
Appl. Math. Inf. Sci. 6-3S, No. 3, 1047-1053 (2012) 1047

Applied Mathematics & Information Sciences
An International Journal

c© 2012 NSP
Natural Sciences Publishing Cor.

Research on Scheduling of Jobs in Plane Manufacturing
Yanqing Qiu, Peng Ge∗, Peiyu Ren, Maozhu Jin, Yuyan Luo, Huafeng Gao

Business School, Sichuan University, Chengdu 610065, China

Received: Nov. 10, 2011; Revised Jan. 04, 2012; Accepted Feb. 13, 2012

Abstract: This paper proposed a heuristic algorithm based on due-dates for a stretch machine scheduling problem in the plane manu-
facturing industry. An integer-Programming model incorporated the due-dates of jobs,capacity of oven, availability of stretch machines,
and setting up times is built. The objective of this problem was to minimize the make-span of all jobs on stretch machines by scheduling.
To guarantee the due-dates of different orders, maximizing the efficiency of bottleneck resource (i.e., stretch machine in this paper)
must be considered. Because of the computational complexity of this problem, this paper developed a heuristic approach. Computational
experiences indicated that the heuristic gave high quality solutions with significant savings in time over standard IP algorithms.
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1. Introduction

Several of plates with different materials, different shapes,
and different thicknesses have been used in the plane man-
ufacturing industry. Among theoretical approaches to this
problem, mathematical programming branch-and- bound
and heuristic approaches appear to be most common. But
the computation time always grows exponentially with in-
creasing the problem size. Heuristics developed are limited
largely to uniform parallel machine problems. Various lit-
eratures have shown that scheduling is a fundamental issue
in achieving high performance on computers and computa-
tional grids [1–3]. Some researchers studied the approach
to solve these complex problems. V. Srikrai et al. (2006)
proposed a MOD-DBR model for a non-identical paral-
lel machine flow shop [4]. Non-identical parallel machine
flow shop is only one of the key problems of this system.
Besides, the arrival times of jobs are stochastic, L. Bac-
couche et. al presented a RT-DBP method to assign the
priority for real-time tasks scheduling, and this makes our
schedule more difficult. We assume a given set of jobs to
be scheduled in our system.

Development of a computer system for the schedul-
ing of thousands of parts for airplane manufacturing is a
relatively complex and important problem for managers.
They plan to integrate the logistics both inside and outside
of their company. Throughout the first few months of this
effort a number of departments were identified as being
fraught with danger with regard to the ultimate success of

the project. Because of these problem areas, it was decided
that an evolutionary approach to system design and devel-
opment would increase the probability of success. This ap-
proach was to rely heavily on interaction between the po-
tential users of the system, at both user and management
levels, and the developers of the system. Following the de-
velopment of a framework for system design and imple-
mentation the actual work on the system itself was begun.
Managers find out some key departments which are the
bottleneck of the whole manufacturing process and hope
that we could do some optimization work to increase the
throughput of them.

What we really consider is a partly backtrack system
based on multiple-cluster with time windows. Shijie Sun et
al. (1996) [5] took a research on batching scheduling prob-
lem of flow shop with the objective of minimize Cmax.
Weizhe Zhang et. al (2008) [6] introduced a time-varying
performance model for multiple cluster jobs, and a multi-
ple cluster scheduling scheme and four novel time-varying
scheduling algorithms. But in the real world, many such
sub-systems are combined in the system we considered.
Arman R. Yaghubian etc. compared the results of heuristic
with standard IP algorithm for a dry kiln scheduling prob-
lem in a furniture manufacturing industry [7].

It has been realized that scheduling is a fundamental
issue in achieving high performance on stretch machines
and oven. In plane manufacturing environments, there are
many departments of schedulers to meet different perfor-
mance goals. Resource schedulers coordinate user requests
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for accessing a given resource to ensure fairness and to op-
timize utilization (Chapter 13 of [8]). Application sched-
ulers promote the performance of individual applications
by optimizing performance measures such as execution
time and speedup (Chapter 12 of [8]). Job schedulers aim
to optimize the overall performance of a system, e.g., min-
imizing the average job response time and maximizing the
number of jobs executed in certain period of time. In this
paper, we are interested in the problem of job scheduling
on a three-stage process, in which the first and the third
stage are processed on the same machine.Describing the
criterion by rephrasing, the users made it obvious that they
envisioned it as one that could be evaluated subjectively.
At the same time, the authors recognized that eventually it
had to be converted to one that could be objectively evalu-
ated by the computer. The final resolution of this problem
will be described in the third article of this series.

The rest of the paper is organized as follows. In Sec-
tion 2 we represent our system. In Section 3 we present
the mathematical model and our heuristic algorithm. We
compared the results of the mathematical model and our
heuristic algorithm in Section 4. We conclude our paper
and suggest some possible future directions in Section 5.

2. System

There are two stretch machines and two ovens in the sys-
tem of this paper. According to the Theory of Constraint,
the bottleneck-stretch machine-restricts the throughput of
whole system. Then, the first step of our work is to solve
the problem of parallel machines scheduling. One way to
solve this problem is to use artificial intelligent based on
computer (for example, genetic algorithm (GA), greedy al-
gorithm, tabu search, simulated annealing, neural network,
etc.) [9], develop a reasonable production schedule with
associated setting and processing time, and then, use the
original schedule as a starting feasible point. This process
can be repeated until the user has obtained the best job
queue. A drawback of this procedure, especially for large
problems, is the difficulty in deciding which jobs to be
scheduled conterminous. This approach turns out to be just
a simple trial-and-error procedure. Yan Zuo et. al. (2007)
reduced the problem with an efficient heuristic, with an
idea that non- constraint machines wont impact the through-
put [10]. Another approach would be to automate the time
analysis by developing an integer programming model of
the sort problem based on TOC with time windows. In this
study, the objective is to maximize the earliest process time
of jobs on stretch machine while meeting all due-dates.

First of all, we need to do some pre-stretch to the plate,
and after it obtains a certain size, a heat treatment in an
oven is needed. Then, some of the jobs must be re-stretched
to ensure the changelessness of its shape. The flow process
can be figured as Figure 1.

Due to the constraint of rules of the ovens packing, we
must sort parts by the principle that parts with the same

Figure 1 Flow chart of production

Figure 2 Relationship of demand, batch and part

material, approximate thickness, and the same heat treat-
ment time be sorted close, and we call these homogeneous
parts a batch. The relationship of demand, batch and part is
described in Figure 2: There are many demands in the sys-
tem, and each demand can be divided into several batches
according to the capacity of oven. Now, the whole flow of
process can be described as two sections as follows:

Stretch: operations pre-stretch and re-stretch use the
same parallel stretch machines. According to the defini-
tion of bottleneck [11], its a machine whose available ca-
pacity is lower or equal to its demand, and it apparently
constraints the throughput of the overall system. After an-
alyzing the productive process of the real shop for each
job, the process time of heat treatment is much longer than
stretch, but oven can hold several plates in it once, while
stretch machine only one at a time. Therefore, if the divi-
sion is appropriate, the machine which restricts the system
throughput is stretch machine, other than oven. In view
of the standardization of aircraft manufacturing, jobs with
the same shape must use the same die while stretching.
When processing jobs with different shape, the die must be
changed, this will be time consumption (often doubled the
processing time). Since the setup time of replacing dies for
stretch machine is generally much longer than the process
time, jobs with the same shape should be sorted cotermi-
nous based on their due-dates.
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Heat treatment: because the process time for plates with
different materials, thickness and characteristics in oven is
quite different, it should be sorted properly to improve the
utilization of oven, so that it wont become bottleneck in-
stead of stretch machine. We call jobs with the same ma-
terial, thickness and characteristic (i.e. can be heated in
oven at the same time) homogeneous jobs. We strive to
make these homogeneous jobs arrive the operation of oven
simultaneously or in succession. Then, our task is to ar-
range these jobs in an oven with constraint of its capacity.
Packing jobs in an oven is a problem of three-dimension
(3D) knapsack. This is strongly NP-hard, we will simplify
it later.

Generally, each of those three operations has more than
one selection of machines. This scheduling problem can be
treated as a special case of scheduling n jobs on m paral-
lel machines in a three operations system, which has been
widely investigated, and shown to be NP-hard [12]. As-
sume that parts with the same due-date are finite, and the
parts cant be overlapped in the oven. This is a rectangular
packing problem by calculating the surrounding boxes of
irregular parts. But if the deformation range of the job is
properly large, this method is also hard to avoid taking up
much space, and it loses its expected effect. We established
a group strategy in the same oven.

3. Mathematical and heuristic models

3.1. Mathematical model

To guarantee the due-dates of different orders, maximiz-
ing the efficiency of bottleneck resource (i.e., stretch ma-
chine in this paper) must be considered. Then, the prob-
lem is translated into an analysis on minimizing the make-
span of all jobs on stretch machine by scheduling. Assume
that: (i) a stretch machine can process only one plate at a
time; (ii) raw plate is available in sufficient quantity dur-
ing scheduling; (iii) no preemption of jobs is allowed; (iv)
machines are available after the given availability time; (v)
jobs in the same demand use the same machine when they
face with a choice; (vi) jobs in a batch be processed con-
tinuously and share the same process time; (vii) there is
no-preemption once a batch begin to be processed. As-
sumption (i) is not limiting because of the limitation of
the stretch machine itself. Assumption (ii) is not limiting
because it is not the factor which will affect our solution.
Assumption (iii) is not limiting since preempting a job
would increase the setup time of each stretch machine, and
may possibly cause the waste of oven space. Since in real
practices, demands are divided by the material/thickness
of jobs, assumption (v) does not limit the usefulness of the
model. Assumption (vi) and (vii) is a constraint prescribed
by the real implement.

Parameters:
n=total number of plates which are needed to be pro-

cessed;

mk=total number of machines in process k;
Srik=setup time of demand r on machine i in process

k;
R = {R1, R2, , Rv}total demands;
Rv = {b1, b2, , bu}demand v can be divided into u

batches;
lb=total number of jobs in batch b;
pijk=processing time of job j on machine i in process

k;
q=capacity of oven;
btbik=begin time of batch b on machine i in process k;
Jk=set of machines in process k.
Decision variables:

xbik =

⎧⎪⎨
⎪⎩

1, batch b is processed on machine i in
process k

0, otherwise(b = 1, ..., �n/lb�; i = 1, ...,mk;
k = 1, 2, 3)

Jobs are numbered in increasing order of due-dates. Our
object is to minimize the maximum completion time of all
jobs. The integer linear program is stated as follows:

Min Cmax

subject to:

lb ≤ q(b = 1, ..., �n/lb�) (1)
∑

b

lb = n(b = 1, ..., �n/lb�) (2)

xbikbtbik + xbik

lb∑
j=1

pijk ≤ xbi(k+1)btbi(k+1)

(b = 1, ..., �n/lb�; i = 1, ...,mk; k = 1, 2, 3)
(3)

xbikbtbik + xbik

lb∑
j=1

pijk ≤ x(b+1)ikbt(b+1)ik

(b = 1, ..., �n/lb�; i = 1, ...,mk; k = 1, 2, 3)
(4)

xbuikbtbuik + xbuik

lb∑
j=1

pijk ≤ xb1ikbtb1ik

(bu ∈ Rv1; b1 ∈ Rv2; v1 �= v2; i = 1, ...,mk;
k = 1, 2, 3)

(5)

�n/lb�∑
b=1

xbik(Srik +
lb∑

j=1

pijk ≤ DDT

(r ∈ R; i = 1, ...,mk; k = 1, 2, 3)
(6)

J1 = J3 (7)

Where �x� takes upper integer of x.
The objective function represents minimizing the max-

imum completion time of the total jobs. Constraint set Eq.
1 defines the number of jobs in each batch is set to be less
than or equal to the capacity of oven. Constraint set Eq. 2
specifies that the number of jobs should be equal to the to-
tal job numbers that are needed to be processed. Constraint
set Eq. 3 denotes that the completion time of each opera-
tion on a batch is less than or equal to the begin time of
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its next operation. Constraint Eq. 4 indicates that the com-
pletion time of a batch in an operation is less than or equal
to the begin time of the next batch in the same operation.
Constraint Eq. 5 indicates that demands allocated on the
same machine cant share the same time space. Constraint
Eq. 6 indicates the total time of batches in the system must
satisfy their due-dates. Constraint Eq. 7 points out that the
operations pre-stretch and re-stretch share the same ma-
chines.

Given that Q2||Cmax has been shown to be NP hard
[13], while the operations pre-stretch and re-stretch share
the same stretch machine, this adds the complexity of solv-
ing the mathematical model. The main disadvantage of this
model is that we cant consider the constraint of the batch
according to the real situation.

3.2. Heuristic model

It is difficult to obtain the optimal solutions, and there is
no need to find the optimal solutions in the real practice.
Actually, we only need to gain the heuristic or approxi-
mate solutions in real practice, and we considered a heuris-
tic model in Figure 3. Many researchers have proposed
some heuristic algorithms such as LPT (Longest Process-
ing Times) and Multifit algorithm [14]. Graham have testi-
fied the solution of LPT order do not exceed 4/3−1/(3m)
times of the optimization literature, and this bound cannot
be improved. Coffman et al. have testified the solution of
Multi-fit algorithm is less than or equal to 1.22.

The jobs can be divided into two types: (1) jobs that
should be processed on a certain machine, we call them
’A1’; (2) jobs that can share these machines, we call them
’B1’. Jobs with different types have different weights:

wji =

⎧⎨
⎩

0, job j can not be processed on machine i;
1, job j can be processed on machine i;
2, process job j on machine i with priority.

The algorithm first allocates A1, and then, B1 with prior-
ity of their weights, and finally, using LPT rule to balance
their loads. Thus, we find a quick and effective (but not
always excellent) original solution.

In the second stage, we use SPT rule to sort jobs on
a certain machine. Then, check if the completion time of
each job can meet its due-date; if so, go to the next stage,
otherwise, go forward to stage 4 for reorder.

In the third stage, judge whether the conjoint jobs can
be processed in the same oven, if not, go ahead to stage 4
for reorder; otherwise, lot sizing jobs into batches with the
group strategy (GS), where:

G = (g1, , gv, , gV ) denotes the set of group g;
g =< s,R, p > denotes the group strategy in an oven;
s denotes the sequence number of ovens;

Rg =

N∑
i=1

N∑
j=i+1

rij

C2
N

(rij =
{

1, i and j are homogeneous;
0, otherwise. N=number of jobs

in g), denotes correlation degree of jobs in g;
p=process time of group p on oven s.
We divide jobs into two types: A2 and B2 as well as

in stage 1. Take notice, jobs in the same batch must keep
SPT order.

In the fourth stage, the algorithm SHAKES the solu-
tion. First, it finds out the bottleneck machine through uti-
lization (bottleneck machine holds the biggest utilization),
then, checks for idle times between conjoint demands on
this machine. These idle times are usually caused by oper-
ation of heat treatment. Thus, we can remove the demand
which needs to wait on bottleneck machine, and search for
continuous time gaps on the oven processing this demand
backward, and the time gap must be greater than or equal
to the process time of this demand. If such time gap exists,
select a demand with random and insert it into here, then
return to stage 2; otherwise, switch this demand with an-
other demand processed on the other oven that can serve
for this demand also, and return to stage 1; if both of these
two exchanges cannot active or no time gap exists on the
bottleneck machine, move on to the next step. It tries to
improve the solution (i.e., the algorithm performs a More
Local search) by: (1-1) changing the order of the jobs pro-
cessed on a certain machine randomly; (1-2) re-allocate
jobs among the uniform machines with its weights being
altered between 1 and 2. In the second routine, the jobs
which must be processed on a certain machine are not in-
cluded (i.e., random switching routines work only within
the Bk(k = 1, 2) jobs). We explain these two rules of ex-
change in Figure 4. When a switching rule is applied, it is
tested by the stages above until a successful switch can be
made.

4. Result

The algorithms performance was compared with the LINGO
Integer-Programming (IP) package. Generally speaking, there
are three methods to evaluate the solutions we achieved:
(a). compare the quantity of solutions, we can evaluate
both how close our solution is to the optimal solution and
how large the variation of our solution is. (b). compare the
solution time including both the time consumed and sta-
bility during calculation. (c). use both (a) and (b). Due to
the small scale of the examples above, both methods can
generate final object value quickly. We consider solutions
under different job numbers, and compared the effective-
ness of the two solutions.

Considering the complexity of calculation of the IP
model, we simplify the problem in the real world in this
experiment: 1.assume that every job must go through three
operations as following: pre-stretch, heat-treatment, and
re-stretch, and this help us to transform the problem from
job shop to permutation flow shop. Distinguishingly, when
the effective process of a certain job dont have one or more
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Figure 3 Flow chart of the algorithm

operations, we can let its process time be zero in this pro-
cess; 2.there is no constraint of time windows (i.e. any ma-
chine is working for 24 hours every day); 3.each operation
has two parallel machines to provide services. To make
the experiment comparable, we bring these three assump-
tions into both the LINGO procedure and our heuristic al-
gorithm.

Eighteen problems (up to 344 jobs) were randomly
generated in the first stage of the experiments. After the

Figure 4 Switch of stage 4

Figure 5 Time performance between the IP and the heuristic
procedures

analysis of GS, each demand contains two batches, and
the size of each batch can vary between 0 and 15, while
oven capacities (which determined the size of our batches)
typically range from 4 to 20. Processing times (pijk) of
ovens can vary from 20 minutes to 120 minutes. Results
for both the heuristic and IP procedures are presented in
Table 1. The first three columns of Table 1 contain the in-
puts of our problem. NJ means the Number of Jobs, ND
means the Number of Demands, and NV/NC means the
Number of Variables or the Number of Constraints. The
last four columns show us the performance of both IP and
Heuristic methods, in which IPT and HT means the CPU
Time cost by method of IP and Heuristic respectively, IPC
and HC means the completion time of solutions under IP
and Heuristic algorithm. When NJ exceed 150, IPT ex-
periencing a certain fluctuations and with the NJ continu-
ally increased, the time consumed by IP quickly increased
and Soon reach a larger value. Take the last two cases
for example, NJ increase 11% and IPT increase 80%, and
reached 2.35 hour; HT increase 46%, and its computation
time is 19 second. The solution of our heuristic algorithm
can find the optimal solution mostly while NJ less than or
equal to 200.

Figure 5 shows us the time performance between the
IP and the heuristic procedures. As it turns out, the time
consumed by IP model increasing exponential and show
a great range of fluctuation as the number of demands in-

c© 2012 NSP
Natural Sciences Publishing Cor.



1052 Yanqing Qiu et al : Research on Scheduling of Jobs in Plane Manufacturing

Table 1 A Comparison between the heuristic and IP solutions

NJ ND NV/NC IPT(sec) HT(sec) IPC(min) HC(min)
39 2 36/37 0 0 520 520
59 3 54/58 0 0 900 900
79 4 72/81 2 0 980 980
114 6 108/133 3 0 1360 1360
120 7 126/162 9 0 1560 1560
156 9 162/226 34 1 1960 1961
169 10 180/261 15 1 2160 2160
183 11 198/298 33 1 2300 2300
199 12 216/337 114 2 2500 2680
214 13 234/378 83 1 2740 2881
227 14 252/421 107 3 2980 3001
241 15 270/466 198 3 3140 3280
251 16 288/513 495 8 3300 3520
263 18 324/613 773 6 3620 3870
276 19 342/666 2235 10 3840 4200
291 20 360/721 2940 9 4000 4250
310 22 396/837 4700 13 4260 4538
344 25 450/1026 8470 19 4640 5221

creased (Figure 5). This will be time consuming in the ac-
tual implementation. The heuristic found good solutions
for the test problems within one second. This proves that
our algorithm is feasible, especially in the case of large
size of demands.We compute the cases in which ND=40,
ND=75, and ND=100. The IP takes 72 hours and find rel-
atively good solutions. The best solutions found by heuris-
tic algorithm are larger than IP, but the time consumed are
less than or equal to 35 seconds. In real practice, we prefer
an approximate solution in a relatively short time, rather
than spending several days to achieve a relatively accurate
result.

For problems larger than those detailed in Table 1, the
computational results for three larger problems are shown
in Table 2. The mean and standard deviation of the objec-
tive time extents is reported.

Table 2 Heuristic versus IP for large problems.

Technique
Problem
instance

40
demands

75
demands

100
demands

IP
Object bound (min)

Best solution found (min)
Time (hour)

6445
7185
72

14885
21870

72

12470
17370

72

Heuristic

Best solution found (min)
Average solution

std. dev.
Time (sec)

7515
7677.6
75.2
30

15006
15535.4
523.6

35

18958
19285.8
762.5

35

* The configuration of computer is: Pentium IV CPU
2.66GHZ, RAM 1G.

Figure 6 Utilization of bottleneck machine

Figure 7 Comparison of loads of the two stretch machines

The next experiment helps to determine the stability of
the heuristic over calculating the deviation of utilization of
bottle-neck machine and load equilibrium of each stretch
machine after time windows being absorbed into it based
on a number of different cases. And show the analytical
results in Figure 6.

As seen in Figure 7, we can calculate the standard devi-
ation rate (CV) of the loads of two parallel machines from
the values in the last column as follows: CV = σ/x̄ =
30.59/127.5 = 0.24. The heuristic shows that the utiliza-
tion of the bottleneck machine holds a steady high level
without time windows (with average value: 83%), and the
loads of the parallel machines are also harmonious under
a random sample of job numbers.

5. Conclusions

A four-stage heuristic algorism based on exchanging jobs
in and between the parallel machine(s) was compared with
the integer linear programming model for the scheduling
of jobs on parallel stretch machinees has been developed.
Due-dates for each job, oven capacity, stretch machine avail-
ability, and setting times are incorporated into the model.
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Owing to the complexity of the problem, the development
of a heuristic approach was motivated. Optimal solutions
to a wide range of problems were compared with solutions
obtained by the heuristic. Comparison indicates that the
heuristic offers not only a tremendous advantage in speed,
but also provides high quality solutions. Additionally, we
add time windows in our heuristic algorithm. These dis-
continuous time spaces will affect the practicable process
time of the oven, and then, react on the bottle-neck ma-
chine ulteriorly. In our heuristic algorithm, they were treated
as patches with settled beginning times and completion
times which were not processed on any machine. As we
have seen in Figure 6 and Figure 7, this increases the uti-
lization of bottleneck machine (with average value: 92%),
but it makes the entire make span much longer than the
perfect state. We exchange the order of jobs in the forth
stage of our algorithm to ease this problem, and approach
to our objective as much as possible. We allow users to
modify any information in this system when necessary also,
and this will help to meet the diverse needs of the enter-
prise.
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