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1 PRELIMINARIES AND SCOPE Definition 1. [10] Let X be a nonempty set and let d
X x X — [0,0) be a function, called a dislocated metric

Branciari ] obtained a fixed point theorem for a single (or simply d-metric) if the following conditions hold for
valued mapping satisfying an analogue of Banach'sanyxy ze X :

contraction principle for an integral type inequality.

Rhoades21] proved two fixed point theorems involving () If di(x,y) =0, thenx=Yy;

more general contractive condition of integral type. (i) di(X,y) = di(V,X);

Moradi and Omid 17] established fixed point results for (i) di(xy) <d(x,2)+d(zy).

mappings satisfying integral type inequality dependingon  The pair (X,d|) is then called a dislocated metric

another function. space. It is clear that il (x,y) = 0, then from (i),x =Y.
Samet et al. 23] introduced a concept of Butif x=Y,d(x,y) may notbeO

(a,y) — contractive type mappings and established fixed ) .

point theorems for such mappings in complete metricDefinition 2. [10] A sequencex,} in a d-metric space

space. Hussain et alLf] ,[12], [13] and Salimi et al. 27| (X,d) is called a Cauchy sequence if given> 0, there

obtained fixed point results for single and multi-valued corresponds @€ N such that for all pm > no we have

mappings extending the notion ofa-admissible i (Xm, Xn) < €.

mappings. Mohammadi et al1§l introduced a new Definition 3. [10]A sequence{x,} in d-metric space

notion of o — ¢—contractive mappings and show that this . . .
is a real generalization for some old results. Recemlyconverges with respect tg d there exists e X such that

Arshad et al. 2] established fixed point results of a pair of d (%, x) = 0 as n-— . In this case, x is called limit of
contractive dominated mappings on a closed ball in an{X“} and we write ¥ — X.
ordered complete dislocated metric space. Over the yeargyqfinition 4. [10] A d;
fixed point theory has been generlized in multi-directions
by several mathematicians(see [1-22]).

Let ¥ denote the family of all nondecreasing functions
@ 1 [0,+) — [0,+) such thaty = ¢"(t) < +o, and  Definition 5. [23. Let (X,d) be a metric space. A
@(0) = 0 for eacht > 0, wherey" is then'" iterate ofi. mapping T: X — X is an(a, (y)—contractive mapping if

-metric space(X,d,) is called
complete if every Cauchy sequence in X converges to a
pointin X.
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there exist two functiong : X x X — [0,4c) and € ¥
such that

a(x,y)d(TxTy) < @(d(x,y)),
forall x,y € X.

Definition 6. [23. Let T X — X and
a: X xX —[0,+0). We say that T isx-admissible if
Xy € X, a(xy)>1 impliesthata(Tx Ty) > 1.

Example 1Let X = (0,0) andT an identity mapping on
X. Definea : X x X — [0,) by

y .
_ Jexif x>y,
a(x,y)_{ 0if x<y.

ThenT is a—admissible.

Definition7. ([1]). Let ST : X — X and
a: X xX — [0,+0). We say that the pai(S,T) is
a-admissible if xy € X such thata(x,y) > 1, then we
havea (SxTy) > 1anda(Tx Sy > 1.

Definition 8.  ([22]). Let T

X — X and

a,n : X x X — [0,40) two functions. We say that T is

a-admissible mapping with respect tpif x,y € X such
that axy > nxy), then we have
a(TxTy) > n(TxTy). Note that if we takey(x,y) =1
then T is called a-admissible mapping 23. If
a(xy) = 1, then T is called ann-subadmissible

mapping.

Definition 9. Let X —= X and

ST

a,n : X x X — [0,4) two functions. We say that the

pair (ST) is a-admissible with respect tg if x,y € X
such that a(xy) > n(xy) then we have
a(SxTy) > n(SxTy) and a(Tx Sy > n(SxTy). Also,
if we taken(x,y) = 1, then, the pair(ST) is called

a-admissible, if we takey (x,y) = 1, then we say that the

pair (S,T) is n-subadmissible mapping. If we take=ST
we obtain Definition 10. Also if we takg(x,y) = 1, then
we obtain the Definition 9 of Abdeljawad]|

Definition 10. ([16]). Let T: X — X andag: X x X —
[0, +¢0) by

1 a(xy) >n(x
Tx=x+1, ao(x,y)={ 0 ( ygthe?v(vis)e/)}'

We say that T isag-admissible. Ifag(x,y) > 1, then
a(xy) > n(xy) and soa(TxTy) > n(TxTy). This
impliesag(Tx, Ty) = 1. Also ap(Xo, Sx) = 1.

Definition 11.Let ST : X — X andag : X x X — [0, +)
by

o _ 1 axy) >n(xy)
Sx=Xx ,TX—Xandao(XaY)—{ 0 otherwise (-

We say that the pair(ST) is ap-admissible. If
ao(xy) > 1, then a(xy) > n(xyy) and so
a(SxTy) > n(SxTy) and a(Tx Sy > n(SxTy). This
implies  dap(SxTy) = ap(TxSy = 1. Also
ao(Xo,Sx) = 1. If we take S= T we obtain the Definition
12.

Definef = {¢ : R" — R : ¢ is a Lebesgue integral
mapping which is summable, nonnegative and satisfies

&
J¢(t)dt > 0, for eache > 0}. The ballB(x,r),
0

- di(xy)
whereB(x,1) = {ye X / (t)dt < r}
0

is a generalized closed ball in dislocated metric space, for
somex € X ande > 0.

2 Fixed point results

We now prove some fixed point results féao, )—
contraction mappings of integral type in complete
dislocated metric space.

Theorem 1. Let (X,d;) be a complete dislocated metric
space and § : X — X be two mappings. Suppose there
exist a functionog : X x X — [0,+) such that the pair
(S,T) is ag-admissible. For > 0, xg € X, assume that,

X,y € B(Xo,r), ao(x,y) > 1

implies

d (SxTy) d (xy)
[ enasu([o0e) @
0 0
wherepe f, € ¥, and
i i di (%0,5%)
Su ([ ewa) <r @
= 0

Suppose that for any sequenfog} in B(xg,r) such that
0o(Xn,Xnt1) > 1foralln e NU{0} and % — u € B(xo,r)
as n— +oo thenag(xn,u) > 1 for all n € NU{0}.

Then, there exists a point* in B(xp,r) such that
X =8SxX =TX".

Proof. Let x; in X be such thak; = S» andx, = TX,.
Continuing this process, we construct a sequegceof
points inX such that,

Xoir1 = Sxi, and Xiy2 = TX0i 41, wherei = 0,1,2,....

Sinceap(xg,X1) > 1 thena (xg,x1) > n(Xp,X1) otherwise
ao(Xo,X1) = 0, and the pair(S,T) is ap-admissible we
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have a(Sx»,Txi) > n(S»,Tx) from which we deduce
that a(xg,X2) > n(x1,%2) which also implies that
ao(x1,%2) = 1 then a(xy,%2) > n(xg,x2) otherwise
ao(X1,X2) = 0, and the pair(S,T) is ap-admissible we
have a(Tx,S»%) > n(Tx,Sx) implies ag(xg,x3) = 1
otherwise ap(xz,X3) = 0. Continuing in this way we
obtain ag(Xn,Xn+1) = 1 then a(Xn, Xnt1) > N (Xn,Xnr1)
otherwisedo(Xn,Xn1) = 0, for all n € NU {0}. First we
show thatx, € B(Xp,r) for all n € N. Using inequality
(2.2), we have,

-:iwi (/Od| (%0.5%) qo(t)dt) o

It follows that,

X1 € B(Xo, ).
Let X, - ,Xj € B(xo r) for somej e N. If j =2 +1,
where i = 0,1,2,. JT so using inequality(1), we
obtain,

| (S%i TX2|+1
/ t)dt
di (Xai X2i+1)
( / o(t) )
di (Xai—1.,%2i)
<y ( o(t) dt)

| (X0:X1)
<y (/ o))
Thus we have,

di (Xzi+1,%2i 2 : di (Xo.X1
[ )qo(t)dtng'”( [ )qo(t)dt>. @
0 0

If j=2i +2 then as<, X
0,1,2,. ) We obtain,

di (X2i+2,X2i +3) i % (o)
/ | (Xait2:%2i+3 o) dt < wZ(I+1) </ o (D(t)dt>- (4)
0 0

Thus from inequality3) and(4), we have

di (%) Xj11) . d (%0,X1)
[ pwar< g ( / cp(t)dt). )
0 0
d (x0.Xj+1) d (xo0.x1)
/0 o(t)dt = /

d| X1, X2
+/
0
di (x2,X3)

- t)dt+ ..

d| (X} Xj+1)
+ / o(t)dt

< ;w (/d o ot)ct)

/d| (X2i+1vX2i+2
0

\ A
=

\ /\

... Xj € B(Xo,r) where(i =

Now,

Thusxj11 € B(Xo,r). Hencex, € B(xo,r) for all n e N.
Now inequality(5) can be written as

d (%n:Xn+1) di (%0.X1)
/ o(t)dt < g" (/ (p(t)dt) forall neN.
0 0
(6)

Fix € > 0 and let nle) € N such that
T " (fd' Xoxlqo(t)dt) < & Let nm e N with
m> n > k(¢&), using the triangular inequality, we obtain,

d(Xn, Xm) < z

(X Xier1) (7)

Now from (6) and(7), we have

/0d| (Xn,Xm) Hdt < Z (/d| XXt 1) ot dt)

[ [H00x)
<3 (/ qo(t)dt><£
n>n(e) 0

Hence{xn} is a Cauchy sequence {B(Xo,r),d,). Since

X is complete dislocated metric space, so there exists
B(xo,r) such thak, — x*. Also

lim ( /O d'(X”’X*><p(t)dt) —0. ®)

On the other hand, from (ii), we have
a (X', %n) > N (X', xn) forall ne Nu{0}.

Now using triangle inequality, together witfh), we get

di (SX Xai12) dh (X" Xai41) dh (X" Xai41)
/0 P(t)dt< @ ( /0 go(t)dt) < /0 o(t)dt.

Letting i — c and by using inequality8), we obtain
d (Sx,x") < 0. HenceSx = x*. Similarly by using

d (T Xai11) dh (X %) di (X" Xai)
[ ewaso ([ owar) < [T o

we obtaind, (T x*,x*) = 0, that is, Tx" = x*. HenceS and
T have a common fixed point B(xo,r).

If ao(x,y) =1 in Theoreml then, we have the
following Corollary.

Corollary 1. Let (X,d;) be a complete dislocated metric
space and § : X — X be two mappings. Suppose there
exist a functionag : X x X — [0,+00) such that the pair
(S T) is apg-admissible. For > 0, xp € X, assume that,

a(xy) = n(xy) implies

di (SxTy) (di(xy)
[ ena<u ([ ona) @
0 0
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wherep e F, Y € W, x,y € B(x,r) and

éowi (/Odl (%0.5%) qo(t)dt> .

Suppose that for any sequenge} in B(Xg,r) such that
0o(Xn,Xnt1) > 1foralln e NU{0} and  — u € B(Xo,r)
as n— +oo thenap(xy, u) > 1 for alln € NU{0}.

(10)

Then, there exists a poirt in B(Xp,r) such thax* =
SX =Tx"

If S=T, andap(x,y) = 1 in Theoreml then, we have
the following Corollary.

Corollary 2. Let (X,d;) be a complete dislocated metric

(a (%0, S%) = n(xo,S%); L
(iffor any sequence{x,} in B(xp,r) such that
o (Xn,%n+1) > N(%n,Xqe1) for all n e NU {0} and
X» — U € B(x,f) a n — 4o, then
o (Xn,u) > n(Xn,u) forallne NU{0}.
Then, there exists a point* in B(xp,r) such that
X*=8x =Tx".

If a(x,y) =1 in Corollary3, we obtain the following
Corollary.

Corollary 4. Let (X,d,) be a complete dislocated metric
space and § : X — X be two mappings. Suppose there
exists,n : X x X — [0,+o0) such that the paifS,T) is

space and T X — X be two mappings. Suppose there exist-subadmissible. Fog € ¥, assume that,

two functions,a,n : X x X — [0,+) such that T isa-
admissible with respect tq. For r > 0, xg € X, assume
that,

a(xy) > n(xy) =

d(TxTy) (di (xy)
[ ewarsw( [ enar)
0 0

wherep e F, P € W, xy € B(x,r) and

> ¥ < / (p(t)dt) <r (12)
i= 0

Suppose that the following assertions hold:

(i) o (X0, Tx0) = 1 (X0, T0);

(iDfor any sequence{x,} in B(Xp,r) such that

o (Xn,Xn+1) > N(%n,Xa41) for all n e NuU {0} and
Xn — U € B(Xg,r) asn — +oo thena (X,,u) > n(xn,u)
for allne NU{0}.

Then, there exists a point" in B(Xp,r) such that
TX =X

If @(t) =1 in Corollary 1, we obtain the following
Corollary.

Corollary 3. Let (X,d;) be a complete dislocated metric

nixy) <1=d(SxTy) < y(d(xy)  (15)
X,y € B(Xp,r) and
i
Z}w‘ (di (%0, Sx)) <r. (16)
i=
Suppose that the following assertions hold:
()N (%0, S%) <1;
(ilfor any sequence{x,} in B(xp,r) such that

nXnXne1) < 1 for al n e NuU {0} and

Xn — U € B(Xp,r) asn — 4o thenn (xn,u) < 1 for all
ne NuU{0}.

Then, there exists a point* in B(xp,r) such that
X*=8Sx =Tx".

If n(x,y) =1 in Corollaryl1, we obtain the following
Corollary.

Corollary 5. Let (X,d,) be a complete dislocated metric
space and J : X — X be two mappings. Suppose there
exist two functionsq, n : X x X — [0,+) such that the
pair (S T) is a-admissible with respect tq. For r > 0,

space and § : X — X be two mappings. Suppose there X0 € X, assume that,

exist two functionsq, n : X x X — [0,+) such that the
pair (S T) is a-admissible with respect tg. For r > 0,
Xo € X, and € ¥ assume that,

a(xy) > n(xy) =

di(SxTy) < ¢ ((di(x,y)) (13)

X,y € B(Xp,r) and
5.0/ (@00.Sw) <. (14)

Suppose that the following assertions hold:

a(xy)>1=

dj (SxTy) (d (xy)
[ ena<u( [ o0e) an
0 0

wherep € F, g € ¥, X,y € B(x,r) and

iwi </Od|(><o,5>o) (p(t)dt) .

Suppose that the following assertions hold:

(a(xo, %) = 1;

(18)
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(iffor any sequence{x,} in B(xp,r) such that
ad(Xn,X11) > 1 for all n € NuU {0} and
Xn — U € B(Xp,r) asn — —+oo thena (xn,u) > 1 for all
ne NuU{0}.

Then, there exists a point" in B(xp,r) such that
X =8SxX =TX.

(iffor any sequence{x,} in B(xp,r) such that
a(Xn,X11) > 1 for all n € NuU {0} and
Xn — U € B(Xp,r) asn — —+oo thena (xn,u) > 1 for all
ne NU{0}.

Then, there exists a point" in B(xp,r) such that
TX =X

If n(x,y) =1 in Corollary 3, we have the following

Corollary. Example 2Let X = R* U {0} and be endowed with usual

order and letd; : X x X — X be the complete ordered
Corollary 6. Let (X,d|) be a complete dislocated metric dislocated metric orX defined byd,(x,y) = x+y. Let
space and § : X — X be two mappings. Suppose there S,T : X — X be defined by,

exist two functionsg : X x X — [0,4) such that the
pair (ST) is a-admissible. Forr> 0, xp € X, andy € ¥
assume that,

axy) >1=
di(SxTy) < ¢ ((di(xy)) (19)
X,y € B(Xp,r) and
i
> W (x0.5%) <1 (20)
i=
Suppose that the following assertions hold:
(o (x0,S%) > 1;
(ihfor any sequence{x,} in B(xp,r) such that

a(Xn,%n+1) > 1 for all n € NuU {0} and

Xn — U € B(Xp,r) asn — +oo thena (xn,u) > 1 for all
ne NuU{0}.

Then, there exists a point" in B(xp,r) such that
X =8SxX =TxX.

If S=T in Corollary 6, we obtain the following
Corollary.

Corollary 7. Let (X,d;) be a complete dislocated metric
space and T: X — X be two mappings. Suppose there

exist two functionsg : X x X — [0,+o) such that T is
a-admissible. Forr> 0, xg € X, and ¢ € ¥, assume that,

axy)>1=

d(TxTy) < @ ((di(xy))
X,y € B(Xp,r) and

(21)

i
_Xow' (dh (%0, Tx0)) < (22)

Suppose that the following assertions hold:

(a(x,Txo) = 1;

X .
Sx— { gl|f.xe [0,1]
X—5 if x& (1,00)

and o
— if xe[0,1]

Tx:{ 5
x— 3% if xe (1,00).

Consideringxg = 1, r = 2, thenB(xp,r) =

_JlifxyeX;
alxy) = {0 otherwise

[0,1], and

Clearly, the pair(ST) is an a-y-contractive mapping
with ((t) = 5. Now,

di (X0, S%) = c (1,SL) :dl(l,é) _ 1+% :g
3 UA00S%) =53 3 < 5lg) =g <2

Also if x,y € (1,0), then
3
2x+2y—§ > X+y

3. x+y
(X+Y—Z) e

3
X+y—7 > Y(x+y)

d|(SxTy) > Y(di(xy))

Then the contractive condition does not hold XnAlso
if, X,y € B(xo,r), then

2X
T T SXtY
X X+y
5752
= (x+y)
(dh (),

(/d' ) (p(t)dt) .

5 ]
di(SxTy) <y
]

di (SxTy)
[ et
0
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