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Abstract: The present study is analyzed for slippage of velocity field and shear stress for accelerating flows of magnetohydrodynamics
Oldroyd-B fluid in presence of porosity. The analytical solutions have been obtained by employing fractional derivative approach on
the governing partial differential equations. The expressions of general solutions have been presented in terms of newly definedMp

q
function. These solutions are verified for initial and boundary conditions. Some special cases of fluid are particularized for ordinary
Oldroyd-B, fractionalized and ordinary Maxwell, fractionalized and ordinary second grade and also for Newtonian fluids with respect
to fractional parametersα,γ ,λr ,λ ,β ,ρ, t,θ ,µ,ν, p andΦ . The influence of rheological and fractional parameters is analyzed through
graphical illustrations and depicted in with and without slippage.
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1 Introduction

The rheological behavior of Newtonian fluid flows are characterized by classical Navier stokes equations, but the
description of non-Newtonian fluid flows is unable to characterized by classical Navier stokes equations. This is due to
the appearance of nonlinearity among the classical Navier stokes equations. The variety of significant applications of
non-Newtonian fluid flows lie in various sciences and technology. The theoretical and practical analysis of
non-Newtonian fluids has diverted interest among scientists, engineers and researchers because of their complex
rheological structures of fluids, for instance emulsions, polymer solutions, pastes, blood, slurries, heavy oils and many
others lead to shear thinning behavior. The geometry of these fluids flows of is very complicated and difficult to handle
due to their nonlinearity among rate of strain and stress. Onthe other hand, while the mathematical formulation of these
fluid flows leads to complex partial differential equations due to their dynamical behavior which has become the
challenge among physicists and mathematicians. The general solutions of these complex partial differential equations are
not an easy task because of their lengthy and cumbersome calculations [1]-[8].The interlinks and communications
between the principles of electromagnetic fields and hydrodynamics is based on magnetohydrodynamics (MHD). It
enables the various phenomenon concerned with astrophysics for instance, stellar magnetic fields, galactic fields,
sunspots, supernovae remnants, black holes, thermonuclear reactors, relativistic radio jets and active galactic nuclei and
various others. In continuation, the investigation of complex rheology of fluid flows in porous medium is really challenge
and encountering because of it distinct applications in certain areas for instance, water resources, biological sciences, oil
and gas exploration, and irrigation and agricultural sciences etc. Fetecau, C et al. has studied note on an Oldroyd-B fluid
for unsteady flow and between two plates [9,10]. Tong et al. used Oldrord-B model in which they investigated
viscoelastic fluid in an annular pipe for the Couette and Poiseuille flows [11,12]. An oscillating porous plate for the flow
of a viscoelastic second grade fluid is investigated by Hayatet al [13,14]. Meanwhile for Stokes second problem,
analytical solution of second grade fluid obtained by Asgharet al. [15]. Most recently, various researchers have
investigated with different aspects for unsteady Oldrord-B fluid in hydromagnetic and hydrodynamic flows [16,17,18,
19,20] Motivated by above mentioned study in fluid mechanics, the current analysis is undertaken for the impacts of
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magnetohydrodynamics and porosity with and without slippage of Oldrord-B fluid. The analytical solutions have been
obtained for velocity field and shear stress by employing fractional derivative approach. The expressions of general
solutions have been presented in terms of newly definedMp

q(z) function. These solutions are also verified for initial and
boundary conditions. Some limiting cases of fluids have beenparticularized for ordinary Oldroyd-B, fractionalized and
ordinary Maxwell, fractionalized and ordinary Second grade and also for Newtonian fluids. The influence of rheological
and pertinent parameters on the motion fluid is analyzed through graphical illustrations and depicted in with and without
slippage.

2 The Model

The flow of an incompressible fluid in which the equation of motion and continuity equation for the absence of body
forces are given by

∇V = 0, ρ
dv
dt

−∇T−ρb = 0, (1)

where∇ represents the gradient operator,V is the velocity field,T is the Cauchy stress tensor,ρ is the constant density of
the fluid,b is the body force field. The incompressible Oldroyd-B fluid for which the Cauchy stressT is given by

T =−pI+S, µ [A+λr(À+LA−ALT)] = S+λ (S̀+LS−SLT), (2)

where−pI denotes the indeterminate spherical stress,S is the extra-stress tensor,L is the velocity gradient,̀A is the
first Rivlin Ericksen tensor,µ is the dynamic viscosity of the fluid,λ andλr are relaxation and retardation times. The
constitutive eq. (2) comprises as limiting cases as Maxwellmodel and the Newtonian fluid model forλr andλ = λr
respectively. Extra-stress tensorS and velocity fieldV are assumed as:

V =V(y, t) = u(y, t)i, S = S(y, t). (3)

On the x-coordinate direction i is the unit vector. Such flowscan be satisfied for constraint of incompressibility and in the
x-direction without pressure gradient, the governing equations of the fractionalized magnetohydrodynamics Oldroyd-B
fluid in porous medium are [21,22]

∂w(y, t)
∂ t

(

λ α ∂ α

∂ tα +1

)

−ν
(

λ γ
r

∂ γ

∂ tγ +1

)

∂ 2w(y, t)
∂y2 +B

(

λ α ∂ α

∂ tα +1

)

w(y, t)+Φ
(

λ α ∂ α

∂ tα +1

)

w(y, t) = 0, (4)

τ(y, t)
(

λ α ∂ α

∂ tα +1

)

− µ
(

λ γ
r

∂ γ

∂ tγ +1

)

∂w(y, t)
∂y

= 0, (5)

where,ν = µ
ρ ,B= σB0

ρ ,Φ = φ µ
k is the kinematic viscosity, magnetic field and porosity of the fluid respectively [23,24].

Where,α andγ are the parameters of fractionalized calculus such that 0≤ α,γ ≤ 1 and Caputo fractional operatorDα
t

defined by [25,26]

Dp
t f (t) =

1
Γ (1− p)

∫ t

0

f ′(q)
(t −q)p dq; 0≤ p< 1. (6)

Γ (•) is the Gamma function.

3 Statement of the Problem

In this problem, we consider the flow problem of an incompressible magnetohydrodynmics Oldroyd-B fluid in porous
medium having fractionalized differential approach over plate that is positioned in the(x,z) plane and perpendicular to
the y-axis. Here we assume the presence of slip boundary condition among the velocity and shear rate of the fluid. The
fluid and plate both are initially at rest and att = 0+ the plate starts in variably accelerating in its own plane. Owing
to tangential shear, the fluid above the plate is slowly movedhaving the velocity of the form(3)1 the equations which
governs the flow are given by Eqs.(4) and(5) and corresponding initial and boundary conditions are

w(y,0) =
∂w(y,0)

∂ t
= 0; τ(y,0) = 0, y> 0, (7)
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w(0, t) =UH(t)t p+θ
∂w(y,0)

∂ t
|y=0; t ≥ 0, . (8)

HereH(t) is the Heaviside function. Moreover, the natural conditions

w(y, t),
∂w(y, t)

∂y
→ 0 asy→ ∞ and t > 0, (9)

have to be also satisfied andθ is slippage scale of the flow.

4 Solution of the Problem

4.1 Velocity Field

In order to solve governing equation, applying the Laplace transform to eq.(4), and taking into account the initial and
boundary conditions(7) and(8), we find that

(

∂ 2

∂y2 −
(s+Φ +B)(λ αsα +1)

ν(λ γ
r sγ +1)

)

w(y,s) = 0. (10)

Using initial and boundary condition in eq.(10),

w(y,s)→ 0 as y→ ∞, w(0,s) =
U

sp+1 , (11)

wherew(y,s) be the Laplace transform ofw(y, t), computing eqs.(10) and(11), we get

w(y,s) =
U p ! Exp

(

−
√

(s+Φ+B)(λ αsα+1)
ν(λ γ

r sγ+1)
y

)

sp+1

[

1+θ
√

(s+Φ+B)(λ αsα+1)
ν(λ γ

r sγ+1)

] . (12)

In order to obtain velocity profile, we apply the discrete inverse Laplace transform. Writing eq.(12) as series form

w(y,s) =
U p !
sp+1 +U p !

∞

∑
ζ=1

(−θ√
ν

)ζ ∞

∑
j=0

(

−Φ −B
) j

j !

∞

∑
η=0

(

−λ α)η

η !

∞

∑
k=0

(−λ γ
r )

kΓ ( ζ
2 +1)Γ ( ζ

2 + k)Γ ( ζ
2 +1)

k !Γ (−η +1+ ζ
2 )Γ ( ζ

2 )Γ (− j +1+ ζ
2 )

,

× 1

s−
ζ
2−γ k−αη+ j+p+1

+U p !
∞

∑
ζ=1

1
ζ !

(−y√
ν

)ζ ∞

∑
j=0

(

−Φ −B
) j

j !

∞

∑
η=0

(−θ√
ν

)η ∞

∑
k=0

(

−λ α)k

k !

∞

∑
l=0

(

−λ γ
r
)l

l !

,

× Γ (ζ + η
2 +1)Γ (l + ζ + η

2 )Γ (ζ + ζ
2 +1)

Γ (− j + ζ + η
2 +1)Γ (ζ + η

2 )Γ (−k+ ζ + η
2 +1)

1

s−γ l−αk+ j−ζ+ η
2 +p+1

(13)

. Inverting eq.(13), by discrete inverse Laplace transform, the suitable expression is

w(y, t) =UH(t)t p+UH(t)p !
∞

∑
ζ=1

(−θ√
ν

)ζ ∞

∑
j=0

(

−Φ −B
) j

j !

∞

∑
η=0

(

−λ α)η

η !

∞

∑
k=0

(−λ γ
r )kΓ ( ζ

2 +1)Γ ( ζ
2 + k)Γ ( ζ

2 +1)

k !Γ (−η +1+ ζ
2 )Γ ( ζ

2 )Γ (− j +1+ ζ
2 )

,

× t−
ζ
2−γ k−αη+ j+p

Γ (− ζ
2 − γ k−αη + j + p+1)

+U p !
∞

∑
ζ=1

1
ζ !

(−y√
ν

)ζ ∞

∑
j=0

(

−Φ −B
) j

j !

∞

∑
η=0

(−θ√
ν

)η ∞

∑
k=0

(

−λ α)k

k !

∞

∑
l=0

(

−λ γ
r
)l

l !
,

× Γ (ζ + η
2 +1)Γ (l + ζ + η

2 )Γ (ζ + ζ
2 +1)

Γ (− j + ζ + η
2 +1)Γ (ζ + η

2 )Γ (−k+ ζ + η
2 +1)

t−γ l−αk+ j−ζ+ η
2 +p

Γ (−γ l −αk+ j − ζ + η
2 + p+1)

, (14)
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we obtain the compact form of eq.(14) in terms ofMp
q (z),

w(y, t) =UH(t)t p+UH(t)p !
∞

∑
ζ=1

(−θ√
ν

)ζ ∞

∑
η=0

(

−λ α)η

η !

∞

∑
j=0

(

−Φ −B
) j

j !
,

×M3
4



−λ γ
r

∣

∣

∣

∣

(

ζ
2+1,0

)

,

(

ζ
2 ,0

)

,

(

ζ
2+1,0

)

(

−η+ ζ
2+1,0

)

,

(

ζ
2 ,0

)

,

(

− j+ ζ
2+1,0

)

,

(

− ζ
2−αη+ j+p+1,−γ

)



 ,

+U p !
∞

∑
ζ=1

1
ζ !

(−y√
ν

)ζ ∞

∑
j=0

(

−Φ −B
) j

j !

∞

∑
η=0

(−θ√
ν

)η ∞

∑
k=0

(

−λ α)k

k !
,

×M3
4

[

−λ γ
r

∣

∣

∣

∣

(ζ+ η
2 +1,0),(ζ+ η

2 ,1),(ζ+ η
2 +1,0)

(− j+ζ+ η
2 +1,0),(ζ+ η

2 ,0),(−k+ζ+ η
2 +1,0),(−ζ− η

2 −αk+ j+p+1,−γ)

]

, (15)

in whichMp
q (z) is the M- function expressed below

tbq−1
∞

∑
n

(z)nΠ p
j=1Γ (a j +A jn)

n! Πq
j=1Γ (b j +B jn)

= Mp
q

[

z

∣

∣

∣

∣

(a1,A1),(a2,A2),...,(ap,Ap)

(b1,B1),(b2,B2),...,(bq,Bq)

]

. (16)

4.2 Shear Stress

Apply the Laplace transform to eq.(5) and using the initial condition eq.(7), the expression for shear stress is

τ(y,s) =
µ∂w(y,s)

∂y
(λ γ

r sγ 1+)

(λ αsα +1)
. (17)

Setting eq.(12) into (17), we find that

τ(y,s) =
µU p !

√

(s+Φ +B)(λ γ
r sγ +1)

√
νsp+1

√

(λ αsα +1)

[

1+θ
√

(s+Φ+B)(λ αsα+1)
ν(λ γ

r sγ+1)

] Exp

(

−
√

(s+Φ +B)(λ αsα +1)

ν(λ γ
r sγ +1)

)

. (18)

Solving eq.(18) in more suitable representation in series form

τ(y,s) =−µU p !√
ν

∞

∑
ζ=0

1
ζ !

(−y√
ν

)ζ ∞

∑
η=0

(−θ√
ν

)η ∞

∑
j=0

(−λ α) j

j !

∞

∑
k=0

(−Φ −B)k

k !

∞

∑
l=0

(−λ γ
r )l

l !
,

× Γ ( ζ−1+η
2 +1)Γ ( ζ−1+η

2 + l)Γ ( ζ−1+η
2 +1)

Γ (− j + ζ−1+η
2 +1)Γ ( ζ−1+η

2 )Γ (−k+ ζ−1+η
2 +1)

1

s−
ζ−1+η

2 −γ l−α j+k+p+1
. (19)

Using discrete inverse Laplace transform to eq.(19), we get

τ(y, t) =−µU p !√
ν

∞

∑
ζ=0

1
ζ !

(−y√
ν

)ζ ∞

∑
η=0

(−θ√
ν

)η ∞

∑
j=0

(−λ α) j

j !

∞

∑
k=0

(−Φ −B)k

k !

∞

∑
l=0

(−λ γ
r )

l

l !
,

× Γ ( ζ−1+η
2 +1)Γ ( ζ−1+η

2 + l)Γ ( ζ−1+η
2 +1) t−

ζ−1+η
2 −γ l−α j+k+p

Γ (− j + ζ−1+η
2 +1)Γ ( ζ−1+η

2 )Γ (−k+ ζ−1+η
2 +1)Γ (− ζ−1+η

2 − γ l −α j + k+ p+1)
. (20)

Eq.(20) has equivalent form as

τ(y, t) =−µU p !√
ν

∞

∑
ζ=0

1
ζ !

( −y√
ν

)ζ ∞

∑
η=0

(−θ√
ν

)η ∞

∑
j=0

(−λ α) j

j !

∞

∑
k=0

(−Φ −B)k

k !
,

×M3
4



−λ γ
r

∣

∣

∣

∣

(

ζ−1+η
2 +1,0

)

,

(

ζ−1+η
2 ,1

)

,

(

ζ−1+η
2 +1,0

)

(

ζ−1+η
2 − j+1,0

)

,

(

ζ−1+η
2 ,0

)

,

(

ζ−1+η
2 −k+1,0

)

,

(

ζ−1+η
2 −α j+k+p+1,−γ

)



 . (21)

is obtained.
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Fig. 1: Profile of velocity field and shear stress with slip and no slipeffects

Fig. 2: Profile of velocity field and shear stress with slip and no slipeffects.

5 The Limiting Cases

Letting α → 1 andγ → 1 into equations(15) and(21) the solutions for Oldroyd-B fluid are in the presence of magnetic
field and porosity can be retrieved for ordinary differential operator. Further makingB→ 0 andΦ → 0 into equations(15)
and(21) the solutions for Oldroyd-B fluid are in the absence of magnetic field and porosity. Some interesting limiting
cases are listed below.
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Fig. 3: Profile of velocity field and shear stress with slip and no slipeffects.

Fig. 4: Profile of velocity field and shear stress with slip and no slipeffects.

5.1 Fractionalized MHD Oldroyd-B fluid in porous without slippage

w(y, t) =UH(t)t p+UH(t)p !
∞

∑
ζ=1

1
ζ !

(−y√
ν

)ζ ∞

∑
j=0

(

−Φ −B
) j

j !

∞

∑
k=0

(

−λ α)k

k !
,

×M3
4

[

−λ γ
r

∣

∣

∣

∣

(ζ+ η
2 +1,0),(ζ+ η

2 ,1),(ζ+ η
2 +1,0)

(− j+ζ+ η
2 +1,0),(ζ+ η

2 ,0),(−k+ζ+ η
2 +1,0),(−ζ− η

2 −αk+ j+p+1,−γ)

]

, (22)
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Fig. 5: Profile of velocity field and shear stress with slip and no slipeffects.

Fig. 6: Profile of velocity field and shear stress with slip and no slipeffects.

τ(y, t) =−µUH(t)p !√
ν

∞

∑
ζ=0

1
ζ !

( −y√
ν

)ζ ∞

∑
j=0

(−λ α) j

j !

∞

∑
k=0

(−Φ −B)k

k !
,

×M3
4



−λ γ
r

∣

∣

∣

∣

(

ζ−1+η
2 +1,0

)

,

(

ζ−1+η
2 ,1

)

,

(

ζ−1+η
2 +1,0

)

(

ζ−1+η
2 − j+1,0

)

,

(

ζ−1+η
2 ,0

)

,

(

ζ−1+η
2 −k+1,0

)

,

(

ζ−1+η
2 −α j+k+p+1,−γ

)



 . (23)

are obtained.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


76 K. Ali Abro et. al : Slippage of Magnetohydrodynamic Fractionalized...

Fig. 7: Profile of velocity field and shear stress with slip and no slipeffects.

Fig. 8: Comparison of velocity field and shear stress with slip and noslip effects

5.2 Fractionalized MHD Maxwell fluid in porous with slippage

Letting λr → 0 into equations(15) and(21) the solutions are in the presence of magnetic field and porosity

wM(y, t) =UH(t)t p+UH(t)p !
∞

∑
ζ=1

(−θ√
ν

)ζ ∞

∑
η=0

(

−Φ −B
)η

η !
M2

3



−λ α
∣

∣

∣

∣

(

ζ
2+1,0

)

,

(

ζ
2+1,0

)

(

−η+ ζ
2+1,0

)

,

(

ζ
2+1,1

)

,

(

− ζ
2−η+p+1,−α

)



 ,
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Fig. 9: Comparison of velocity field and shear stress with slip and noslip effects

+UH(t)p !
∞

∑
ζ=1

1
ζ !

( −y√
ν

)ζ ∞

∑
j=0

(

−Φ −B
) j

j !

∞

∑
η=0

(−θ√
ν

)η
M2

3

[

−λ α
∣

∣

∣

∣

(ζ+ η
2 +1,0),(ζ+ η

2 +1,0)

(− j+ζ+ η
2 +1,0),(ζ+ η

2 +1,−1),(−ζ− η
2 + j+p+1,−α)

]

,

(24)

τM(y, t) =−µUH(t)p !√
ν

∞

∑
ζ=0

1
ζ !

(−y√
ν

)ζ ∞

∑
η=0

(−θ√
ν

)η ∞

∑
k=0

(−Φ −B)k

k !
,

×M2
3



−λ α
∣

∣

∣

∣

(

ζ−1+η
2 +1,0

)

,

(

ζ−1+η
2 +1,0

)

(

ζ−1+η
2 − j+1,0

)

,

(

ζ−1+η
2 +1,−1

)

,

(

− ζ−1+η
2 − j+p+1,−α

)



 . (25)

5.3 Fractionalized MHD Maxwell fluid in porous without slippage

Letting λr → 0 andθ → 0 into equations(15) and(21) the solutions for Maxwell fluid are in the presence of magnetic
field and porosity

wM(y, t)=UH(t)t p+UH(t)p !
∞

∑
ζ=1

1
ζ !

(−y√
ν

)ζ ∞

∑
j=0

(

−Φ −B
) j

j !
M2

3

[

−λ α
∣

∣

∣

∣

(ζ+ η
2 +1,0),(ζ+ η

2 +1,0)

(− j+ζ+ η
2 +1,0),(ζ+ η

2 +1,−1),(−ζ− η
2 + j+p+1,−α)

]

,

(26)

τM(y, t) =−µUH(t)p !√
ν

∞

∑
ζ=0

1
ζ !

(−y√
ν

)ζ ∞

∑
k=0

(−Φ −B)k

k !
M2

3



−λ α
∣

∣

∣

∣

(

ζ−1+η
2 +1,0

)

,

(

ζ−1+η
2 +1,0

)

(

ζ−1+η
2 − j+1,0

)

,

(

ζ−1+η
2 +1,−1

)

,

(

− ζ−1+η
2 − j+p+1,−α

)



 .

(27)
Letting α → 1 into equations(24) and(25) the solutions for Maxwell fluid are in the presence of magnetic field and
porosity can be retrieved for ordinary differential operator. Further makingB → 0 andΦ → 0 into equations(24) and
(25) the solutions for Maxwell fluid are in the absence of magneticfield and porosity respectively.

c© 2017 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


78 K. Ali Abro et. al : Slippage of Magnetohydrodynamic Fractionalized...

5.4 Fractionalized MHD second grade fluid in porous with slippage

Letting λ → 0 into equations(15) and(21) the solutions are in the presence of magnetic field and porosity

wSG(y, t) =UH(t)t p+UH(t)p !
∞

∑
ζ=1

(−θ√
ν

)ζ ∞

∑
η=0

(

−Φ −B
)η

η !
M2

3



−λ γ
r

∣

∣

∣

∣

(

ζ
2 ,0

)

,

(

ζ
2+1,0

)

(

ζ
2−η+1,0

)

,

(

ζ
2 ,0

)

,

(

− ζ
2+η+p+1,γ

)



 ,

+U p !
∞

∑
ζ=1

1
ζ !

(−y√
ν

)ζ ∞

∑
j=0

(

−Φ −B
) j

j !

∞

∑
η=0

(−θ√
ν

)η
M2

3

[

−λ γ
r

∣

∣

∣

∣

(ζ+ η
2 +1,0),(ζ+ η

2 ,1)

(ζ+ η
2 ,0),(ζ+ η

2 − j+1,0),(−ζ− η
2 + j+p+1,−γ)

]

, (28)

τSG(y, t)=−µU p !√
ν

∞

∑
ζ=0

1
ζ !

(−y√
ν

)ζ ∞

∑
η=0

(−θ√
ν

)η ∞

∑
j=0

(−Φ −B) j

j !
M2

3



−λ γ
r

∣

∣

∣

∣

(

ζ−1+η
2 +1,0

)

,

(

ζ−1+η
2 ,1

)

(

ζ−1+η
2 − j+1,0

)

,

(

ζ−1+η
2 ,0

)

,

(

ζ−1+η
2 − j+p+1,−γ

)



 .

(29)

5.5 Fractionalized MHD second grade fluid in porous without slippage

Letting θ → 0 into equations(30) and(31) the solutions are in the presence of magnetic field and porosity

wSG(y, t) =UH(t)t p+U p !
∞

∑
ζ=1

1
ζ !

(−y√
ν

)ζ ∞

∑
j=0

(

−Φ −B
) j

j !
M2

3

[

−λ γ
r

∣

∣

∣

∣

(ζ+ η
2 +1,0),(ζ+ η

2 ,1)

(ζ+ η
2 ,0),(ζ+ η

2 − j+1,0),(−ζ− η
2 + j+p+1,−γ)

]

, (30)

τSG(y, t) =−µU p !√
ν

∞

∑
ζ=0

1
ζ !

(−y√
ν

)ζ ∞

∑
j=0

(−Φ −B) j

j !
M2

3



−λ γ
r

∣

∣

∣

∣

(

ζ−1+η
2 +1,0

)

,

(

ζ−1+η
2 ,1

)

(

ζ−1+η
2 − j+1,0

)

,

(

ζ−1+η
2 ,0

)

,

(

ζ−1+η
2 − j+p+1,−γ

)



 . (31)

Letting γ → 1 into equations(30) and(31) the solutions for Second grade fluid are in the presence of magnetic field and
porosity can be retrieved for ordinary differential operator. Further makingB→ 0 andΦ → 0 into equations(30) and(31)
the solutions for Second grade fluid are in the absence of magnetic field and porosity. Also Solutions for Newtonian fluid
can be easily be found in similar manners which are known in literature.

6 Conclusions

The main aim of this analysis is to present analytic solutions for MHD Oldroyd-B fluid in porous medium with and without
slippage. The general solutions are established by using integral transforms (Laplace transforms with inverses) satisfying
initial and boundary conditions. The corresponding solutions have been reduced from fractional to ordinary solutionsby
makingα = 1,γ = 1.These solutions have also been particularized whenλr = 0,λ = 0 andλr = λ = 0 for Maxwell fluid
and second grade fluid and Newtonian fluid respectively. In the particular case, the results of Stokes’ first problem are
obtained whenλr = 0 andθ = p= 0 for Maxwell fluid [27, 28]. In order to bring out physical results, impacts of slip and
no slip assumptions for various rheological parametersα,γ,λr ,λ ,β ,ρ , t,θ ,µ ,ν, p andΦ have been analyzed for fluid
motion. The graphs are plotted for velocity profile and shearstress for various pertinent parameters. From all graphs, it is
noted that slippage has shown interesting results between plate and fluid. The Major outcomes are:

(i) Fig.1 is plotted to justify impacts of time for the profileof velocity field and shear stress with slip and no slip
assumptions.

(ii) Fig.2 is depicted to show the scattering behavior of fluid for kinematic viscosity over the velocity field and shear
stress under presence and absence of slip effects.

(iii) When slip is nonzero, the profile of velocity field and shear stress are slighter and smaller as compared with slip
effects. This happens in Fig.3, due to the fact that plate start to accelerate variably about its own plane.

(iv) Figs. 4 and 5 have been drawn for relaxation and retardation time, for which profile of velocity field and shear
stress is sometimes increasing and sometimes decreasing function of fluid motion with and without slippage.

(v) Fig. 6 has been drawn for magnetic effects on fluid in whichfluid motion is helical either slippage is present or
absent. This may be the fact that magnetic parameter B decelerates or slows the fluid motion.

c© 2017 NSP
Natural Sciences Publishing Cor.



Progr. Fract. Differ. Appl.3, No. 1, 69-80 (2017) /www.naturalspublishing.com/Journals.asp 79

(vi) The profile of velocity field and shear stress in fig. 7 depicts that for different values of porosity have brought out
the contrast behavior of fluid motion. This is due to the fact that plate is sliding in its plane.

(vii) Figs. 8 and 9 have been drawn for comparison of four models namely fractionalized and ordinary Oldroyd-
B, Maxwell, Second Grade and Newtonian fluids with and without slippage, in which Newtonian fluid is slowest in
comparison either in fractionalized or ordinary fluids. Among fractionalized and ordinary Oldroyd-B, Maxwell, Second
Grade and Newtonian fluid sometimes Newtonian fluid moves slowly.
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