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Abstract: We first presenti-regularity of two ordered pair of digital simplices, and give the definition of cup-i product over digital
images by using regularity notion. We study some formulas that can be taken as the basis of inductive definition of cup-i product. We
define the Steenrod square operations over ordered digital images inspired by analogue in algebraic topology, and then we show that
this operation is independent of the ordering on digital images. We study some basic properties of the squarring operations on digital
images such asSq0 being the identity homomorphism,Sq1 being the Bockstein homomorphism, Cartan formula, and Ademrelations.
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1 Introduction

Digital topology is a very important and essential tool for
image analysis as well as computer vision, and its main
purpose is to study topological properties of discrete
objects those obtained by digitizing the continuous
objects.

Cohomology is an algebraic variant of homology, as a
result of the dualization in the definition. The homology
groups of a space determine its cohomology groups. One
of the basic difference between homology and
cohomology is that the cohomology groups are
contravariant functors while the homology groups are
covariant. The contravariance gives a ring structure to the
cohomology groups of a space by the cup product. This
ring structure is more useful than the additive group
structure of cohomology since sometimes group structure
is not enough to decide whether two spaces are
homeomorphic or not [18].

The term ”square” in the phraseSteenrod square
operationscomes fromSqi (that mapsu 7→ u2) sending a
cohomology classu to the 2-fold cup product with itself.
The operationsSqi generate an algebraA2, called the
Steenrod algebra, such thatH∗(X;Z2) is a module over
A2 whereX is any topological space.

Many researchers, such as Rosenfeld, Ayala,
Bertrand, Kaczynski, Boxer, Karaca and others, have
been studying the topology of digital images or just using

topological properties of the digital images related to
image analysis for several decades.

Gonzalez-Diaz and Real [13] propose a method for
computing the cohomology ring of three-dimensional
digital binary-valued pictures and they show the
computation of the cup product on the cohomology of
simple pictures. They [14] give a method for calculating
cohomology operations on finite simplicial complexes,
and a procedure including the computation of some
primary and secondary cohomology operations.

Gonzalez-Diaz et al. [15] present cohomology in the
context of structural pattern recognition and introduce an
algorithm to compute efficiently the representative
cocycles (the basic elements of cohomology) in 2D using
a graph pyramid.

Ege and Karaca [12] study on relative homology
groups of digital images, give some properties of the
Euler characteristics for digital images and present
reduced homology groups for digital images. They [11]
also give a work that can be used for defining
cohomology groups of digital images; they give the
Eilenberg-Steenrod axioms and the Universal Coeffcient
Theorem for this cohomology theory, and show that the
Künneth formula doesn’t hold.

Karaca and Burak [20] show that the relative
cohomology groups of digital images are determined
algebraically by the relative homology groups of digital
images, and they express simplicial cup product for
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digital images and use it to establish ring structure of
digital cohomology.

Demir and Karaca [9] compute the simplicial
homology groups of some digital surfaces. They [10]
determine the simplicial cohomology groups of some
minimal simple closed curves and a digital surfaceMSS6,
and give a general algorithm how we make this
computation.

At this work, we make a conformation on digital
images by using almost the same argument in [27] and
[22]. This paper is organized as follows. We recall some
basic notions in section 2. The next section is dedicated to
i-regularity of digital simplexes, digital version of⌣i
product and its properties. In the last section we introduce
the squarring operations on digital images and prove
some properties of these operations.

2 Preliminaries

Let Zn be the set of lattice points in then-dimensional
Euclidean space whereZ is the set of integers. We say
that (X,κ) is a (binary) digital image whereX ⊂ Z

n and
κ is an adjacency relation for the members ofX. We use a
variety of adjacency relations in the study of digital
images.

For a positive integerl with 1≤ l ≤ n and two distinct
pointsp= (p1, p2, ..., pn), q= (q1,q2, ...,qn) ∈ Z

n, p and
q arecl -adjacent[6] if

(1) there are at mostl indicesi such that|pi −qi| = 1;
and

(2) for all other indicesi such that|pi −qi| 6= 1, pi = qi .
Another commonly used notation forcl -adjacency

reflects the number of neighborsq∈ Z
n that a given point

p ∈ Z
n may have under the adjacency. For example, if

n = 1 we havec1 = 2-adjacency; ifn = 2 we have
c1 = 4-adjacency andc2 = 8-adjacency; ifn= 3 we have
c1 = 6-adjacency, c2 = 18-adjacency, and
c3 = 26-adjacency [6]. Given a natural numberl in
conditions (1) and (2) with 1≤ l ≤ n, l determines each
of theκ-adjacency relations ofZn in terms of (1) and (2)
[16] as follows.

κ ∈
{

2n (n≥ 1), 3n−1 (n≥ 2),

3n−
r−2

∑
t=0

Cn
t 2n−t −1 (2≤ r ≤ n−1,n≥ 3)

}
(2.1)

The pair (X,κ) is considered in a digital picture
(Zn,κ ,κ ,X) for n ≥ 1 in [2,3,5,17], which is called a
digital imagewhere(κ ,κ) ∈ {(κ ,2n),(2n,3n−1)}. Each
of κ and κ is one of the generalκ-adjacency relations.
We usually do not permit thatκ and κ both equal 2n
whenn > 1, because of the digital connectivity paradox
[21]. For instance, (κ ,κ) ∈ {(4,8),(8,4)} and
{(6,18),(6,26),(26,6),(18,6)} are usually considered in
Z

2 andZ3, respectively [5,17,24,25].

A digital interval is a set of the form

[a,b]Z = {z∈ Z | a≤ z≤ b}

wherea,b∈ Z with a< b.
Let κ be an adjacency relation onZn. A κ-neighbor of

a lattice pointp is κ-adjacent top. A digital imageX ⊂Z
n

is κ-connected[19] if and only if for every pair of different
pointsx,y ∈ X, there is a set{x0,x1, ...,xr} of points of a
digital imageX such thatx= x0, y= xr andxi andxi+1 are
κ-neighbors wherei = 0,1, ..., r −1. A κ-componentof a
digital imageX is a maximalκ-connected subset ofX.

Let X ⊂Z
n0 andY ⊂Z

n1 be digital images withκ0 and
κ1-adjacency respectively. Then the functionf : X →Y is
called(κ0,κ1)-continuous[5,25] if for everyκ0-connected
subsetU of X, f (U) is aκ1-connected subset ofY. We say
that such a function is digitally continuous.

Let X be a digital image withκ-adjacency. If
f : [0,m]Z → X is a (2,κ)-continuous function such that
f (0) = x and f (m) = y, then f is called adigital path
from x to y in X. If f (0) = f (m) then theκ-path is said to
be closed, and the function is called aκ-loop. Let
f : [0,m− 1]Z → X be a(2,κ)-continuous function such
that f (i) and f ( j) are κ-adjacent if and only if
j = i ± 1 mod m. Then the setf ([0,m− 1]Z) is called a
simple closedκ-curve. A point x∈ X is called aκ-corner,
if x is κ-adjacent to two and only two pointsy,z∈ X such
that y and z are κ-adjacent to each other [3]. Moreover,
theκ-cornerx is calledsimpleif y,z are notκ-corners and
if x is the only pointκ-adjacent to bothy,z [2]. X is called
a generalized simple closedκ-curve if what is obtained
by removing all simpleκ-corners ofX is a simple closed
κ-curve [3]. If (X,κ) is a κ-connected digital image in
Z

3,
|X|x = N∗

3(x)∩X,

whereN∗
3(x) = {x′ ∈ Z

3 : x andx′ are 26-adjacent} [3,4].
Generally, if(X,κ) is a κ-connected digital image inZn,
|X|x = N∗

n(x)∩X, where

N∗
n(x) = {x′ ∈ Z

n : x andx′ arecn-adjacent}[17].

Let X ⊂ Z
n0 andY ⊂ Z

n1 be digital images withκ0
andκ1-adjacency respectively. A functionf : X → Y is a
(κ0,κ1)-isomorphism [7] (called (κ0,κ1)-homeo-
morphism in [4]) if f is (κ0,κ1)-continuous, bijective and
f−1 : Y → X is (κ1,κ0)-continuous, in which case we
write X ≈(κ0,κ1) Y.

Definition 2.1. [17] Let c∗ := {x0,x1, ...,xn} be a closed
κ-curve inZ

2 where{κ ,κ} = {4,8}. A point x of the
complementc∗ of a closedκ-curvec∗ in Z

2 is said to be
in the interior of c∗ if it belongs to the bounded
κ-connected component ofc∗. The set of all interior
points ofc∗ is denoted byInt(c∗).

Definition 2.2. [17] Let (X,κ) be a digital image inZn,
n ≥ 3 and X = Z

n − X. Then X is called a closed
κ-surfaceif it satisfies the following.

(1) In case that(κ ,κ) ∈ {(κ ,2n),(2n,3n−1)}, where
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the κ-adjacency is taken from Definition 2.1 with
κ 6= 3n−2n−1 andκ is the adjacency onX, then

(a) for each pointx ∈ X, |X|x has exactly one
κ-componentκ-adjacent tox;

(b) |X|x has exactly twoκ-componentsκ-adjacent
to x; we denote byCxx and Dxx these two components;
and

(c) for any pointy ∈ Nκ(x)∩X, Nκ(y)∩Cxx 6= /0
andNκ(y)∩Dxx 6= /0, whereNκ (x) means theκ-neighbors
of x.
Further, if a closedκ-surfaceX does not have a simple
κ-point, thenX is called simple.

(2) In case that(κ ,κ) = (3n−2n−1,2n), then
(a) X is κ-connected,
(b) for each pointx ∈ X, |X|x is a generalized

simple closedκ-curve.
Further, if the image|X|x is a simple closedκ-curve, then
the closedκ-surfaceX is called simple.

For a closedκ-surface Sκ , we denote bySκ the
complement ofSκ in Z

n. Then a pointx of Sκ is said to be
interior of Sκ if it belongs to the boundedκ-connected
component ofSκ . The set of all interior points ofSκ is
denoted byint(Sκ).

The 3-dimensional digital imagesMSS∗18 and MSS∗6
which are obtained from the minimal simple closed
curves MSC8 and MSC4 in Z

2, respectively, are
essentially used in establishing the notion of a connected
sum [17].

Fig. 1: Minimal simple closed curvesMSC4 andMSC8.

• MSS∗6 := MSS6∪ Int(MSS6) where

MSS6 ≈(6,6) (MSC4× [0,2]Z)∪ (Int(MSC4)×{0,2})

andMSC4 is 4-isomorphic to the set

{(1,0),(1,1),(0,1),(−1,1),(−1,0),(−1,−1),
(0,−1),(1,−1)}.

• MSS∗18 := MSS18∪ Int(MSS18) where

MSS18≈(18,18) (MSC8×{1})∪ (Int(MSC8)×{0,2})

andMSC8 is 8-isomorphic to the set

{(0,0),(−1,1),(−2,0),(−2,−1),(−1,−2),(0,−1)}.

Definition 2.3. [17] Let Sκ0 be a closedκ0-surface inZn0

and Sκ1 be a closedκ1-surface inZn1 for n0,n1 ≥ 3.
Consider A′

κ0
⊂ Aκ0 ⊂ Sκ0 such that

A′
κ0

≈(κ0,8) Int(MSC∗8), A′
κ0

≈(κ0,4) Int(MSC∗4) or
A′

κ0
≈(κ0,8) Int(MSC′∗8 ). Let f : Aκ0 → f (Aκ0) ⊂ Sκ1 be a

(κ0,κ1)-isomorphism. LetS′κi
= Sκi \A′

κi
, i ∈ {0,1}. Then

the connected sum, denoted bySκ0♯Sκ1, is the quotient
spaceS′κ0

∪ S′κ1
/ ∼, where i : Aκ0 \ A′

κ0
→ S′κ0

is the
inclusion map andi(x)∼ f (x) for x∈ Aκ0 \A′

κ0
.

Definition 2.4. [26] Let Sbe a set of nonempty subsets of
a digital image(X,κ). The members ofS are called
simplexes of(X,κ) if the following holds:

(i) If p andq are distinct points ofs∈ S, thenp andq
areκ-adjacent.

(ii) If s∈ Sand /06= t ⊂ s, thent ∈ S (note this implies
every point p that belongs to a simplex determines a
simplex{p}).
An m-simplex is a simplexSsuch that|S|= m+1.

LetP be a digitalm-simplex. IfP′ is a nonempty proper
subset ofP, thenP′ ia called a face ofP.

Definition 2.5. [1] Let (X,κ) be a finite collection of
digital m-simplices, 0≤ m ≤ d for some nonnegative
integerd. If the following statements hold, then(X,κ) is
called a finite digital simplicial complex:

(1) If P belongs toX, then every face ofP also
belongs toX.

(2) If P,Q ∈ X, then P ∩ Q is either empty or a
common face ofP andQ.
The dimension of a digital simplicial complexX is the
biggest integerm such thatX has anm-simplex.

Cκ
q (X) is a free abelian group with basis all digital

(κ ,q)-simplices inX [1].

Corollary 2.6. [8] Let (X,κ) ⊂ Z
n be a digital simplicial

complex of dimensionm. Then for allq > m, Cκ
q (X) is a

trivial group.
Let (X,κ) ⊂ Z

n be a digital simplicial complex of
dimensionm. The homomorphism∂q : Cκ

q (X)→Cκ
q−1(X)

defined by

is called a boundary homomorphism wherêpi means
deleting the pointpi . Then for all 1≤ q ≤ m, we have
∂q−1◦ ∂q = 0 [1].

Theorem 2.7.[1] Let (X,κ) ⊂ Z
n be a digital simplicial

complex of dimensionm. Then

Cκ
∗ (X) : 0

∂m+1
// Cκ

m(X)
∂m

// Cκ
m−1(X)

∂m−1
// ...

∂1
// Cκ

0 (X)
∂0

// 0

is a chain complex.
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Let (X,κ) be a digital simplicial complex. The group
of digital simplicialq-cycles is

Zκ
q (X) = Ker ∂q = {σ ∈Cκ

q (X)|∂q(σ) = 0}

and the group of digital simplicialq-boundaries is

Bκ
q(X) =Im ∂q+1

={τ ∈Cκ
q (X)|∂q+1(σ) = τ for σ ∈Cκ

q+1(X)}.

Theqth digital simplicial homology group [1] is

Hκ
q (X) = Zκ

q (X)/Bκ
q(X).

Definition 2.8. [23] Let (X,κ) ⊂ Z
n be a digital simlicial

complex andCκ
q be an abelian group whose bases are all

(κ ,q)-simplexes inX. C∗,κ(X) = {Cq,κ(X),δq}q≥0 is the
digital cochain complex ofX where

Cq,κ(X) =Hom(Cκ
q (X),G)

={c : Cκ
q (X)→ G,c is a homomorphism}.

Here δq : Cq,κ(X) → Cq+1,κ(X) is the digital cochain
homomorphismand defined asδq(c)(a) = c(∂q+1(a)) for
c ∈ Cq,κ(X), a ∈ Cκ

q+1(X). Zq,κ(X;G) is the kernel ofδq

and called group ofdigital cocycles of (X,κ) with
coefficients inG, Bq,κ(X;G) is the image ofδq−1 and
called group of digital coboundariesof (X,κ) with
coefficients inG, and (noting that since∂ 2 = 0, δ 2 = 0)

Hq,κ(X;G) = Zq,κ(X;G)/Bq,κ(X;G)

is called thedigital qth cohomology groupof (X,κ) with
coefficients in G. If u is a digital q-cocycle, then
{u} ∈ Hq,κ(X;G) denotes the cohomology class.
{u}= {v} means thatu− v∈ Bq,κ(X;G).

Theorem 2.9.[23] If (X,κ) is a singleton digital image,
then

Hq,κ(X;G) =

{
G, q= 0;
0, q> 0

whereG is an abelian group.
Theorem 2.10. [23] Let (X,κ) be a digital simplicial
complex. For any abelian groupG, there is exact sequence

0→ Ext(Hκ
q−1(X),G)→ Hq,κ (X;G)→ Hom(Hκ

q (X),G)→ 0

where Hκ
q (X) = Hκ

q (X;Z). This exact sequence splits;
hence

Hq,κ(X;G)∼= Hom(Hκ
q (X),G)⊕Ext(Hκ

q−1(X),G).

Definition 2.11. [23] Let (X,κ) ⊂ Z
n be a finite digital

simplicial complex;A be digital subcomplex of(X,κ)
with the same adjacency relation. Thep-cochains of
(X,κ) which are zero on digital simplexes ofA form a
subgroup

Cp,κ(X,A;Z2) = Hom(Cκ
p(X,A),Z2)

of Cp,κ(X;Z2). Since the digital coboundary of a cochain
is zero on A, thus Zp,κ(X,A;Z2) = Ker δ ,
Bp+1,κ(X,A;Z2) = Im δ , and

H p,κ(X,A;Z2) = Zp,κ(X,A;Z2)/Bp,κ(X,A;Z2)

can be defined as usual.
If f : (Y,κ ′)→ (X,κ) be a digital simplicial map such

that f (B) ⊂ A whereB is a digital subcomplex of(Y,κ ′),
then f induces the homomorphism below:

f ♯ : Cp,κ(X,A)→Cp,κ ′
(Y,B).

δ ◦ f ♯ = f ♯ ◦ δ so that f ♯ maps digital cocycles to digital
cocycles, and digital coboundaries to digital
coboundaries. Therefore it is calleddigital cochain
mappingand f ♯ induces a homomorphism

f ∗ : H p,κ(X,A)→ H p,κ ′
(Y,B).

3 The Cup Product

We present the definition and some properties of digital
simplicial cup product by using property of regularity.
The proofs of the following theorems are analogues to
algebraic topology (see [27]).

Let σ andτ be two digital simplices of dimensionsp
andq respectively;α be a fixed order in(X,κ), andi ≥ 0
be a positive integer. The ordered pair(σ ,τ) is said to be
i-regular in α if the following conditions are satisfied:

(-1) The vertices ofσ andτ span a(p+q− i)-simplexζ .
In this case,σ , τ havei +1 common vertices denoted
by V0,V1, · · · ,V i in the orderα.

(0) V0 is the first vertex ofτ.
(1) V0,V1 are adjacent vertices inσ .
(2) V1,V2 are adjacent vertices inτ.

. . . . . .
(j+1) V j ,V j+1 are adjacent vertices inσ(τ) if j is even

(odd).
. . . . . .

(i+1) V i is the last vertex ofσ(τ) if i is even (odd).

If (σ ,τ) is i-regular, letσ0 be the face ofσ spanned
by vertices precessor of theV0, let σ2 j(0< 2 j ≤ i) be the
face ofσ spanned by vertices successor of theV2 j−1 and
precessor of theV2 j , and if i is odd,σi+1 be the face ofσ
spanned by vertices successor of theV i . Similarly, let
τ2 j+1(1 ≤ 2 j + 1 ≤ i + 1) be the face ofτ spanned by
vertices successor of theV2 j and precessor of theV2 j+1,
and if i is even,τi+1 be the face ofτ spanned by vertices
successor of theV i vertices. By thei-regularity,σ ve τ
can be written as joins of subsimplexes:

σ = σ0.σ2.....σ2k , τ = τ1.τ3.....τ2k+(−1)i

where 2k= i if i is even and 2k= i+1 if i is odd. Letτ ′2 j+1

be the face ofτ2 j+1 by deletingV2 j andV2 j+1 vertices, and
if i is even,τ ′i+1 be the face ofτi+1 by deletingV i vertex.
Then the digital simplexξ spanned by the vertices ofσ
andτ can be written as follows:

c© 2016 NSP
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ξ = σ0.τ ′1.σ2.τ ′3.....
{

τ ′i+1, i is odd;
σi+1, i even.

In the group of digital(p+ q− i)-cochains, let us
define; if (σ ,τ) is not i-regular, thenσ ⊔i τ = 0, and if
(σ ,τ) is i-regular, thenσ ⊔i τ = ±ξ . If i = 0, then the
sign is ”+”. In general, the sign of permutation is
identified by bringing the ordered vertices

σ0,σ2, ...,σ2k,τ ′1,τ
′
3, ...,τ2k+(−1)i

into the orderα

σ0.τ ′1.σ2.τ ′3.....σ j .τ ′j+1....

Let G,G′ be abelian groups, andG′′ be an abelian grup
such that there is a bilinear productg.g′ ∈ G′′ defined for
g∈ G, g′ ∈ G′. Let up ∈Cp,κ(X,G), vq ∈Cq,κ(X,G), and
up = ∑g jσ p

j , vq = ∑g′kσq
k be their unique representations

in terms of the distinct digitalp andq-simplexes of(X,κ)
oriented by the orderα.

⌣i : Cp,κ(X,G)×Cq,κ(X,G′)→Cp+q−i,κ(X,G′′)

is defined by

up ⌣i vq = ∑
j ,k

(g jg
′
k)σ

p
j ⊔i σq

k .

Since Cp,κ(X,G), Cq,κ(X,G′) are paired to
Cp+q−i,κ(X,G′′), the product⌣i is bilinear. However we
useZ instead ofG andG′ through this paper.

Theorem 3.1.up ⌣i vq = 0 if i > p or q.

Proof. If the common face ofσ p
j ,σ

q
k has the dimension

less or equal tomin{p,q}, then(σ p
j ,σ

q
k ) is not i-regular.

The result holds.�

Remark 3.2. [27] A digital p-cochain is a function
up(A0, · · · ,Ap) with Z valued and is defined on each
ordered set ofp+1 vertices whose union induces a digital
simplex. If the vertices do not span a digitalp-simplex in
the given order of vertices, then it becomes zero. Ifξ is a
digital (p+ q− i)-simplex, anyi-face ofξ determines a
splitting into a product asσ ⊔i τ =±ξ . And then

up ⌣i vq(ξ ) = ∑±up(σ).vq(τ),

the sum is taken over thosei-faces ofξ such that

dim σ = p and dimτ = q.

Example 3.3.Let

MSS18♯MSS18 = {c0 = (1,0,1),c1 = (1,1,1),

c2 = (1,2,1),c3 = (0,3,1),

c4 = (−1,2,1),c5 = (−1,1,1),

c6 = (−1,0,1),c7 = (0,−1,1),

c8 = (0,2,2),c9 = (0,1,2),

c10 = (0,0,2),c11 = (0,2,0),

c12 = (0,1,0),c13 = (0,0,0)}.

Fig. 2: MSS18♯MSS18 [14].

Then we can directMSS18♯MSS18 by the ordering
c6 < c5 < c4 < c7 < c13 < c10 < c12 < c9 < c11 < c8 <
c3 < c0 < c1 < c2. We have the following simplicial chain
complexes:
C18

0 (MSS18♯MSS18) has for the basis

{〈c0〉,〈c1〉, ...,〈c13〉},

C18
1 (MSS18♯MSS18) has for the basis

{e0 = 〈c7c0〉,e1 = 〈c10c0〉,e2 = 〈c13c0〉,e3 = 〈c0c1〉,

e4 = 〈c9c1〉,e5 = 〈c12c1〉,e6 = 〈c1c2〉,e7 = 〈c8c2〉,

e8 = 〈c11c2〉,e9 = 〈c3c2〉,e10 = 〈c4c3〉,e11 = 〈c8c3〉,

e12= 〈c11c3〉,e13 = 〈c5c4〉,e14 = 〈c4c8〉,e15 = 〈c4c11〉,

e16= 〈c6c5〉,e17 = 〈c5c9〉,e18 = 〈c5c12〉,e19 = 〈c6c7〉,

e20= 〈c6c10〉,e21 = 〈c6c13〉,e22 = 〈c7c10〉,e23 = 〈c7c13〉,

e24= 〈c9c8〉,e25 = 〈c10c9〉,e26 = 〈c12c11〉,e27 = 〈c13c12〉},

andC18
2 (MSS18♯MSS18) has for the basis

{σ0 = 〈c7c13c0〉,σ1 = 〈c7c10c0〉,σ2 = 〈c8c3c2〉,

σ3 = 〈c11c3c2〉,σ4 = 〈c4c8c3〉,σ5 = 〈c4c11c3〉,

σ6 = 〈c6c7c10〉,σ7 = 〈c6c7c13〉}.

Digital simplicial 1-cocycles ofMSS18♯MSS18 are:

α =−e∗0−e∗1−e∗2+e∗3 λ = e∗0−e∗19+e∗22+e∗23

β =−e∗3−e∗4−e∗5+e∗6 µ = e∗7+e∗11−e∗14−e∗24

γ =−e∗6−e∗7−e∗8−e∗9 ν = e∗4−e∗17+e∗24−e∗25

δ = e∗9−e∗10−e∗11−e∗12 ξ = e∗1−e∗20−e∗22+e∗25

ε = e∗10−e∗13+e∗14+e∗15 π = e∗8+e∗12−e∗15−e∗26

η = e∗13−e∗16+e∗17+e∗18 ρ = e∗5−e∗18+e∗26−e∗27

θ = e∗16+e∗19+e∗20+e∗21 τ = e∗2−e∗21−e∗23+e∗27.
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For instance

α ⌣ β =(−e∗0−e∗1−e∗2+e∗3)⌣ (−e∗3−e∗4−e∗5+e∗6)

= e∗0⊔e∗3+e∗0⊔e∗4+e∗0⊔e∗5−e∗0⊔e∗6+e∗1⊔e∗3+

e∗1⊔e∗4+e∗1⊔e∗5−e∗1⊔e∗6+e∗2⊔e∗3+e∗2⊔e∗4
+e∗2⊔e∗5−e∗2⊔e∗6−e∗3⊔e∗3−e∗3⊔e∗4−e∗3⊔e∗5
+e∗3⊔e∗6

=(e0+e3)+ (e1e3)+ (e2e3)

= 0,

and

ε ⌣ δ =(e∗10−e∗13+e∗14+e∗15)⌣ (e∗9−e∗10−e∗11−e∗12)

=e∗10⊔e∗9−e∗10⊔e∗10−e∗10⊔e∗11−e∗10⊔e∗12

−e∗13⊔e∗9+e∗13⊔e∗10+e∗13⊔e∗11+e∗13⊔e∗12

+e∗14⊔e∗9−e∗14⊔e∗10−e∗14⊔e∗11−e∗14⊔e∗12

+e∗15⊔e∗9−e∗15⊔e∗10−e∗15⊔e∗11−e∗15⊔e∗12

=(e∗10+e∗9)+ (e∗13+e∗10)− (e∗14+e∗11)− (e∗15+e∗12)

=σ5.

If we repeat the same procedure for the other digital
simplicial 1-cocycles, we get the following table.

Let (X,κ), (Y,κ ′) be digital simplicial complexes, and
f : (Y,κ ′)→ (X,κ) be a digital simplicial map.f induces
a homomorphismf ♯ : Cp,κ(X;Z)→Cq,κ ′

(Y;Z) defined as

f ♯up(A0 · · ·Ap) = up( f (A0) · · · f (Ap)),

where up ∈ Cp,κ(X;Z), and σ ′ = A0 · · ·Ap is a digital
p-simplex of(Y,κ ′). If f (σ ′) is degenerate,f ♯up has the
value 0 onσ ′, otherwisef ♯up = up( f (σ ′)). Let δ ,δ ′ be
the coboundary operators on(X,κ) and (Y,κ ′).
δ ′ f ♯ = f ♯δ , hence f ♯ maps digital cocycles into digital
cocycles, and digital coboundaries into digital
coboundaries. So f ♯ induces the following
homomorphism

f ∗ : H p,κ(X;Z)→ Hq,κ ′
(Y;Z).

If (Y,κ ′) is a digital subcomplex of(X,κ), f is the identity
map,up = ∑g jσ p

j andσ p
j /∈ (Y,κ ′), then f ∗up = 0 since

g j = 0.
If α, α ′ are orders in(X,κ), (Y,κ ′) respectively, then

f is said to beorder preservingif A′ ≤ B′ in α ′ implies
f (A′)≤ f (B′) in α. If a digital simplicial map and an order
are given, then there exists another order such that digital
simplicial map is order preserving.

Theorem 3.4.If f : (Y,κ ′)→ (X,κ) is an order preserving
digital simplicial map, then

f ∗(u⌣i v) = f ∗(u)⌣i f ∗(v). (3.1)

Proof. Suppose thatζ ′ is a digital(p+ q− i)-simplex of
(Y,κ ′), and ζ ′ = σ ′ ⌣i τ ′ in the order α ′ where
dimσ ′ = p anddim τ ′ = q.

If f (ζ ′) is degenerate, then eitherf (σ ′) or f (τ ′) is
degenerate orf (σ ′) and f (τ ′) have more than ani-face in
common. In this case, both sides of the equation have the
zero value onζ ′.

If f (ζ ′) is non-degenerate, then

f ∗(u⌣i v) = u⌣i v( f (ζ ′)).

Since restriction off on ζ ′ is a one-to-one and order
preserving map of ζ ′ on f (ζ ′), we get
f (ζ ′) = ± f (σ ′) ⌣i f (τ ′) and any splitting
f (ζ ′) =±σ ⌣i τ can be attained. Hence

u⌣i v( f (ζ ′)) = ∑±u( f (σ ′)).v( f (τ ′))
= ∑± f ∗u(σ ′). f ∗v(τ ′)
= ( f ∗u⌣i f ∗v)(ζ ′).�

Let σ be an ordered digitalp-simplex andA be a
vertex. We can defineσA as follows: If the vertices ofσ
together withA do not span a digital simplex of(X,κ),
then σA is the digital 0-simplex in Cp+1,κ(X;Z).
Otherwise σA is the ordered digital(p + 1)-simplex
consisting of the ordered vertices ofσ followed by A. If
up = ∑g jσ p

j , defineupA= ∑g j(σ p
j A) ∈Cp+1,κ(X;Z).

Theorem 3.5.If the vertexA follows all vertices ofσ p and
τq in the orderα, then we have

σ p⊔i (τqA) =

{
(σ p⊔i τq)A, i even;
0, i odd. (3.2)

(σ pA)⊔i τq =

{
0, i even;
(−1)q+1(σ p⊔i τq)A, i odd.

(3.3)

(σ pA)⊔i (τqA) = (−1)q+i+1(σ p⊔i−1 τq)A. (3.4)

These formulas can be taken as the basis of inductive
definition of cup-i product. If we takeA be the last vertex
of σ , andB be the last vertex ofτ in the orderα, apply
(3.1) if A < B, (3.2) if A > B, and (3.3) ifA = B. Since
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the proof of the theorem is very similar to the algebraic
version, we are not going to give the proof here.
Example 3.6.
A < B : Given a digital image
X = {c0 = (0,0),c1 = (1,0),c2 = (1,1)} with
8-adjacency andc0 < c1 < c2 ordering; letσ = 〈c0c1〉
and τ = 〈c1c2〉 be two digital 1-simplexes with
2-adjacency relation. Herei = 0, A = c1, B = c2, and
σ ⊔0 τ = 〈c0c1c2〉.
B < A : Given a digital imageX = {c0 = (0,0,0),c1 =
(0,0,1),c2 = (0,1,0),c3 = (1,0,0)} with 18-adjacency
and c0 < c1 < c2 < c3 ordering; letσ2 = 〈c0c2c3〉 be a
digital 2-simplex with 18-adjacency and
τ1 = 〈c1c3〉 + 〈c2c3〉 be a digital 1-simplex with
18-adjacency relation. Herei = 1, A = c3, B = c2, and
σ ⊔1 τ = 〈c0c1c2c3〉.
A = B : Given a digital image
X = {c0 = (0,0),c1 = (1,0),c2 = (1,1)} with
8-adjacency andc0 < c1 < c2 ordering; letσ1 = 〈c0c1〉 be
a digital 1-simplex with 4-adjacency andτ0 = 〈c1〉 be a
digital 0-simplex. Here i = 1, A = B = c2, and
σ1A⊔1 τ0A= 〈c0c1c2〉= (σ1⊔1 τ0)A.
Theorem 3.7.If u andv are p andq-dimensional digital
cochains respectively, then

δ (u⌣i v) =(−1)p+q−iu⌣i−1 v+(−1)pq+p+qv⌣i−1 u

+ δu⌣i v+(−1)pu⌣i δv. (3.5)

If u andv are digital cocycles, then the last two terms
for δ (u⌣i v) become zero. But the first two terms do not
have to be zero unlessi = 0. Thus products of digital
cocycles need not be digital cocycles unlessi = 0.

If u,v ∈ Zp,κ(X,Z) andw∈ Cp−1,κ(X,Z), we get the
following statements from the digital coboundary formula
(3.5):

δ (u⌣i+1 v) = (−1)i+1u⌣i v+(−1)pv⌣i u. (3.6)

δ (u⌣i u) = [(−1)i +(−1)p]u⌣i−1 u. (3.7)

δ (w⌣i−1 w+w⌣i δw) = δw⌣i δw

− [(−1)i +(−1)p](w⌣i−2 w+w⌣i−1 δw).
(3.8)

Theorem 3.8.If p− i is odd andu,v∈ Zp,κ(X,Z), then

u⌣i v+ v⌣i u∼ 0 (3.9)

δ (u⌣i u) = 0 (3.10)

2u⌣i u∼ 0 (3.11)

u∼ 0⇒ u⌣i u∼ 0 (3.12)

u∼ v⇒ u⌣i u∼ v⌣i v (3.13)

(u+ v)⌣i (u+ v)∼ u⌣i u+ v⌣i v. (3.14)

Proof.
(3.9) If we use(3.6), we have

δ (u⌣i v) = (−1)iu⌣i−1 v+(−1)pv⌣i−1 u

δ (v⌣i u) = (−1)iv⌣i−1 u+(−1)pu⌣i−1 v.

Hence we conclude that

δ (u⌣i v+ v⌣i u) = 0⇒ u⌣i v+ v⌣i u∼ 0.

(3.10)By using(3.7), we have

δ (u⌣i u) = [(−1)i +(−1)p]u⌣i−1 u= 0

(3.11)If we apply(3.9) with u= v, we obtain

2δ (u⌣i u) = 0⇒ 2u⌣i u∼ 0.

(3.12)Applying (3.8) with u= δw, we conclude that

δ (w⌣i−1 w+w⌣i δw) =δw⌣i δw− [(−1)i +(−1)p]

(w⌣i−2 w+w⌣i−1 δw)

=u⌣i u.

Sinceδ (u⌣i u) = 0 from (3.10), we getu⌣i u∼ 0.
(3.13)We know thatu ∼ v :⇔ u− v ∈ δ (x). If we apply
(3.12) to u− v, we have

(u− v)⌣i (u− v) =δ (x)⌣i δ (x)
=(−1)2p−iδ (x)⌣i−1 δ (x)

+ (−1)p2+2pδ (x)⌣i−1 δ (x)
+ δ (δ (x))⌣i δ (x)
+ (−1)pδ (x)⌣i δ (δ (x))

=0.

(3.14)By using bilinearity of⌣i and apply(3.9), we get

(u+ v)⌣i (u+ v) = u⌣i u+ v⌣i v+u⌣i v+ v⌣i u.

Hence

(u+ v)⌣i (u+ v)∼ u⌣i u+ v⌣i v.�

Theorem 3.9.If p− i is odd, the operationu → u ⌣i u
maps digital cocycles into digital cocycles, cohomologous
digital cocycles into cohomologous digital cocycles, and
thus induces the following homomorphism called asith

square
Sqi : H p,κ(X;Z)→ H2p−i,κ(X;Z).

Each image underSqi has order 2.

Proof. Let ξ : Z → Z/2Z be the natural homomorphism.
Thenξ induces the following homomorphism,

ξ ∗ : Cq,κ(X;Z)→Cq,κ(X;Z/2Z)
∑g′jσ

q
j 7→ ξ ∗(∑g′jσ

q
j ) = ∑ξ (g′j)σ

q
j .

ξ ∗δ = δξ ∗ and f ∗ξ ∗ = ξ ∗ f ∗ for a digital simplicial map
f . The operationξ ∗ is called reduction to modulo 2. The
relationu∼ v mod2 meansξ ∗u∼ ξ ∗v.�

Theorem 3.10.If p− i is even andu,v∈ Zp,κ(X;Z), then
the formulas(3.9) to (3.14) all holds mod 2.

The proofs are analogue to those given forp− i is odd.
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Theorem 3.11. If f : (Y,κ ′) → (X,κ) is an order
preserving digital simplicial map, thenf ∗Sqi = Sqi f ∗ for
all i.

Proof. If u is a digitalp-cocycle andp− i is odd, then by
(3.1) and the properties off ∗, we have

f ∗Sqi{u}= f ∗{u⌣i u}= { f ∗(u⌣i u)}= { f ∗u⌣i f ∗u}

= Sqi{ f ∗u}= Sqi f
∗{u}.

If p− i is even, we usef ∗ξ ∗ = ξ ∗ f ∗ in the proof as
follows:

f ∗Sqi{u}= f ∗{ξ ∗(u⌣i u)}= ξ ∗{ f ∗(u⌣i u)}

= ξ ∗{( f ∗u⌣i f ∗u)}= Sqi{ f ∗u}= Sqi f
∗{u}.�

We have been worked on the cup products with a
fixed order over the digital image(X,κ). Now, our aim is
to show thatSqi is independent of the choice of ordering.
To do this, we are going to show that there exists a digital
cochain homotopy that indicates products with different
orders are equal with this homotopy. We need to consider
X× I space whereI = [0,m]Z, andm is a positive integer.

Let (A0) and (A1) be two disjoint sets where their
vertices are one to one corresponds to vertices ofA of the
(X,κ). Let f0(A) = A0 and f1(A) = A1 where
f0, f1 : (X,κ) → (X × I ,κ ′). The union of(A0) and(A1)
constitutes the vertices of(X × I ,κ ′). Here, κ ′ is the
adjacency onX× I which is equal tocn0+1 where we have
cn0 = κ adjacency onX and c1 = 2 adjacency on
I = [0,m]Z. Let α be the order on(X,κ). If

A0 < A1 < · · ·< Ak ≤ Ak+1 < · · ·< Ap

with respect to orderα and these are the vertices of ap
or (p− 1)-digital simplex of(X,κ), a set of the vertices
A0

0 · · ·A
k
0Ak+1

1 · · ·Ap
1 are the vertices of(X× I ,κ ′).

Let f0, f1 : (X,κ)→ (X× I ,κ ′) be the digital simplical
maps, andg : (X × I ,κ ′) → (X,κ) is defined asg(A0) =
g(A1)=A for everyAwhereI = [0,m]Z, andm is a positive
integer. Theng is a digital simplicial map such that

g◦ f0 = g◦ f1 = id(X,κ). (3.15)

Let us defineDu∈Cp−1,κ(X;Z) with

Du(A0 · · ·Ap−1) =
p−1

∑
k=0

(−1)ku(A0
0 · · ·A

k
0Ak

1 · · ·A
p−1
1 )

(3.16)
wherep > 0, A0 · · ·Ap−1 is the digital(p−1)-simplex in
(X,κ) with the orderα for u ∈ Cp,κ ′

(X × I ;Z). D is the
homomorphism

D : Cp,κ ′
(X× I ;Z)→Cp−1,κ(X;Z).

f0 and f1 induce homomorphisms

f ♯0, f ♯1 : Cp,κ ′
(X× I ;Z)→Cp,κ(X;Z).

Example 3.12.Let

X = {c0 = (0,0),c1 = (0,1),c2 = (1,1)}

be a digital image in Z
2 with 8-adjacency, and

X × I = {p0 = (0,0,0), p1 = (0,0,1), p2 = (0,1,0), p3 =
(0,1,1), p4 = (1,1,0), p5 = (1,1,1)} be a digital image in
Z

3 with 26-adjacency where I = [0,1]Z. Let
A= {c0,c1,c2} be the set of vertices of(X,8); let us take

A0 ={p0, p2, p4}= {A0
0,A

1
0,A

2
0} and

A1 ={p1, p3, p5}= {A0
1,A

1
1,A

2
1}.

f0, f1 : (X,8) → (X × I ,26) andg : (X × I ,26) → (X,8)
are digital simplical maps such thatf0(A) = A0,
f1(A) = A1, andg(A0) = g(A1) = A.

D : C2,26(X× I ;Z)→C1,8(X;Z)

u 7→ Du(A0A1) =
1

∑
k=0

u(A0
0 · · ·A

k
0Ak

1 · · ·A
1
1)

= u(A0
0A0

1A1
1)−u(A0

0A1
0A1

1)

for anyu∈C2,26(X× I ;Z) whereu= A0
0A1

0A1
1.

δDu(A0A1A2) =
2

∑
j=0

(−1) jDu(A0 · · · Â j · · ·A2)

=
2

∑
j=0

(−1) j [
j−1

∑
k=0

(−1)ku(A0
0 · · ·A

k
0Ak

1 · · · Â
j
1 · · ·A

2
1)

−
2

∑
k= j+1

(−1)ku(A0
0 · · · Â

j
0 · · ·A

k
0Ak

1 · · ·A
2
1)]

= u(A1
0A1

1A2
1)−u(A1

0A2
0A2

1)−u(A0
0A0

1A2
1)

+u(A0
0A2

0A2
1)+u(A0

0A0
1A1

1)−u(A0
0A1

0A1
1)

Dδu(A0A1A2) =
2

∑
k=0

(−1)kδu(A0
0 · · ·A

k
0Ak

1 · · ·A
2
1)

=
2

∑
k=0

(−1)k[
k

∑
j=0

(−1) ju(A0
0 · · · Â

j
0 · · ·A

k
0Ak

1 · · ·A
2
1)

−
2

∑
j=k

(−1) ju(A0
0 · · ·A

k
0Ak

1 · · · Â
j
1 · · ·A

2
1)]

= u(A0
1A1

1A2
1)−u(A0

0A1
1A2

1)+u(A0
0A1

0A2
1)

−u(A0
0A0

1A1
1)−u(A1

0A1
1A2

1)+u(A0
0A1

1A2
1)

−u(A0
0A1

0A2
1)+u(A0

0A1
0A1

1)+u(A1
0A2

0A2
1)

−u(A0
0A2

0A2
1)+u(A0

0A1
0A2

1)−u(A0
0A1

0A2
0)

Since

u(A0
1A1

1A2
1)−u(A0

0A1
0A2

0) = f ∗1 u(A0A1A2)− f ∗0 u(A0A1A2),

we getDδu=−δDu.
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The relations among operationsD, f ♯0, and f ♯1 are

Du= f ♯1(u)− f ♯0(u)−Dδ (u) ;u∈Cp,κ ′
(X× I ;Z), p> 0

(3.17)

0= f ♯1(u)− f ♯0(u)−Dδ (u) ;u∈C0,κ ′
(X× I ;Z) (3.18)

Proof of 3.18.

δDu(A) = δu(A0A1) = u(A1)−u(A0)

= f ♯1(u)(A)− f ♯0(u)(A).�

Proof of 3.17.Similar to Example 3.12,Dδu=−δDu on
the digitalp-simplexA0 · · ·Ap. From

u(A0
1 · · ·A

p
1)−u(A0

0 · · ·A
p
0)= f ♯1u(A0 · · ·Ap)− f ♯0u(A0 · · ·Ap)

and 3.18, we get the result.�

Sinceg♯(u) is zero on digital simplexes of the(3.16)
for anyu∈Cp,κ(X;Z) it follows that

Dg♯ = 0. (3.19)

Let α0 andα1 be two orders in(X,κ). DefineX × I ,
f0, f1, g with the orderingα0 as in the product complex.
Let

g♯ : Cp,κ(X;Z)→Cp,κ ′
(X× I ;Z)

be the digital cochain mapping induced byg. The orders
define two cup product⌣0

i , ⌣1
i in (X,κ).

An order(α0,α1) is defined inX× I as follows where
I = [0,m]Z: Order(A0) such that corresponding points in
(A) are ordered withα0, and similarly order(A1) such that
corresponding points in(A) are ordered withα1. Suppose
that a vertex of(X×0,κ ′) precedes one of(X×m,κ ′) on
any digital complex inX × I . Then(α0,α1) defines cupi
product on(X× I ,κ ′). f ♯0( f ♯1)maps⌣i into⌣0

i (⌣
1
i ) from

(3.1) since f0( f1) preserves the orderα0(α1) respectively.
Define a new product on(X,κ) corresponding toα0

andα1 as follows:

u∨i v= D(g♯u⌣i g♯v) ; u∈Cp,κ(X;Z),v∈Cq,κ(X;Z).
(3.20)

This product is∨i : Cp,κ(X;Z) → Cp+q−i−1,κ(X;Z); ∨ is
bilinear sinceD, g♯ linear and⌣ bilinear. If we applyδ to
(3.20), and use(3.17), (3.15), and definition ofδ , we get

δ (u∨i v) =u⌣1
i v−u⌣0

i v

− [(−1)p+q−iu∨i−1 v+(−1)pq+p+qv∨i−1 u

+ δu∨i v+(−1)pu∨i δv] (3.21)

If u= v is a digital cocycle, then

δ (u∨i v) = u⌣1
i u−u⌣0

i u− [(−1)i +(−1)p]u∨i−1 u.
(3.22)

Theorem 3.13.If the ordersα0,α1 coincide, then

u∨i v= 0.

Proof. Sinceg♯u⌣0
i g♯v= g♯(u⌣i v) from (3.1), we have

thatg is order preserving. If we apply(3.19) to (3.20), we
complete the proof.�

Let us consider the relative case. Ifσ andτ are digital
simplexes inX−A, then eitherσ ⌣i τ is zero or a digital
simplex ofX−A. If u andv are zero digital cochains inA,
then u ⌣i v is zero. ThusSqi can be defined for
H p,κ(X,A;Z2) groups. Hence we getSqi f ∗ = f ∗Sqi.

If w ∈ Cp,κ(A;Z2), we may observe it as an element
of Cp,κ(X;Z2) by defining it zero on digital simplexes of
X−A. Thenw has two coboundariesδAw andδXw; and

δXw= δAw+ v

wherev ∈ Cp+1,κ(X,A;Z2). If w ∈ Zp,κ(A;Z2), δAw = 0
so that

δX : Zp,κ(A;Z2)→ Zp+1,κ(X,A;Z2)

homomorphically. Since 0= δXδXw = δXδAw+ δXv it
follows that δX maps Bp,κ(A;Z2) to Bp+1,κ(X,A;Z2).
Hence δX preserves digital cohomology classes and
induces a homomorphism

δ ∗ : H p,κ(A;Z2)→ H p+1,κ(X,A;Z2).

Because of beingδX f ∗ = f ∗δX for a digital simplicial map
f , it follows that

f ∗δ ∗ = δ ′∗( f |B)
∗

whereδ ′∗ : H p,κ ′
(B;Z2)→ H p+1,κ ′

(Y,B;Z2).
Suppose thatA contains any digital simplex ofX such

that vertices inA. If σ andτ are digital simplices onA,
thus the productσ ⌣i τ onX andA coincide, and here we
use the same ordering withX.

Order the vertices ofX such that every vertex ofX−A
precedes each vertex ofA. If σ ∈ A andτ ∈ X −A, then
(σ ,τ) is noti-regular since the first vertex ofτ is not inσ .
Hence ifw∈Cp,κ(A) andv∈Cq,κ(X,A), thenw⌣i v= 0.
In particular, if w ∈ Zp,κ(A), thenw ⌣i δXw = 0. If we
apply this to(3.8), we get

δ (w⌣i−1 w) = δw⌣i δw− [(−1)i +(−1)p]w⌣i−2 w.

And this proves the following statement:

Theorem 3.14.Sqiδ ∗ = δ ∗Sqi−1 wherei ≥ 1.

Theorem 3.15. If i > p, then Sqi{up} = 0 where
u∈ H p,κ(X,A).

Proof. Sinceup ⌣i up = 0 wheni > p,

Sqi{up}= {up ⌣i up}= 0. �

4 Some Properties of the Steenrod Squares

Now we give some important properties of squarring
operation over digital images. The proofs of the following
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theorems are analogues to algebraic topology (see [22]).

Sq0 and Sq1

Let β denote the Bockstein homomorphism attached
to the exact coefficient sequence

0 // Z // Z // Z2 // 0.

Thenβ is a homomorphism

β : H∗(X,A;Z2)→ H∗(X,A;Z),

which raises dimension by one. It is defined on
x ∈ H∗(X,A;Z2) as follows: represent the classx by a
cocyclec; choose an integral cochainc′ which maps toc
under reduction mod 2; thenδc′ is divisible by 2 and
βx= 1

2(δc′) representsβx.

The composition of β and the reduction
homomorphism gives a homomorphism

δ2 : H p,κ(X,A;Z2)→ H p+1,κ(X,A;Z2)

which we also call ”the Bockstein homomorphism”; in
fact, it is the Bockstein of the sequence

0 // Z2 // Z4 // Z2 // 0 .

Definition 4.1. Let us show the homomorphism
Sqi = Sqq−i by

Sqi : Hq,κ(X;Z2)→ Hq+i,κ(X;Z2); i = 0,1, · · · ,q.

Sqi is the zero homomorphism fori except 0≤ i ≤ q.

Lemma 4.2.δ2Sqj =

{
0, j is odd;
Sqj+1, j is even.

Proof. Given u ∈ H p,κ(X,A;Z2), let c be an integral
cochain such that the reduction mod 2 ofc is in the class
u. ThenSqju is the class of(c ⌣p− j c) by the definition.
δc = 2a for some integral cochaina ∈ Cp+1,κ(X;A). If
we write i instead of(p− j), by the coboundary formula

δ (c⌣i c) =(−1)2p−ic⌣i−1 c+(−1)p2+2pc⌣i−1 c

+ δc⌣i c+(−1)pc⌣i δc

=[(−1)i +(−1)p]c⌣i−1 c

+2a⌣i c+(−1)pc⌣i 2a.

δ2(Sqju) = a ⌣i c+ c ⌣i a+ (s)(c ⌣i−1 c) where the
coefficient j is 0 or 1 according to whetherj is even or
odd, respectively. But the sum of the first two terms is a
coboundary, namely,

δ (c⌣i+1 a) =(−1)2p+1−ic⌣i a+(−1)p2+2pa⌣i c

+ δc⌣i+1 a+(−1)pc⌣i+1 δa

=a⌣i c+ c⌣i a (mod2)

and the last term represents(s)Sqj+1u.
((s)Sqj+1u∈ {c⌣p− j−1 c}; p− j = i.)�

A special case of the lemma isδ2Sq0 = Sq1. We want
to show thatSq0 is the identity homomorphism in digital
projective plane. Before doing this, let us determine the
digital cohomology group of the digital projective plane:

Fig. 3: Digital Projective Plane

Since
• t = 0, H(c,0) = c
• t = 1, H(c12,1) = c11, H(c0,1) = c5,

H(c1,1) = c4, H(c2,1) = c3
• t = 2, H(c11,2) = c10, H(c5,2) = c6,

H(c4,2) = c7, H(c3,2) = c8
• t = 3, H(c10,3) = c9, H(c6,3) = c7
• t = 3, H(c9,4) = H(c7,4) = c8

for the digital homotopy mapH : P2,6× [0,4]Z → P2,6, H
is the 6-deformation retract ofP2,6 [11]. ThenP2 has the
same homology group with the one-pointed digital image:

H6
q(P

2;Z2) =

{
Z2, q= 0;
0, q> 0.

By Theorem 2.10, we get

H0,6(P2;Z2)∼= Hom(H6
0(P

2),Z2)⊕Ext(H6
−1(P

2),Z2)
∼= Hom(Z2,Z2)⊕Ext(0,Z2)
∼= Z2

whenq= 0,

H1,6(P2;Z2)∼= Hom(H6
1(P

2),Z2)⊕Ext(H6
0(P

2),Z2)
∼= Hom(0,Z2)⊕Ext(Z2,Z2)
∼= Z2

whenq= 1, and

Hq,6(P2;Z2)∼= Hom(H6
q(P

2),Z2)⊕Ext(H6
q−1(P

2),Z2)

∼= Hom(0,Z2)⊕Ext(0,Z2)
∼= 0

whenq≥ 2. Consequently, we have

Hq,6(P2;Z2) =

{
Z2, q= 0,1;
0, q 6= 0,1.
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By Lemma 4.2,

δ2(Sq0(α)) = Sq1(α) = α ⌣ α = α2 6= 0⇒ Sq0(α) 6= 0

whereα denotes the generator ofH1,6(P2;Z2). Sinceα
is the non-zero element ofH1,6(P2;Z2) ∼= Z2, it must be
Sq0(α) = α. By appliying naturality condition, we get

Sq0σ = Sq0 f ∗α = f ∗Sq0α = f ∗α = σ

where if f : MSC4 → P2,6, then

f ∗ : H∗(P2;Z2)→ H∗(MSC4;Z2)

α 7→ f ∗(α) = σ

such thatσ is the generator ofH∗(MSC4;Z2). Thus being
identity homomorphism is true in digital projective plane
P2,6 for Sq0 : Hq,6(P2;Z2)→ Hq,6(P2;Z2).

Cartan Formula

Sqi(x⌣ y) = ∑
j

Sqjx⌣ Sqi− jy

Before proving the Cartan formula, we should better
give the following fact.

Proposition 4.3. Let X be a digital image with the
κ-adjacency, and

∆ : (X,κ)→ (X×X,κ ′)

denote the diagonal map whereκ = cn0 is the adjacency on
X andκ ′ = cn0+n0 adjacency onX×X. If x,y∈H∗(X;Z2),
thenx⌣ y∈ ∆∗(x× y).

Proof. If x ∈ H p,κ(X;Z2), then there exist
up = ∑giσ p

i ∈ Cp,κ(X;Z2) such thatup ∈ {x}. Similarly
if y ∈ Hq,κ(X;Z2), then there exist
vq = ∑g jσq

j ∈ Cq,κ(X;Z2) such thatvq ∈ {y}. We can
write

x⌣ y=(∑giσ p
i )⌣ (∑g jσq

j )

=∑(gig j)σ p
i ⊔σq

j .

If the right side is not a linearp+q-simplex, then(up,vq)
is not 0-regular. But if the right side is a linear
p + q-simplex, then (up,vq) is 0-regular and
up ⌣ vq ∈Cp+q,κ(X,Z2).

∆ ♯(u× v)(A0, ...,Ap+q) =(u× v)∆(A0, ...,Ap+q)

=(up(π1◦∆)(A0, ...,Ap)

.(vq(π2◦∆)(Ap, ...,Ap+q)

=(up(A0, ...,Ap)

.(vq(Ap, ...,Ap+q)

=up ⌣ vq(A0, ...,Ap+q),

here we useπ1◦∆ = idX = π2◦∆ . Hence we getx⌣ y∈
∆ p+q(x× y).�

Proof of Cartan Formula. If x⌣ y∈ ∆∗(x×y) for x,y∈
H∗(X;Z2), then

Sqi(x⌣ y) = Sqi∆∗(x× y)

= ∆∗Sqi(x× y)

= ∆∗
i

∑
j=0

Sqjx×Sqi− jy

=
i

∑
j=0

∆∗(Sqjx×Sqi− jy)

=
i

∑
j=0

Sqjx⌣ Sqi− jy.�

Definition 4.4.Let us defineSq: H∗(X,Z2)→ H∗(X,Z2)
with Sq(u) = ∑Sqiu.

The sum given above is finite and this sum does not
have to be inH p,κ for anyp.

Proposition 4.5.Sqis a ring homomorphism.

Proof. By the Cartan formula,

Sq(u)⌣ Sq(v) = ∑Sqiu⌣ ∑Sqjv

hasSqi(u ⌣ v) as its p+ q+ i-dimensional term. Hence
Sq(u⌣ v) = Sq(u)⌣ Sq(v).�

Proposition 4.6.Sqi(u j) =

(
j
i

)
ui+ j for u∈ H1,κ(X;Z2).

Proof.

If j = 0, thendim uj < i ⇒ Sqi(u0) = 0=

(
0
i

)
ui .

For j −1, letSqi(u j−1) =

(
j −1

i

)
ui+ j−1.

Let’s show that the statement is true forj:

Sqi(u j) =Sqi(u⌣ u j−1)

=
i

∑
k=0

Sqk(u)⌣ Sqi−k(u j−1)

=Sq0(u)⌣ Sqi(u j−1)+Sq1 ⌣ Sqi−1(u j−1)

+Sq2(u)⌣ Sqi−2(u j−1)+ · · ·

=Sq0(u)⌣ Sqi(u j−1)+Sq1 ⌣ Sqi−1(u j−1)

=u⌣

(
j −1

i

)
ui+ j−1+u2 ⌣

(
j −1
i −1

)
ui+ j−2

=

(
j −1

i

)
ui+ j +

(
j −1
i −1

)
ui+ j

=

[(
j −1

i

)
+

(
j −1
i −1

)]
ui+ j

=

(
j
i

)
ui+ j .�
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Adem Relations

The Adem relation has the form

R= SqaSqb+
[| a

2 |]

∑
c=0

(
b− c−1
a−2c

)
Sqa+b−cSqc ≡ 0 (mod2)

wherea< 2b and[|a
2|] denotes the greatest integer less or

equal toa
2.

Example 4.7.Sq2n−1Sqn = 0 for everyn.

n− c−1≥ 2n−1−2c⇒ c≥ n

⇒

(
n− c−1

2n−1−2c

)
= 0; ∀ c

⇒ Sq2n−1Sqn = 0.

n= 1⇒ Sq1Sq1 =
0

∑
c=0

(
−c

1−2c

)
Sq2−cSqc = 0

n= 2⇒ Sq3Sq2 =
1

∑
c=0

(
1− c
3−2c

)
Sq5−cSqc

=

(
1
3

)
Sq5Sq0+

(
0
1

)
Sq4Sq1 = 0.�

Lemma 4.8.Let R be an Adem relation. IfR(y) = 0 for
every classy dimension ofp, thenR(z) = 0 for every class
zdimension of(p−1).

Remark [10]: Hq,4(MSC4;Z2) =

{
Z2, q= 0,1;
0, q 6= 0,1.

Proof. Let u be the generator ofH1,4(MSC4;Z2). Sqiu= 0
for everyi > 0:
• If i = 1, then

Sq1 : H1,4(MSC4;Z2)→ H2,4(MSC4;Z2)

u 7→ Sq1u= 0

• If i > 1, sincedim u= 1 and i > dim u, we have
Sqiu= 0.

By Cartan formula

Sqi(uz) =
1

∑
j=0

(Sqju)(Sqi− jz)

= Sq0uSqiz+Sq1uSqi−1z

= uSqiz+0Sqi−1z

= uSqiz.

If dim u= 1 anddim z= p−1, then

dim (u⌣0 z) = dim(uz) = p.

ThusR(uz) = 0 and

R(uz) = SqaSqb(uz)+
[| a

2 ]|

∑
c=0

(
b− c−1
a−2c

)
Sqa+b−cSqc(uz)

= uSqaSqbz+u
[| a

2 ]|

∑
c=0

(
b− c−1
a−2c

)
Sqa+b−cSqcz

= uR(z)

= 0.

Sinceu 6= 0, we getR(z) = 0.�

Lemma 4.9.
(

p
q

)
+

(
p

q+1

)
+

(
p−1
q−1

)
+

(
p−1
q+1

)
≡ 0 (mod2)

except the casesp= q= 0 andp= 0, q=−1.

Proof.
(

p−1
q−1

)
+

(
p−1

q

)
=

(p−1)!
(p−q)!(q−1)!

+
(p−1)!

(p−q−1)!q!

=
q(p−1)! +(p−q)(p−1)!

(p−q)!q!

=
p(p−1)!
(p−q)!q!

=
p!

(p−q)!q!
=

(
p
q

)

From this equation, we have

(
p
q

)
+

(
p

q+1

)
+

(
p−1
q−1

)
+

(
p−1
q+1

)
=

(
p−1
q−1

)
+

(
p−1

q

)
+

(
p−1
q−1

)
+

(
p−1
q+1

)

= 2

(
p−1
q−1

)
+

(
p−1

q

)
+

(
p

q+1

)
+

(
p−1
q+1

)

=

(
p

q+1

)
+

(
p

q+1

)

= 2

(
p

q+1

)

= 0 (mod2).

If p= q= 0, then

(
0
0

)
+

(
0
1

)
+

(
−1
−1

)
+

(
−1
1

)
= 1+0+0+0= 1(mod2).

If p= 0,q=−1, then

(
0
−1

)
+

(
0
0

)
+

(
−1
−2

)
+

(
−1
0

)
= 0+1+0+0= 1(mod2).

�

Lemma 4.10.Let y be a fixed cohomology class such that
R(y) = 0 for every Adem relationR. ThenR(xy) = 0 for
every one-dimensional cohomology classx and everyR.
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Proof. Let x be any one-dimensional class andy has the
property thatR(y) = 0 for everyR.

dim x= 1⇒ Sqb(xy) =
1

∑
j=0

(Sqjx)(Sqi− jy)

= Sq0xSqby+Sq1xSqb−1y

= xSqby+ x2Sqb−1y

By using Cartan formula again, we get the formula(1) as
follows:

SqaSqb(xy) = Sqa(xSqby+ x2Sqb−1y)

=Sqa(xSqby)+Sqa(x2Sqb−1y)

=
1

∑
k=0

(Sqkx)(Sqa−kSqby)

+
2

∑
m=0

(Sqmx2)(Sqa−mSqb−1y)

=Sq0xSqaSqby+Sq1xSqa−1Sqby+

Sq0x2SqaSqb−1y+Sq1x2Sqa−1Sqb−1y

+Sq2x2Sqa−2Sqb−1y

=xSqaSqby+ x2Sqa−1Sqby+ x2SqaSqb−1y

+0+ x4Sqa−2Sqb−1y.

Similarly, we get the formula(2) as follows wheres=

s(c) =

(
b− c−1
a−2c

)
:

∑(s)Sqa+b−cSqc(xy) =x∑(s)Sqa+b−cSqcy

+ x2Sqa+b−c−1Sqcy

+ x2∑(s)Sqa+b−cSqc−1y

+ x4∑(s)Sqa+b−c−2Sqc−1y.

The first terms match in the formulas(1) and(2):

xSqaSqby+ x∑(s)Sqa+b−cSqcy=x(SqaSqby+

∑(s)Sqa+b−cSqcy)

=xR(y); sinceR(y) = 0

=0

a < 2b implies (a− 2) < 2(b− 1), and hence the fourth
terms also match: sinceR(y) = 0 for everyR,

R(a−2,b−1)= 0.

Sqa−2Sqb−1y= ∑
c

(
b− c−2
a−2−2c

)
Sqa+b−c−3Sqcy

= ∑
c′

(
b− c′−1
a−2c′

)
Sqa+b−c′−2Sqc′−1y

wherec′ = c+ 1. SinceR(y) = 0 for everyR, by using
R(a−1,b)we can change the left-hand side withSqa−1Sqb

and hence we get

SqaSqby+∑
(

b− c−1
a−2c−1

)
Sqa+b−cSqcy=

∑(s)Sqa+b−c−1Sqcy+∑(s)Sqa+b−cSqc−1.

We have three cases:
Case 1:
a= 2b−2⇒ a−2c= 2b−2−2c= 2(b− c−1).

k 6= 0⇒(s) =

(
k
2k

)
= 0;

c 6= b−1⇒ RHS= SqaSqb−1y+Sqa+1Sqb−2y

k 6= 1⇒

(
b− c−1
a−2c−1

)
=

(
k

2k−1

)
= 0;

c 6= b−2⇒ LHS= SqaSqb−1y+Sqa+1Sqb−2y

So RHS=LHS.

Case 2:The proof is the similar fora= 2b−1.

Case 3:If a< 2b−2, then byR(a,b−1)

SqaSqb−1y= ∑
c

(
b− c−2
a−2c

)
Sqa+b−c−1Sqcy.

Also

∑(s)Sqa+b−cSqc−1y= ∑
c

(
b− c−1
a−2c

)
Sqa+b−cSqc−1y

= ∑
c′

(
b− c′−2
a−2c′−2

)
Sqa+b−c′−1Sqc′y

wherec′ = c−1.
(

b− c−2
a−2c

)
+

(
b− c−1
a−2c−1

)
≡

(
b− c−1
a−2c

)

+

(
b− c−2
a−2c−2

)
(mod2).�

5 Conclusion

The aim of this paper is to study properties of Steenrod
squares on digital images. In order to do this we first
define the digital cup product by using the regularity
notion. Then we present the properties of the squarring
operations such as naturality, identity homomorphism
(Sq0), Bockstein homomorphism (Sq1), Cartan formula,
and Adem relations. We hope that this work will be useful
for the researchers studying on image processing.
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