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Abstract: The present study is analyzed for slippage of velocity field shear stress for accelerating flows of magnetohydrodipsam
Oldroyd-B fluid in presence of porosity. The analytical simos have been obtained by employing fractional derieadipproach on
the governing partial differential equations. The expss of general solutions have been presented in terms dj/rdnrﬁnedqu
function. These solutions are verified for initial and boarydconditions. Some special cases of fluid are particiddripr ordinary
Oldroyd-B, fractionalized and ordinary Maxwell, fractalized and ordinary second grade and also for Newtoniansfhvith respect
to fractional parameterst, y,Ar, A, 3, p,t, 0, U, v, pand®. The influence of rheological and fractional parametersiédyeed through
graphical illustrations and depicted in with and withoupshge.
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1 Introduction

The rheological behavior of Newtonian fluid flows are chagdzed by classical Navier stokes equations, but the
description of non-Newtonian fluid flows is unable to chagazed by classical Navier stokes equations. This is due to
the appearance of nonlinearity among the classical Nawides equations. The variety of significant applications of
non-Newtonian fluid flows lie in various sciences and tecbggl The theoretical and practical analysis of
non-Newtonian fluids has diverted interest among scientishgineers and researchers because of their complex
rheological structures of fluids, for instance emulsior@dymer solutions, pastes, blood, slurries, heavy oils aadym
others lead to shear thinning behavior. The geometry oftfiagls flows of is very complicated and difficult to handle
due to their nonlinearity among rate of strain and stressth@rother hand, while the mathematical formulation of these
fluid flows leads to complex partial differential equationsedto their dynamical behavior which has become the
challenge among physicists and mathematicians. The desodugions of these complex partial differential equatiane

not an easy task because of their lengthy and cumbersomelatados fl]-[8].The interlinks and communications
between the principles of electromagnetic fields and hyghtathics is based on magnetohydrodynamics (MHD). It
enables the various phenomenon concerned with astrophfmicinstance, stellar magnetic fields, galactic fields,
sunspots, supernovae remnants, black holes, thermonuetedors, relativistic radio jets and active galacticlauand
various others. In continuation, the investigation of cterpheology of fluid flows in porous medium is really challeng
and encountering because of it distinct applications itegeareas for instance, water resources, biological segroil
and gas exploration, and irrigation and agricultural soésretc. Fetecau, C et al. has studied note on an OldroydeB flui
for unsteady flow and between two platek10]. Tong et al. used Oldrord-B model in which they investigate
viscoelastic fluid in an annular pipe for the Couette and €l flows [L1,12]. An oscillating porous plate for the flow
of a viscoelastic second grade fluid is investigated by Hayadl [13,14]. Meanwhile for Stokes second problem,
analytical solution of second grade fluid obtained by Asgbégial. [L5]. Most recently, various researchers have
investigated with different aspects for unsteady OldmBrfluid in hydromagnetic and hydrodynamic flowsg[17,18,
19,20] Motivated by above mentioned study in fluid mechanics, theent analysis is undertaken for the impacts of
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magnetohydrodynamics and porosity with and without sli@paf Oldrord-B fluid. The analytical solutions have been
obtained for velocity field and shear stress by employingtfoaal derivative approach. The expressions of general
solutions have been presented in terms of newly defiigd?) function. These solutions are also verified for initial and
boundary conditions. Some limiting cases of fluids have hp=ticularized for ordinary Oldroyd-B, fractionalizeddan
ordinary Maxwell, fractionalized and ordinary Second gratd also for Newtonian fluids. The influence of rheological
and pertinent parameters on the motion fluid is analyzedititrgraphical illustrations and depicted in with and withou

slippage.

2 TheMod€

The flow of an incompressible fluid in which the equation of imetand continuity equation for the absence of body
forces are given by

DV:O,p%/—DT—pb:O, (1)

wherell represents the gradient operatois the velocity field,T is the Cauchy stress tenspris the constant density of
the fluid,b is the body force field. The incompressible Oldroyd-B fluidvidiich the Cauchy streSsis given by

T=—p +S UA+A(A+LA—ALT)] =S+ A(S+LS-SLT), )

where—pl denotes the indeterminate spherical str&sis the extra-stress tensdr, is the velocity gradientA is the
first Rivlin Ericksen tensony is the dynamic viscosity of the fluid) andA; are relaxation and retardation times. The
constitutive eq. (2) comprises as limiting cases as Maxwmaltlel and the Newtonian fluid model far andA = A,
respectively. Extra-stress tens8rand velocity fieldv are assumed as:

V:V(yvt):u(yvt)iv S:S(yvt)' )

On the x-coordinate direction i is the unit vector. Such flear be satisfied for constraint of incompressibility andhim t
x-direction without pressure gradient, the governing ¢igua of the fractionalized magnetohydrodynamics Oldr&yd
fluid in porous medium are2fl, 22]

ow(yt) (1 a 07 y 9" 9*w(y,t) a9° a9° _
ot ()\ dt_"+1 -V /\rW+1 ay2 +B( A dt_"+1 w(y,t) + @[ A dt_"+1 w(y,t)=0, (4)

a7 oY ow(y,t)
a J— y— ? =
r(y,t)()\ e +1) u()\r 0ty+1) dy 0, (5)

wherey = %, B= UTBO, ®= "’—k“ is the kinematic viscosity, magnetic field and porosity & fluid respectively23,24].

Where,a andy are the parameters of fractionalized calculus such thaiQy < 1 and Caputo fractional operatbff
defined by P5,26]

_ 1 vt
Dtpf(t)_l_(l_p)/o(t_q)pdq, 0<p<Ll ©6)

I (e) is the Gamma function.

3 Statement of the Problem

In this problem, we consider the flow problem of an incompldssnagnetohydrodynmics Oldroyd-B fluid in porous
medium having fractionalized differential approach oviatg that is positioned in thé, z) plane and perpendicular to
the y-axis. Here we assume the presence of slip boundarytmondmong the velocity and shear rate of the fluid. The
fluid and plate both are initially at rest andtat 0" the plate starts in variably accelerating in its own planeir@

to tangential shear, the fluid above the plate is slowly mdwedng the velocity of the forng3); the equations which
governs the flow are given by Eg4l) and(5) and corresponding initial and boundary conditions are

W(y,O) = w =0; T(y,O) =0, y>0, (7)
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ow(y,0)
ot

HereH (t) is the Heaviside function. Moreover, the natural condion

Iw(y,t)
oy

w(0,t) =UH (t)tP+ 60— |y—o; t >0, (8)

w(y,t), —0asy— o andt > 0, 9)

have to be also satisfied afds slippage scale of the flow.

4 Solution of the Problem

4.1 \elocity Field

In order to solve governing equation, applying the Laplaaagform to eq(4), and taking into account the initial and
boundary condition§7) and(8), we find that

02  (s+P+B)(A%s" +1)
— — W =0. 10
(ayZ VAV +1) )W(y’ S (10)
Using initial and boundary condition in e({L0),
W(y,s) — 0as y— o, W(0,s) = (11)

o

wherew(y, s) be the Laplace transform f(y,t), computing eqs(10) and(11), we get

(s+®+B)(A 99 +1)
. Up! Exp( B v(NsY11) y)
wW(y,s) = . (12)

1 (S+®+B)(ATsT+1)
s+ [1+6 B T ]

In order to obtain velocity profile, we apply the discretedrse Laplace transform. Writing e.2) as series form

N Up! o\ 2 (—o-B) & (- )\")” © (=AM CE )&+
W8 = ez +UP! Z(f) 2T &t Zkarcniird Hrér-j+1+%)’
1 s 1Y\ S (C9-B) 2 -0\ 2 (ZAY) L (-A)
Xs_g_yk_an+j+p+1+Up!;15!(ﬁ) go j! nZo(\/V) kZO k! I; I

FrC+3+0r(+2+Prig+5+1) 1
F—j+{+2+1r((+Hr(—k+7+1+1)gvi-aktj-+3+p+l

(13)

. Inverting eq.(13), by discrete inverse Laplace transform, the suitable espa is

VV

© (-0\¢2 (—o-B) & (=29 2 AT E+)rE+ré+1)
= p ! " )
Hnt) = DR +UH(t)plzzl< > jZO j! ,,Zo n! kZok!I'(—n+1+§)l'(%) F(—j+1+%)

4 ; j k |
t-$-vk-antjtp © 1 _y>Z © (~o-B) 2 (—6)” 2 (=AN)" 2 (=AY
+UP!'y = —= ~— — ,
XF(—%—yk_an+j+p+1) P z§1Z!<\/V jZO 1! nzo Vv kZO k! |; I
FE+3+0r+2+Pri+5+1) tyi-akei-grgep
F(=j+{+3+0r((+Pr(—k+{+3+1)r(-yl—ak+j—{+3+p+1)’

(14)
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we obtain the compact form of e(lL4) in terms ofM§(2),

w s g\l o (_ra\1 o (_ ¢p_R)
W(th):UH(t)tp—l—UH(t)p!z(_6) Z( A9) .20( ¢.>. )’

SH\W/) & ot &
z 7o) (2
$+1,0),(5.,0),(5+10
ENCELICDICEY |
(—n+§+10)7(%,O),(—j+§+170>7<—§—an+j+p+1,—y>
' k
oo 1 _y Z o) (_(D_B)J © _6 n o (_)\C{)
R ICI P
ZZ:LZ! V) E ! qu Vv k; k!
(¢+3+10).(¢+3.1).(¢+3+10)
_)‘ry ‘| ) (15)
(—i+¢+4+10),(¢+%.0),(—k+{+4+10),(- -3 —ak+j+p+1,-y)
in which M§(2) is the M- function expressed below
w p A1),(82,A2),- .
tbq,lz ( )nl'lq oI (@ +A )_ b (a1,A1),(32,A2),.,(ap,Ap) (16)
T N, (b +Bjn) (b1,B1),(62,B2),...,(bg,Bq)
4.2 Shear Stress
Apply the Laplace transform to e(b) and using the initial condition eq7), the expression for shear stress is
_ HOW(y,s) (A/9'1+)
Setting eq(12) into (17), we find that
pup!l/(s+@+B)(A/s +1 a
s e R w
Vi TS D) 1+ [EERae D) f
Solving eq.(18) in more suitable representation in series form
s = HUL S L () 5 (22)' 5 a5 Lecet s
T yvs - = . ’
vo-* 5 2 nlw) Lw) 2 s e
R+ r (4 nr 31+ 1 ' (19)
,—(_j+5—2+n +1)r(5—3é+f7)[-(_k+ Z—%'HI +1) 377Z7%+n7y|70j+k+p+1
Using discrete inverse Laplace transform to @), we get
pupl e 1 (—y)f © (—e)” 2 (-2 & (~9-B) & (=A))
T yat - = . ’
o= \/—ZZ'\/— 2\W) 2 2k T
MR ) (3 (S0 4 1) ¢ 5y v 0)
X .
F(—j+ S )r 5 M (—k+ S5 ) r (55 —yl —aj+k+p+1)
Eq. (20) has equivalent form as
pup! & 1 (-y)Z e <—e>" & (AN & (—o-B)
Tyat - — iy e e - ,
W= 2olw) 2w & &«
WIS SRDIC SENC SRt
xM (21)
: (Z 50— j+10),(551.0),( S5~k 1.0), (S5 —aj+ketpr—y)
is obtained.
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Fig. 1: Profile of velocity field and shear stress with slip and no sffpcts
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Fig. 2: Profile of velocity field and shear stress with slip and no sffpcts.

5 TheLimiting Cases

Letting o — 1 andy — 1 into equation$15) and(21) the solutions for Oldroyd-B fluid are in the presence of maigne
field and porosity can be retrieved for ordinary differeltigerator. Further making — 0 and® — 0 into equation$15)
and(21) the solutions for Oldroyd-B fluid are in the absence of maigrfegld and porosity. Some interesting limiting
cases are listed below.
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Fig. 4: Profile of velocity field and shear stress with slip and no sffpcts.

5.1 Fractionalized MHD Oldroyd-B fluid in porous withoutgghage

R c1(y\s(e-p) e (A
o =umeonp 5 () 3 S 5 S

(2+3+10).(¢+%.1),(¢+%+10)

xM3 =AY

: (22)

(=i+¢+3+10),(¢+%.0),(—k+{+3+10),(- -3 —ak+j+p+1,-y)
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Fig. 8: Comparison of velocity field and shear stress with slip andlimeffects

5.2 Fractionalized MHD Maxwell fluid in porous with slippage

Letting A, — 0O into equationg15) and(21) the solutions are in the presence of magnetic field and ggrosi

o —0 { » (_(D_B)W (%+1,0>,(%+l,0)
ww (y,t) =UH(®)tP+UH(t)p! (—) A M3 |[-AC ,
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Fig. 9: Comparison of velocity field and shear stress with slip andlimeffects
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__HUH@OP! 2 1 (y\C 2 (=6\" & (0B
TM(yvt)__TZZOF(W> nZO(W) k;)T’
(19 s
(2 -ie10) (S 1-1) (52 i)

5.3 Fractionalized MHD Maxwell fluid in porous without sligge

Letting Ar — 0 and6 — 0 into equationg15) and(21) the solutions for Maxwell fluid are in the presence of magneti
field and porosity

( o— B) (ZJr +10) (ZJr +10)

it -omeunp 5 3 (1) 5 0 ag

)

(—i+¢+5+10),(¢+3+1-1).(-{-F+j+p+l—a)
(26)

(57 420) (S5 420

o { o« k
mmy,t) =— LlUH z Z'( ) Z)(dl)(i'B)Mg )\
K= : ((7%7j+1,0>,((’%Jrl,fl),(fz’%fprml,fa)
(27)
Letting o — 1 into equationg24) and (25) the solutions for Maxwell fluid are in the presence of magnééld and
porosity can be retrieved for ordinary differential operafurther makind@ — 0 and® — 0 into equationg24) and
(25) the solutions for Maxwell fluid are in the absence of magrfigid and porosity respectively.
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5.4 Fractionalized MHD second grade fluid in porous with gge

LettingA — 0 into equationg15) and(21) the solutions are in the presence of magnetic field and ggrosi

© o\ & (—o-B)" (£0).(§+10)
) =UHMP+UHMp! § [ — M
Wsg(,t) (OtP+UH(t)p ;1(\/6) > 3 (§-n+10).(§:0).(~§+n-+p+Ly)

i N
(¢+3+10).(¢+%.1)

_)\Y
r 9

] : (28)

(¢+3.0),(¢+4-i+10),(~=¢—=F+i+p+1-y)

¢e /-0\"2 (—o-B) (S5 +10).(S529)
)5 () 5 0|
=0 =

\/V Z=0Z ! (Z;%ﬂfj+l,0),(z—7%ﬂ,0>,(Z;%ﬂfj+p+l,fy)
(29)
5.5 Fractionalized MHD second grade fluid in porous withdigsage
Letting 6 — 0 into equation$30) and(31) the solutions are in the presence of magnetic field and pggrosi
o W\~ (_op_B i I (2+%+10),(¢+%.1)
wsait) U +upt 5 %(2)" 5 8B |y . @0)
G\ E I L (4+3.0).(¢+3-+10).(~{~3+i+p+1l-y)
IJUp| o 1 —y { » (_(D—B)J ) , (Z*%+rl+l,0)’(5*%+rl,l)
TSG(y,t) = — \/_ Z ﬁ T 2)7"\/'3 _)\r L L 1 . (31)
V &4\ S (52 -i+10) (S51.0). (S5 - j+piL )

Letting y — 1 into equation$30) and(31) the solutions for Second grade fluid are in the presence ohetadfield and
porosity can be retrieved for ordinary differential operaFurther making — 0 and® — 0 into equation$30) and(31)
the solutions for Second grade fluid are in the absence of atiadield and porosity. Also Solutions for Newtonian fluid
can be easily be found in similar manners which are knowrténdture.

6 Conclusions

The main aim of this analysis is to present analytic solifon MHD Oldroyd-B fluid in porous medium with and without
slippage. The general solutions are established by usiagral transforms (Laplace transforms with inversesygatig
initial and boundary conditions. The corresponding sohgihave been reduced from fractional to ordinary solutipns
makinga = 1,y = 1.These solutions have also been particularized vdhen0,A = 0 andA, = A = 0 for Maxwell fluid
and second grade fluid and Newtonian fluid respectively. énpiarticular case, the results of Stokes’ first problem are
obtained when\; = 0 and6 = p = 0 for Maxwell fluid [27, 28]. In order to bring out physical rgts, impacts of slip and
no slip assumptions for various rheological parametery, A, A, B, p,t, 8, U, v, p and @ have been analyzed for fluid
motion. The graphs are plotted for velocity profile and ststia@ss for various pertinent parameters. From all graplss, i
noted that slippage has shown interesting results betwlaémand fluid. The Major outcomes are:

(i) Fig.1 is plotted to justify impacts of time for the profitd velocity field and shear stress with slip and no slip
assumptions.

(i) Fig.2 is depicted to show the scattering behavior ofdlfar kinematic viscosity over the velocity field and shear
stress under presence and absence of slip effects.

(iii) When slip is nonzero, the profile of velocity field andesir stress are slighter and smaller as compared with slip
effects. This happens in Fig.3, due to the fact that platé tstaccelerate variably about its own plane.

(iv) Figs. 4 and 5 have been drawn for relaxation and retandaime, for which profile of velocity field and shear
stress is sometimes increasing and sometimes decreasictgpfuof fluid motion with and without slippage.

(v) Fig. 6 has been drawn for magnetic effects on fluid in wtilaid motion is helical either slippage is present or
absent. This may be the fact that magnetic parameter B datedeor slows the fluid motion.
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(vi) The profile of velocity field and shear stress in fig. 7 a¢pthat for different values of porosity have brought out
the contrast behavior of fluid motion. This is due to the faet plate is sliding in its plane.

(vii) Figs. 8 and 9 have been drawn for comparison of four nidamely fractionalized and ordinary Oldroyd-
B, Maxwell, Second Grade and Newtonian fluids with and withslippage, in which Newtonian fluid is slowest in
comparison either in fractionalized or ordinary fluids. Amgdractionalized and ordinary Oldroyd-B, Maxwell, Second
Grade and Newtonian fluid sometimes Newtonian fluid moveslglo
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