
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The measure (1) serves as a suitable measure of entropRemarks for (4)
Let p1, P2, p3,, Pn be the probabilities of n codewords to
be transmitted and let their lengthsls,, |, satisfy Kraft 1.Whenf =1 (4) reduces to Reynis entropy,i.e.,

[5] inequality,
iD'i <1 3 HE(P) = ﬁ oG [Z\ pia] ©)

For uniquely decipherable codes, Shannjrshowed that 2.Whenf = 1 anda — 1 (4) reduces to Shannons [1]
for all codes satisfying (2),the lower bound of the mean ~ €ntropyi.e.,

codeword length,
n
L= Zi pili 3)
=
_ . _ 3.WhenB =1,a — 1 andp; = 1vi=1,2,3 ... ,nthen
lies between H(P) and H(P)+1.Where D is the size of code  (4) reduces to maximum entropy i.e.,
alphabet.

Generalized coding theorems by considering different
information measure under the condition of uniquely
decipherability were investigated by several authors; see
for instance the papers: On Useful Information of order
by Gurdial and F Pessoab]] A generalized useful

H(P) = - ; pilogp p (6)

H() =logon @

Further we define a new generalized code-word length
of ordera and typeB corresponding to (4) and is given by

information measure and coding theorems by D. S. n

Hooda and U. S. Bhaker7 Some results on a La(p)zﬁbgD PP (a_—l)
generalized useful information measure by A. B. Khan, & l-a i; ' a (8)
B. A. Bhat and S. Pirzada], A noiseless coding theorem 0<a<10<B<1

for sources having utilities by G. Long®]| Noiseless
coding theorems corresponding to fuzzy entropies by Omyhere D is the size of code alphabet.
Parkash and P. K. Sharméa(], Application of Holders
inequality in information theory by R. P. Singh, R. Kumar
and R. K. Tuteja [11] and Generalized entropy of order Remarks for (8)
and typgs by J. N. Kapur 12].

In this particular paper we study some noiseless 1.For B = 1 (8) reduces to code-word length
coding theorems by considering generalized Reynis corresponding to entropy (5) i.e.,
information measure and generalized average code-word
length of ordera and typef in section 3. The results n g (a-1
obtained here are not only new but some information zipiD <T) ©)
measures are the particular cases of our proposed measure =

that already exist in the literature. In section 4 we verify 2.ForB =1 anda — 1 (8) reduces to optimal code-word

the noiseless coding theorems by considering length corresponding to Shanndij gntropy i.e.,
Shannon-Fano coding scheme and Huffman coding

a
La(P) - m |OgD

scheme on taking empirical data.Also we have also n
studied the monotonic behavior B (P) with respect to L= Zl pili (10)
parametersr and typef in section 5. And the important =
properties ng(P) have also been studied in section 6. 3.Forf=1andl; =l = =1l =1 then (8) reduces to
lie,l=1
Now we found the bounds of (8) in terms of (4) under
3 Noiseless Coding Theorems the condition )
ZD—“ <1 (11)
Define a generalized Reyni’s entropy of ordeand type =
B as: Which is Kraft [b] inequality, where D is the size of
n code alphabet.
HE’(P) = LlogD [Zi pi"E] (4) Theorem 3.1. For all integers(D > 1) the code word
1-a i= lengths I4,12,,l, satisfies the condition (11), then the

. generalized code-word length (8) satisfies the inequality
Where O< a <1,0<pB<1p>0Vvi=1,23,...,nand

SiLipi=1 LI(P) > HI (P),whered < a <1,0<B <1 (12)
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Where equality holds good iff or equivalently,
apB apB
Pi - Pi
li = —logp l'il (13) Dli=—~—— (21)
P’ SPapf?
k i - . -1 .
Proof. By Holder's Inequality we have Raising both sides to the powgra— to equation (21) and
1 1 after simplification, we get
n n D p n q q (14)
XiYi 2 X; Yi
2= ) (&Y

Forallx,yi >0,i=1,23,..,nand % +1 = 1,p < 1(#
0),g<0orqg< 1(#0),p < 0. We see the equality holds
iff there exists a positive constant ¢ such that,

X =of (15)
Making the substitution
ag .l a-1
x=pf D y=p"tp="——0q=1-0a

Using these values in (14) we get

So= 3o ()] 3]
(16)
Now using Kraft p] inequality we get,

o (5] [ge] 1w

Or (17) can be written as

1

Lipﬁ'ﬁ] [ZpﬁD " (—)] "

D! (O’T_l) =pf@ Y [_ipf’ﬁl " @

Multiply equation (22) both sides kplp and then summing
overi =1,2,,n, and after simplification, we get

soto(52)] - [30]

Taking logarithms both sides with base D to equation (23),

(23)

then multiply both sides b;ia_—ﬁa, we get

L3 (P) = Hg (P) Hence the result.

Theorem 3.2. For every code with lengthds,ls,,In
satisfies Kraft's inequalithg can be made to satisfy the

inequality,
Lg(P) <Hg(P)+B.where0<a <1,0<f <1 (24)

Proof.From the theorem 3.1 we have

Lg(P) =Hg (P)
Holds if and only if
pr?
D =45 0<a<10<p<l
Yt b

Taking logarithms to both sides with base D to equationg, equivalently we can write

(18) we get
e lao (55

ﬁ log lzi P | < ]
. (19)

As 0< B < 1,multiply equation (18) both sides /> 0,

—|og[zip ] Iog[ZpED L (()jo)

Or equivalently,Lg(P) >HZ(P), where 0< o < 1,0 <

B
B < 1. Hence the result.
From equation (13) we have

ap
li = —logp [7& ]
Zl lpl

n
—log, p{” + logp [Z i’ ]
i=

We choose the code-word lengths = 1,2, nin such a
way that they satisfy the inequality,

n
—logp p* +1logp, {Zpi"ﬂ} <li<
e

Consider the interval

5= {Iogop.ﬁﬂosbhp } logDp.BHogD[zlp

of length unity.In eveny;, there lies exactly one positive
integerl;, such that,

n
~log, p* -+ logp {lef’ﬁ +1 (25)
2

n n
< —log, p{” +1logp, {lei”ﬂ} <li < —logs p* +1logy [_Zpi‘"ﬂ +1 (26)
1= i=
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We will first show that the sequentgls, , I, thus defined
satisfies the Kraftg] inequality. From the left inequality of
(26), we have

n
—logp p*? + logp, [Zi pi“ﬁ] <l
i=

Or equivalently we can write

pf’p
Z| 1 pl

Taking sum over i=1,2,,n, on both sides to the equatio
(27) we gety" ;D! < 1,which is Kraft [5] inequality.
Now the last inequality of (26) gives

Dl < (27)

li < —logp p; B+IogD lZp

Or we can write

-1
pf’p b
EI lpl

AsO0<a < 1,then(1—a) > 0,and(132)0), raising both
sides to the powef1=2) > 0, to equation (28), we get

Dl < (28)

a-1
_ ap 1T,
D' <—1 “)<[7np' | DT (9
a 2i=1 P
Or (29) can be written as
1-a
o (a-1 Ba-1) | ¢ gaB|  ple
D ( p )<p| szl D (30)

Multiply equation (30) both sides tglp and then summing
overi =1,2,,n, and after simplification, we get,

S0 (52 <[ 3]

1-a

D@ (31)

Taking logarithms to both sides with base D to equation

(31), we get,

(53] i 2

AsO<a <1,0<B§1ther(1—a)>0and(%) >0,

multiply both sides equation (32) t( ap ) > 0, we get

Lg(P)<Hg( P)+pB,where0< a <1,0< B <1

4 [llustration

In this section we illustrate the veracity of the theorems
3.1 and 3.2 by taking empirical data as given in table (4.1)
and (4.2) on the lines of Om Parkash and Priyanka Kakkar
[13].

Using Huffman coding scheme the values of
Hg(P), Hg(P) +B, Lg(P) andn for different values ofx
andp are shown in the following table:

Table(4.1)

Huffman a B HE P) Lg P)

Probabilities n= H
HI (P
5 (P)

Pi codewords —a— 100

3.279327
4.844197
3.309614

0.41 1

0.18 000
0.15 001
0.13 010
0.1 0110
0.03 0111 4

Now using Shannon-Fano coding scheme the values of

Hg(P), HE’(P) +B, Lg(P) andn for different values oftx
andf are shown in the following table:
Table(4. 2)

Probabilities Shannon a B

0.9 1
0.9 0.9
0.8 1

2.279327
3.944197
2.309614

2.359635
4.031190
2.420838

96.5666
97.842
95.40555

ENER RN P

o) =
’ HE )
B <100

‘B

TP +1

a
HB(P) Hﬁ(

Fano

P codewords
0.41 00
0.18 01
0.15 10
0.13 110
0.1 1110
0.03 1111

From table (4.1) and (4.2) we infer the following:

0.9 1
0.9 0.9
0.8 1

2.279327
3.944197
2.309614

2.409698
4.046642
2.435809

94.58972
97.4684
94.81917

3.279327
4.844197
3.309614

ENENER I NN

1.Theorems 3.1 and 3.2 hold both the cases of Shannon-
Fano codes and Huffman codes. i.e.
HE (P) <L5(P) <HF(P)+1,0<a<10<B<1

2.Huffman mean code-word length is less than Shannon-
Fano mean code-word length.

3.Coefficient of efficiency of Huffman codes is greater
than coefficient of efficiency of Shannon-Fano codes
i.e. it is concluded that Huffman coding scheme is
more efficient than Shannon-Fano coding scheme.

5 Monotonic Behavior of the New
Generalized Information Measure HE’(P)

In this section we study the monotonic behavior of the new
generalized information measdﬂtg(P) given in (4) with

respect to the parametersandf3.

Let P = (0.41,0.18,0.15,013 0.10,0.03) be a set of
probabilities. Assumin@ = 1. We calculates the values of
Hg(P) for different values ofx as shown in the following
table:

Table 5.1: Monotonic behaviour dﬂg(P)

Thus from above two coding theorems we have shownWith reSpeCt tax for fixed3 =1

0.9

22793

thatHC{( ) < Lg(P) < Hg( )+ B Where 0< o< 1 0 < 0.1 0.2 0.3 0.4 05 0.6 07 038
B < 1 HE[PJ 25470 | 25101 | 24743 | 24394 | 24056 | 23727 | 23407 | 2.3096
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Next we draw the graph of the table (5.1) and
illustrate from fig. 1 thaHg(P) iS monotonic decreasing

with increasing values af

a=05
=
Ea ]
= p=1| &
e
i m -_
ﬂ-_! = —
T4
rl
'!.I: —
Ll
i =
= 8
™ T T T T T
0z 0.4 08 0.8 1.0
T ¢
a
% Fig. 2: Monotonic behaviour df-lg (P) with respect t¢8 for fixed
T L T x| ' a=05
[iT4 0.4 L 08
o
Proof. From (4) we have,
Fig. 1: Monotonic behaviour df-lg (P) with respect tax for fixed 3 n
B=1 Hg(P):mlogD[pr’ﬁ],0<a<1,0<ﬁ<1
i=

Now assumingax = 0.5. We calculates the values of From table (4.1) and (4.2) it is observed th%(P) is
Hg (P) for different values of8 as shown in the following non-negative for given values afandf3

table: Property 6.2. HE’(P) is a symmetric function on every
Table 5.2: Monotonic behaviour dﬂg(P) pi,i=123,...n
with respect tq3 for fixed o = 0.5 Proof. It is obvious thaHg(P) is a symmetric function on
everyp;,i=123,...,n. ie.,
B 0.2 0.4 0.6 0.8 1.0
Hg (P) | 0.9169| 1.6065| 2.0784 | 2.3419 | 2.4056 Hg (P2, P2, -, Pn-1), Pn) = Hg (Pn, P1, P2 - P(n-1))

Next we draw the graph of the table (5.2) and ) ]
illustrate from fig. 2 thaHg (P) is monotonic increasing  Property 6.3 Hg (P) is maximum when all the events
with increasing values g8 have equal probabilities.
Proof. Whenp; = 1vi=1,2.3,..,n, f = 1, anda — 1.
Thean(P) = logp n, which is maximum entropy.

Property 6.4. Hg (P) satisfies the additivity of the

6 Properties of the New Generalized : _
following form:

I nformation M easure Hg(P)
Hg (P+Q) =Hg (P) +Hg(Q)

In this section we will discuss some properties of the newwhere
generalized information measuridg(P) given in (4)  PxQ=(p1du,-.., P1Gm, P20, ---; P20m, ---, PnC1, --- PnCm)

Property 6.1. Hg(P) is non-negative. Proof. Let HE’(P* Q)= Hg(P) + Hg(Q)
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Talking R.H.S :Hg(P) + Hg(Q)

1—g %% [21 P
% ['090 Li o’

fom i

1

]

Hence L.H.S = R.H.S.
Property 6.5. Hg(P) is concave function fopy, p2, ..., Pn.

Proof. From (4) we have,

Hg (P) = longlel ],O<a<1,0<[3§1

If B =1,a — 1, then the first derivative of (4) with respect
pi is given by

d n
—H"(P)} —n—" logp pi
[dpi P et 2,0%P

and the second derivative is given by
n

d? 1 _
==> (= )<0Vp =12,..
[dp HE (P)L{f11 2 (pi>_0Vp.e[0,1],| 1,2,..n

Since the second derivative Idg (P) with respect tq;
is negative on given intervag € [0,1]i=1,2,,n.asf =1
anda — 1, therefore,

Hg(P) is concave function fops, p2, , pn.

7 Conclusion

In this paper we define a new generalized entropy
measure i.e.Hg(P) of ordera and typeB. This measure
also generalizes some well-known information measures
already existing in the literature of information theory.
Also we define a new generalized code-word mean length
ie., Lg(P) of order o and type 3 corresponding to

HZ(P), then we characterizd{g(P) in terms of new

B
generalized entropy measur (P) of ordera and type
< L% < HS(P) +1 where

B and showed thaHg(P) 5 g

O<a<l1l0<B<Ll

Further we have established the noiseless coding
theorems proved in this paper with the help of two
different techniques by taking experimental data and
prove that Huffman coding scheme is more efficient than
Shannon-Fano coding scheme. Also we study the
monotonic behavior 0IH§’(P) with respect to parameters

o and type and the important properties blfg(P) have
also been studied.
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