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Abstract: We first present-regularity of two ordered pair of digital simplices, andigithe definition of cup-product over digital
images by using regularity notion. We study some formulas ¢an be taken as the basis of inductive definition of icopeduct. We
define the Steenrod square operations over ordered digigaes inspired by analogue in algebraic topology, and treeshew that
this operation is independent of the ordering on digitalges We study some basic properties of the squarring opesatin digital
images such a8 being the identity homomorphisrsd being the Bockstein homomorphism, Cartan formula, and Adsations.
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1 Introduction topological properties of the digital images related to
image analysis for several decades.

Digital topology is a very important and essential tool for  G0nzalez-Diaz and Reall§| propose a method for
; : ircomputing the cohomology ring of three-dimensional

purpose is to study topological properties of discretedidital binary-valued pictures and they show the
objects those obtained by digitizing the continuousCOMmpPutation of the cup product on the cohomology of
objects. simple pictures. Thgw{4] give a met_hod .fo.r calculating
Cohomology is an algebraic variant of homology, as acohomology operations on finite S|mpI|C|aI' complexes,
result of the dualization in the definition. The homollogy anpl a procedure including the computation of some
o ' primary and secondary cohomology operations.
groups of a space determine its cohomology groups. On i ]
of the basic difference between homology and Gonzalez-Diaz et al.1f present cohomology in the
cohomology is that the cohomology groups are context of structural pattern recognition and mtroduce_ an
contravariant functors while the homology groups aredlgorithm to compute efficiently the representative
covariant. The contravariance gives a ring structure to theocycles (the basic elements of cohomology) in 2D using
cohomology groups of a space by the cup product. This? 9raph pyramid.
ring structure is more useful than the additive group Ege and KaracalP] study on relative homology
structure of cohomology since sometimes group structurgroups of digital images, give some properties of the
is not enough to decide whether two spaces areEuler characteristics for digital images and present
homeomorphic or notl[g]. reduced homology groups for digital images. Théy][
The term “"square” in the phrasSteenrod square also give a work that can be used for defining
operationscomes fromSd (that mapsu — u?) sendinga  cohomology groups of digital images; they give the
cohomology classl to the 2-fold cup product with itself. Eilenberg-Steenrod axioms and the Universal Coeffcient
The operationsSq generate an algebras, called the  Theorem for this cohomology theory, and show that the
Steenrod algebrasuch thatH*(X;Z,) is a module over ~Kunneth formula doesn't hold.
a7/, whereX is any topological space. Karaca and Burak 20] show that the relative
Many researchers, such as Rosenfeld, Ayalacohomology groups of digital images are determined
Bertrand, Kaczynski, Boxer, Karaca and others, havealgebraically by the relative homology groups of digital
been studying the topology of digital images or just usingimages, and they express simplicial cup product for
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digital images and use it to establish ring structure of

digital cohomology.
Demir and Karaca 9] compute the simplicial
homology groups of some digital surfaces. They|[

A digital intervalis a set of the form

[ablz={zeZ|a<z<b}

determine the simplicial cohomology groups of someWherea,b € Z with a <b.

minimal simple closed curves and a digital surft8$,

Let k be an adjacency relation &i'. A k-neighbor of

and give a general algorithm how we make this @ lattice pointpis k-adjacent tgp. A digital imageX C Z"

computation.
At this work, we make a conformation on digital
images by using almost the same argument2i] pnd

is k-connected19] if and only if for every pair of different
pointsx,y € X, there is a se{xg, Xy, ..., X } of points of a
digital imageX such thak = xg, y = X andx; andx;,; are

[22). This paper is organized as follows. We recall someK-neighbors where=0,1,....,r — 1. A k-componenbf a
basic notions in section 2. The next section is dedicated téligital imageX is a maximak -connected subset of.

i-regularity of digital simplexes, digital version of

LetX C Z"™ andY C Z™ be digital images wittxg and

product and its properties. In the last section we introduceki-adjacency respectively. Then the functibnX — Y is
the squarring operations on digital images and provecalled(ko, K1)-continuoug5, 29| if for every ko-connected

some properties of these operations.

2 Preliminaries

Let Z" be the set of lattice points in the-dimensional
Euclidean space wherg is the set of integers. We say
that (X, k) is a (binary) digital image wher¥ C Z" and
K is an adjacency relation for the membersoMWe use a
variety of adjacency relations in the study of digital
images.

For a positive integerwith 1 <| < nand two distinct
pOintSp = (pla p2,..., pn)’ q= (CILQZa ---aQn) € an p and
g arec-adjacent 6] if

(1) there are at modtindicesi such thatp; — | = 1;
and

(2) for all other indices such thatp; — gi| # 1, pi = G-

Another commonly used notation fagj-adjacency
reflects the number of neighbagys Z" that a given point

p € Z" may have under the adjacency. For example, if

n =1 we havec; = 2-adjacency; ifn = 2 we have
c1 = 4-adjacency and, = 8-adjacency; ilh = 3 we have
C1 6-adjacency, ¢ 18-adjacency, and
c3 = 26-adjacency §]. Given a natural numbet in
conditions (1) and (2) with X | <n, | determines each
of the k-adjacency relations ¢&" in terms of (1) and (2)
[16] as follows.

Ke{Zn(nzl), 3 1(n>2),

r—2
3N Z)c{‘z”-t ~1(2<r<n-1,n> 3)} (2.1)
t=

The pair (X,K) is considered in a digital picture
(Z",k,k,X) for n > 1 in [2,3,5,17], which is called a
digital imagewhere(k,K) € {(k,2n),(2n,3"—1)}. Each
of Kk andK is one of the generat-adjacency relations.
We usually do not permit that and Kk both equal &

subset) of X, f(U) is ak;-connected subset &t We say
that such a function is digitally continuous.

Let X be a digital image withk-adjacency. If
f :[0,m]z — X is a(2,k)-continuous function such that
f(0) =x and f(m) =y, thenf is called adigital path
fromxtoyin X. If f(0) = f(m) then thek-path is said to
be closed and the function is called &-loop. Let
f :[0,m— 1]z — X be a(2,k)-continuous function such
that f(i) and f(j) are k-adjacent if and only if
j =i+1 mod m Then the sef ([0,m—1]z) is called a
simple closed-curve A pointx € X is called ak-corner,
if xis k-adjacent to two and only two poinysz € X such
thaty and z are k-adjacent to each otheB][ Moreover,
thek-cornerxis calledsimpleif y,z are notk-corners and
if Xis the only pointk-adjacent to botly, z[2]. X is called
a generalized simple closexi-curve if what is obtained
by removing all simple<-corners ofX is a simple closed
Kécurve Bl. If (X,k) is a k-connected digital image in
7z,

X = N3 (x) X,

whereN;(x) = {X € Z3: x andx are 26-adjacet[3,4].
Generally, if(X, k) is ak-connected digital image i&",
IX[*= N;(x)NX, where

N (x) = {X € Z" : xandx arec,-adjacen}[17].

Let X ¢ Z" andY C Z™ be digital images withkg
andki-adjacency respectively. A functioh: X — Y is a
(Ko, K1)-isomorphism [7] (called (Ko,K1)-homeo-
morphism in #]) if f is (Ko, k1)-continuous, bijective and
f=1:Y — X is (k1,Kp)-continuous, in which case we
write X %(K(LKl) Y.

Definition 2.1.[17] Let c* := {x0,X1,...,Xn} be a closed
K-curve in Z? where {k,K} = {4,8}. A point x of the
complement® of a closedk-curvec” in Z? is said to be
in the interior of c* if it belongs to the bounded
K-connected component af. The set of all interior
points ofc* is denoted bynt(c*).

whenn > 1, because of the digital connectivity paradox Definition 2.2.[17] Let (X, k) be a digital image irZ",

[21]. For instance, (k,K) € {(4,8),(8,4)} and
{(6,18),(6,26),(26,6),(18,6)} are usually considered in
72 andZ?, respectively’$,17,24,25].

n>3 and X = Z" — X. Then X is called aclosed
K-surfaceif it satisfies the following.
(1) In case thatk,k) € {(k,2n),(2n,3"— 1)}, where
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the k-adjacency is taken from Definition.2 with
K # 3"—2"—1 andK is the adjacency oK, then

(a) for each pointx € X, |X|* has exactly one
K-componenk-adjacent to;

(b) |X[* has exactly twa-componentx-adjacent
to x; we denote byC* and D** these two components;
and

(c) for any pointy € N¢(X) N X, Ng(y) NC* #£ 0
andNg(y) ND** £ 0, whereN (x) means thex-neighbors
of x.

Further, if a closed-surfaceX does not have a simple
K-point, thenX is called simple.

(2) In case thatk, k) = (3"—2"— 1,2n), then

(a) X is k-connected,

(b) for each pointx € X, |X* is a generalized
simple closedk-curve.

Further, if the imagéX|* is a simple close@-curve, then
the closedk-surfaceX is called simple.

For a closedk-surface S, we denote byS the
complement o6 in Z". Then a poink of S is said to be
interior of S if it belongs to the bounde#-connected
component ofS. The set of all interior points 08 is
denoted bynt(Sx).

The 3-dimensional digital image¥lSSg and MS§

Definition 2.3.[17] Let S, be a closedo-surface inZ"
and S, be a closedk;-surface inZ™ for ng,n; > 3.
Consider A, C A C S, such that
A2<O ~(ko,8) |nt(MSq)7 A:<O R (Ko.4) |nt(qu) or
Al F(ko,8) INLIMSG). Let f 1 A, — F(Ax,) C S, be a
(Ko, k1)-isomorphism. Le§, = S \ A, i € {0,1}. Then
the connected sum, denoted By,#S,, is the quotient
spaceS US,,/ ~, wherei : Aq\ Ay, — S is the
inclusion map ané(x) ~ f(x) for x € Ax, \ Ay,

Definition 2.4.[26] Let Sbe a set of nonempty subsets of
a digital image (X,k). The members ofS are called
simplexes of X, k) if the following holds:

(i) If pandg are distinct points 0§ € S, thenp andq
arek-adjacent.

(i) If se Sand O£t C s, thent € S(note this implies
every pointp that belongs to a simplex determines a
simplex{p}).

An mrsimplex is a simplexs such tha{S| = m+ 1.

LetP be a digitaim-simplex. IfP’ is a nonempty proper

subset oP, thenP’ ia called a face oP.

Definition 2.5. [1] Let (X,k) be a finite collection of
digital m-simplices, 0< m < d for some nonnegative
integerd. If the following statements hold, theix, k) is

which are obtained from the minimal simple closed called a finite digital simplicial complex:

curves MSG and MSGC in Z2, respectively, are

(1) If P belongs toX, then every face ofP also

essentially used in establishing the notion of a connectedhelongs toX.

sum [L7].

Fig. 1: Minimal simple closed curves!SC, andMSG.

e MS§ := MSSUInt(MSS) where
MSS ~66) (MSC x [0,2]7) U (Int(MSG) x {0,2})

andMSG is 4-isomorphic to the set
{(17 O), (17 1)7 (O, 1)7 (_17 1)7 (_17 O), (_17 _1)7

(0,-1),(1,-1)}.
o MSSg:=MSSsgUInt(MSSs) where
MSSs~(1818) (MSG x {1}) U (Int(MSG) x {0,2})

andMSG is 8-isomorphic to the set
{(Oa O)a (_17 1)7 (_23 O)a (_27 _1)3 (_17 _2)3 (Oa _1)}

(2) If PQ € X, thenPNQ is either empty or a
common face oP andQ.
The dimension of a digital simplicial complex is the
biggest integem such thaX has amrm-simplex.

Cg (X) is a free abelian group with basis all digital
(k,q)-simplices inX [1].
Corollary 2.6. [8] Let (X,k) C Z" be a digital simplicial
complex of dimensiom. Then for allg > m, Cg(X) is a
trivial group.

Let (X,k) C Z" be a digital simplicial complex of
dimensionm. The homomorphisrdg : Cg (X) — C§_;(X)
defined by

q
Z{_“f < PPy ey Piy ony Py =
i=0

0, 0> m

P q < m:
Fa(< PosPLy s Py =) =

is called a boundary homomorphism whepg means
deleting the pointp;. Then for all 1< q < m, we have
0q-100q=0[1].

Theorem 2.7.[1] Let (X,K) C Z" be a digital simplicial
complex of dimensiom. Then

Om-1 91 %

C5(X)

Im-1 om

CA(X)

C¥(X):0 Cha(X)

is a chain complex.
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Let (X, k) be a digital simplicial complex. The group of CPX(X;Z,). Since the digital coboundary of a cochain
of digital simplicialg-cycles is is zero on A, thus ZPK(X A;Zp) = Ker 9,

. . BPYLK(X,A;Z;) =1m &, and
Z4(X) =Ker dq = {oe Cq(X)|0q(0) = 0}

HPK (X, A Zy) = ZPH (X, A Z7) /BPH (X, A Zo)
and the group of digital simplicial-boundaries is can be defined as usual.

i -na v e R R
={1€Cq(X)[9g11(0) =1 for 0 € Cq1(X)}. thenf induces the homomorphism below: S
Theq" digital simplicial homology group]] is f2:CPK(X,A) — ch«’ (Y,B).
Hg (X) = Z§ (X)/Bg(X). 5o ff = f20 & so thatf* maps digital cocycles to digital

cocycles, and digital coboundaries to digital
Definition 2.8.[23] Let (X, k) C Z" be a digital simlicial coboundaries. Therefore it is calledigital cochain
complex andC be an abelian group whose bases are alimappingand f* induces a homomorphism

(k,q)-simplexes inX. C**(X) = {C%#*(X),dq}q=0 is the f*: HPK(X,A) = HPX'(Y,B).
digital cochain complex ok where

C¥(X) =Hom(C{ (X),G)

3 The Cup Product
={c:C§(X) — G,c is a homomorphisi

We present the definition and some properties of digital
Here & : C9%(X) — CQ+17K(X) is the digital cochain  simplicial cup product by using property of regularity.
homomorphisnand defined agqy(c)(a) = c(dq1(a)) for ~ The proofs of the following theorems are analogues to
c € CH(X), a€ Ck,4(X). Z¥(X;G) is the kernel ofy;  algebraic topology (se@f]). ~ , ,
and called group ofdigital cocyclesof (X,k) with Let o and be two digital simplices of dimensiors
coefficients inG, B#*(X;G) is the image of, ; and ~ anddrespectivelyn be a fixed order inX, ), andi > 0
called group ofdigital coboundariesof (X,k) with be a positive integer. The ordered pédr, T) is said to be

coefficients inG, and (noting that sinca? = 0, 52— 0) i-regular in o if the following conditions are satisfied:
p p p (-1) The vertices o andt span & p+q—i)-simplex{.
H%(X;G) = Z%(X;G)/B*(X;G) In this caseg, T havei + 1 common vertices denoted

: o : by VO, Vvi ... Viinthe order.
is called thedigital g cohomology groumf (X, k) with (0) VX) is the first velr?ex gfrc?r e

coefficients in G. If u is a digital g-cocycle, then (1) VO,V are adj ices i
, jacent vertices in.

GK(X: . S
Rﬁ: :e{vl-}l mt(aﬁh(sg)thadne_n\c/)t:Squ'Er(]i' GC)OhomOlOgy FI8%- (2) v1.v? are adjacent vertices n

Theorem 2.9.[23] If (X,k) is a singleton digital image, (j+1) VI Vi*l are adjacent vertices ia(7) if j is even

then _ (odd).
HqK(X,G):{G’q_O’ e -
0,g>0 (i+1) V'is the last vertex obr(7) if i is even (odd).
whereG is an abelian group. If (o,1) isi-regular, letoy be the face oty spanned

Theorem 2.10.[23 Let (X,k) be a digital simplicial by vertices precessor of the, let a2;(0 < 2j < i) be the
complex. For any abelian gro@ there is exact sequence face ofo spanned by vertices successor of w1 and

K precessor of th&2l, and ifi is odd ,0i1+1 be the face obr
0 — Ext(Hg_1(X),6) = H*(X;G) — Hom(Hg (X),6) — 0 spanned by vertices successor of Me Similarly, let

where Hf (X) = HX(X;Z). This exact sequence splits; 2j+1(1 < 2 +1<i+1) be the face ofr spanned by

hence vertices successor of th&?] and precessor of thé2i+1,
and ifi is even,ti1 be the face of spanned by vertices
H%  (X; G) = Hom(H(’;(X),G) ey Ext(Hc’;,l(X),G). successor of th®'' vertices. By the-regularity,o ve T
can be written as joins of subsimplexes:
Definition 2.11.[23] Let (X,k) C Z" be a finite digital 0 = 00.0.....00% , T = T1.T3.... Ty (1)

simplicial complex;A be digital subcomplex ofX, k) i e ,
with the same adjacency relation. Thecochains of where k=i ifiis even anq 2_2|j+1 it |2|js+§>dd. I._etrz”l
(X,Kk) which are zero on digital simplexes #fform a € theface ofzj.4 by deleting/</ andv</*~ vertices, and

subgroup if i is even,t/,; be the face of;; by deletingV' vertex.
Then the digital simpleX spanned by the vertices of
CPA(X, A Z) = Hom(Cg (X, A), Z3) andrt can be written as follows:
(@© 2016 NSP
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/ HH .

T i is odd

_ / / i+1 ’
= 00.T,.02.T..... .

{=001.02.T5 {0i+1, i even.

In the group of digital(p + q — i)-cochains, let us
define; if (o, 1) is noti-regular, theno L; T = 0, and if
(0,71) isi-regular, theno i T = £&. If i =0, then the
sign is "+". In general, the sign of permutation is
identified by bringing the ordered vertices

/ /
0o, 02, ..., O, Tl’ T3, ceny T2k+(_1)i

into the order
00.11.02.T3.....0}. T} 1.

Let G,G' be abelian groups, ar@’ be an abelian grup
such that there is a bilinear produgty € G” defined for
geG,d e G/ LetuPeCpK(X G), W € C*¥(X,G), and
uP = ZQJUJ V=5 g0, I be their unique representations

in terms of the distinct d|g|ta|b andg-simplexes of X, k)
oriented by the ordear.

—i:CPK(X,G) x CI¥(X,G') — CPTI71K (X, G")

is defined by
W V1= 5 (G800 Ui of.
I

Since CPX(X,G), C%(X,G') are paired to
CPHa-1K(X,G"), the product—; is bilinear. However we
useZ instead ofG andG' through this paper.

Theorem 3.1.uP — VI =0ifi > porq.

Proof. If the common face ob, 6! has the dimension
less or equal tanin{p,q}, then(a’,a) is noti-regular.
The result hold&l

Remark 3.2. [27] A digital p-cochain is a function
uP(A%,... /AP) with Z valued and is defined on each
ordered set op+ 1 vertices whose union induces a digital
simplex. If the vertices do not span a digifasimplex in
the given order of vertices, then it becomes zerd. i$ a
digital (p+ g —i)-simplex, anyi-face of ¢ determines a
splitting into a product asg i T = +&. And then

= Ziup(a) Va(T)

the sum is taken over thosdaces ofé such that
dimo=p anddimt =q.

Example 3.3.Let

Fig. 2: MSSgtMSSg [14].

Then we can directMSSgiMSSg by the ordering
Ce <l < <C7<13<Cp<C2< <1 <Cg <
C3 < Cg < €1 < €. We have the following simplicial chain
complexes:

Ca8(MSSgiMSSs) has for the basis

{<CO>7 <Cl>7"'7 <C13>}7

C18(MSSstMSSs) has for the basis

{€0 = (c7Co), €1 = (C10C0), €2 = (C13C0), €3 = (CoC1),
€4 = (CoC1),65 = (C12C1), 86 = (C1C2), €7 = (CgC2),
€g = (C11C2), €9 = (C3C2), €10 = (C4C3), €11 = (CaCa),

€12 = (C11C3),€13 = (C5C4), €14 = (C4C8), €15 = (C4C11),
€16 = (CsCs), €17 = (CsCo), €18 = (C5C12), €19 = (C6C7),
€20 = (CsC10),€21 = (CsC13), €22 = (C7C10), €23 = (C7C13),
€24 = (CgCg), €25 = (C10C9), €26 = (C12C11), €27 = (C13C12) },

andCi8(MSSgtMSSs) has for the basis

{go = (c7C13C0), 01 = (C7C10C0), T2 = (CaC3C2),
O3 = <C1103C2>7 Oy = <C4C8C3>7 O5 = <C401103>,
06 = (C6C7C10), 07 = (C6C7C13) }.

Digital simplicial 1-cocycles oMSSgitMSSg are:

* *

MSSgiMSSg = {co (1,0,1),c1 = (1,1,1), a=-e—€—-6+6; A =€ — €+ Entes
=(1,2,1),c5=(0,3,1), B=-e-e—e+6 M =€ +el;—€l,— €y
=(-1,2,1),c5=(—1,1,1), y=—-€—€—€6—& V=€~ €7+, €5

c6 = (—1,0,1),¢7 = (0,—1,1), d=e—ep—en—ep § =€l —€&p—epntes

cs=(0,2,2),¢co = (0,1,2), E=€o—€3teistels  TT=G+er— €56y

c10=(0,0,2),c11 = (0,2,0), N==¢e3—€pter+eyg p =€5—€g+Ep— €

c12=(0,1,0),c13= (0,0,0)}. 6 = elg+ €9+ €+ e =€~ €1~ €3ty
(@© 2016 NSP

Natural Sciences Publishing Cor.


www.naturalspublishing.com/Journals.asp

112

E. U. Demir, I. Karaca: Some properties of Steenrod squares on...

For instance

a—B=(--€—&+e&)— (-6 € &+&)
=eles+ele,+eles —eylieg+ e Lies+
gue+ele—elegt+eles+elle
+eUe—elleg—eslle;—eslie) —esLles
+eles
=(eo+ €3) + (e163) + (€2€3)
=0,

and

€ — 0 =(ejp— €13+ €14+ €15) — (65— €19— €11 — €1))
=€joLl€y — €jpLl€]p— EjgLi€); — €pLE
—ej3ley+€e3Llep+ejzlie; +ejzLep
+elleg—eyliejp— e lier; —eyliel,
+eslieg—esliejp—€esLier; —€sLiel,
=(elo+€y) + (13 +€lg) — (€14 +€11) — (€15 +€l)
=0s.

If (Y,k") is a digital subcomplex afX, k), f is the identity
map,u? = y gjof andaf ¢ (Y,k’), thenf*uP = 0 since
g;=0.

J If a, o’ are orders in(X, ), (Y,k’) respectively, then
f is said to beorder preservingf A’ < B’ in a’ implies
f(A') < f(B') ina. If adigital simplicial map and an order
are given, then there exists another order such that digital
simplicial map is order preserving.

Theorem 3.4.If f: (Y,k’) — (X, k) is an order preserving
digital simplicial map, then

f (u—iv)=f"(u) —i f*(v). (3.1)
Proof. Suppose thaf’ is a digital (p+ g — i)-simplex of
(Y,k"), and {’ = d’ —; 7" in the order o’ where
dimo’ = panddim1’ =q.

If f(') is degenerate, then eithé(a’) or f(1') is
degenerate of (g’) and f (1) have more than ainface in
common. In this case, both sides of the equation have the
zero value or’.

If (') is non-degenerate, then

f*(u—iv)=u—iv(f({)).

Since restriction off on {’ is a one-to-one and order
preserving map of ' on f({’), we get
f({) +f(o’) — f(r) and any splitting
f({') = +0 —i 1 can be attained. Hence

u—iv(f(Z") = +u(f(a")).v(f(1))

= Zif*u(a/).f*v(r’)
— (f*u—i FV)(Z').0

Let o be an ordered digitap-simplex andA be a
vertex. We can defingA as follows: If the vertices o0&
together withA do not span a digital simplex diX, ),
then oA is the digital O-simplex inCP*1K(X;Z).
Otherwise gA is the ordered digital(p + 1)-simplex

If we repeat the same procedure for the other digital
simplicial 1-cocycles, we get the following table.
o 2 5 |le|nlel|r| | Elxle
a 0 0 0 ( glo|a|0o|0]0 0 00| 0
8 i3 i 0 0 c|o|0o|lO|O)|D i) oj|o| 0
0 0 0 0 Glojo|lO|0D]D 0 NN
) {0 {0 0 0 GlO0|0 0|00 0 0lo| 0
-4 1] 0 0 o ||| G|0 O[O 0 gl|lo| o0
n 0 0 0 0 L I T O VO 0 0|00
é 0 0 0 0 C|O0|0[O|(0|0|-cs| 0|0 |0O5
-~ | 0 { o c|o|e(o|0)|0 { D)o 0
A o 0 o ] clOo|0|0C| 0|0 i) oo i
¥ 0 0 0 0 o|0|a|0o|0]|D 0 010]0
< 0 1] 0 0 G|0|O0|0|0)|D 0 0|l0| 0
T o 6 |- 0 |¢|O|(0|(O|0]|0 1] o(o]| 0
2 0 0 0 0 ololololo]oO 0 0|00
T 0 o 0 i} oloalalolo]o 0 oo 0

Let (X, k), (Y,k’) be digital simplicial complexes, and
f:(Y,k") — (X,K) be a digital simplicial mapf induces
a homomorphisni? : CP¥(X;Z) — C'(Y;Z) defined as

fﬁup(AO...Ap) - uP(f(AO) .- f(AP)),

where uP € CPX(X;Z), and o’ = A°-.-AP is a digital
p-simplex of (Y, k’). If f(a’) is degenerateffuP has the
value 0 ono’, otherwiseffuP = uP(f(a’)). Let 6,8 be
the coboundary operators or{X,k) and (Y,k’).
&' f? = {15, hencef? maps digital cocycles into digital
cocycles, and digital coboundaries into
coboundaries. So ff! induces the following
homomorphism

£ HPK(X;Z) — H¥ (Y; Z2).

digital

consisting of the ordered vertices affollowed by A. If
uP = zgjajp, defineuPA =5 g; (aij) € CPHLK(X: Z).

Theorem 3.5.If the vertexA follows all vertices ofoP and
1% in the ordera, then we have

oP L (T9A) = {((fpui A | o G2

0, i ;
(aPA)L; T9 = { 1L A : g‘cﬁ” (3.3)
(OPA)L; (T9A) = (—1)THHH(GPL_1 THA.  (3.4)

These formulas can be taken as the basis of inductive
definition of cupi product. If we takeA be the last vertex
of o, andB be the last vertex of in the ordera, apply
(3.1) ifA< B, (3.2) if A> B, and (3.3) ifA = B. Since
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the proof of the theorem is very similar to the algebraic S(V—iu) = (—1)'V—i_gu+(—1)Pu—i_1 v
version, we are not going to give the proof here. Hence we conclude that

Example 3.6.

A<B: Given a digital image d(U—iV+V—iUu)=0=U—{V+V—ju~D0.

X = {CO = (an)acl = (130)502 = (17 1)} with

8-adjacency anap < ¢; < ¢y ordering; leto = (coCy) (3.10)By using(3.7), we have

and 1 = (cicp) be two digital 1-simplexes with .

2-adjacency relation. Here= 0, A = c;, B = ¢, and du—iu)=[(-1)'+(-1)Plu—i_1u=0
O Llg T = (CoC1C). . - .
B<A: (éiven 62 digital imageX = {co = (0,0,0),¢1 — (3.11)If we apply(3.9) with u= v, we obtain
(0,0,1),c, = (0,1,0),c3 = (1,0,0)} with 18-adjacency 25(U—i U) = 0= 2u—i U~ O
andcy < €1 < Cp < C3 ordering; leto? = (cocac3) be a R : :

digital 2-simplex with 18-adjacency and (3.12)Applying (3.8) with u = dw, we conclude that
' = (c163) + (coc3) be a digital 1-simplex with ,
18-adjacency relation. Hefie= 1, A=c3, B=1Cp, and  O(W —j_1 W+ W —j dW) =0W —; dw— [(—1)'+ (—1)P]
0L T = (CoC1C2C3). (W —i_2 W4 W —i_1 dW)
A=B: Given a digital image
X = {CO = (an)acl = (130)502 = (17 1)} with
8-adjacency andy < ¢ < ¢, ordering; leto! = (cocy) be Sinced(u —;i u) = 0 from (3.10), we getu —; u~ 0.

a digital 1-simplex with 4-adjacency armd = (c;) be a (3.13)We know thatu ~ v < u—v € 8(x). If we apply
digital O-simplex. Herei = 1, A =B = ¢, and (3.12) tou—v, we have

O'1A|_|1 A= <CoC;LCz> = (0'1 Lq TO)A. ,

=u—i u.

Theorem 3.7.If u andv are p andg-dimensional digital (U=V) —i (U—=V) =5(x) —i 6(X)
cochains respectively, then —(—1)2P5(x) —i_1 5(X)
(U —i V) =(=1)PT Uiy v ()PP i u +(—1)P2P5(x) —i_1 B(X)
+0u—iVv+(—1)Pu—; dv. (3.5) £8(8(X)) —i 3(x)
If uandv are digital cocycles, then the last two terms +(=1)PS(x) —i 8(8(x))
for (u—i v) become zero. But the first two terms do not =0.
have to be zero unless= 0. Thus products of digital
cocycles need not be digital cocycles unliessO. (3.14)By using bilinearity of—; and apply(3.9), we get

If u,ve ZP¥(X,Z) andw € CP-1K(X,Z), we getthe ~ (U+V) —i (UFV) =U—{ U4V —i V4 U—i VF+V—i U
following statements from the digital coboundary formula

(3.5): Hence

6(U N V) _ (_1)i+lu —iV+ (—1)vai u. (36) (U+V) ~—i (U+V) ~U—jU+Vv—vll

S(u—iuw) =[-1)'+(-D)Plu—iru (3-7)  Theorem 3.9.If p—i is odd, the operation — u —; u
O(W —j_1 W+ W —j OW) = OW —; OW maps digital cocycles into digital cocycles, cohomologous

i _ _ digital cocycles into cohomologous digital cocycles, and
—[(=1) —1)P N N
(D + CDFW =i WA W —ig 5(\’;)é) thus induces the following homomorphism calledis

square
. X . 2p—i, .
Theorem 3.8.If p—iis odd andu,v € ZPX (X, Z), then Sq :HP(XZ) = HP (X Z).
Ui VAV i U O (3.9) Each image undesq has order 2. '
5 W —0 310 Proof. Let & : Z — 7Z/2Z be the natural homomorphism.
(U—iu) = (3.10) Thené induces the following homomorphism,
o e o €O - G 20
- e ' S gjo] — & (3 djo)) = 3 &(d))a].
U~V=U—jU~V—iV (3.13)

E*0 =0&* andf*&* = &*f* for a digital simplicial map
f. The operatior€ * is called reduction to modulo 2. The
relationu ~ v mod2 mean< *u ~ &*v.(d

(U+V) —i (U+V)~Uu—ju+v—iv. (3.14)

Proof.
(3.9)If we use(3.6), we have Theorem 3.10.If p—iis even andi,v € ZP¥(X;Z), then
_ the formulag3.9) to (3.14) all holds mod 2.
d(Uu—iv)=(-1D'u—iav+(-1)Pv—i_qu The proofs are analogue to those givengeri is odd.
(@© 2016 NSP
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Theorem 3.11.1f f : (Y,k’) — (X,k) is an order Example 3.12.Let

preserving digital simplicial map, theit Sq = Sqf* for

alli. X={co=(0,0),c1=(0,1),c2=(1,1)}
Proof. If uis a digital p-cocycle andp — i is odd, then by

- . - - 2 . .
(3.1) and the properties df, we have be a digital image inZ“ with 8-adjacency, and

X x I = {po = (0,0,0),p1 = (0,0,1), p, = (0,1,0), ps =
f*Sq{u} = f*{u—i u} = {F*(u—u)} = {F'u— ful (0,1,1),pa = (1,1,0),ps = (1,1,1)} be a digital image in

. . 7® with 26-adjacency wherel = [0,1];. Let
=Sq{f'u} =Sqf*{u}. A= {co,C1,Co} be the set of vertices ¢, 8); let us take
If p—iis even, we usef*&* = &*f* in the proof as
fO||F())WSZ P Ao ={po, P2, P4} = {AgaA%aA%} and

A1 ={p1. ps, Ps} = {AD, AL, A},
f*Sa{up = F{& (U —iu)} ={f (u—iu)}
=&{(f'u—i fr'u} =sa{fu} =sqf{up.0 fo fi: (X,8) = (X x1,26) andg: (X x I,26) = (X,8)
are digital simplical maps such thafy(A) = Ao,
We have been worked on the cup products with afi(A) =Aq, andg(Ao) = g(A1) = A.
fixed order over the digital imageX, k). Now, our aim is 526 18
to show thatSq is independent of the choice of ordering. D 1 C*(X x I;Z) — C**(X; Z) .
To do this, we are going to show that there exists a digital Only 0 akak 1
cochain homotopy that indicates products with different U DU(A'AT) = I(ZOU(AO"'AOAl"'Al)
orders are equal with this homotopy. We need to consider 1/ AOAOALY 11/ AOALAL
X x | space wheré = [0,m]z, andmis a positive integer. = U(AgArAT) — U(Aphphy)
Let (Ao) and (A1) be two disjoint sets where their C226(X x |- 7) wh — AOALAL
vertices are one to one corresponds to vertices of the oranyu < (X 132) whereu = AgAohy.
(X,k). Let fo(A) = Ap and fi(A) = A; where 2 , .
fo, f1 1 (X,K) = (X x I,K"). The union of(Ag) and (A;)  SDu(AALA?) = zo(—l)'Du(A°-~-AJ-~A2)
constitutes the vertices ofX x I, k’). Here, k' is the I=
2

adjacency oX x | which is equal ta,,. 1 where we have ] I k0 akak T a2
cn, = kK adjacency onX and c; = 2 adjacency on =2 DY (=D u(Ag- - AgAL - Ap - AT)
| = [0,m]z. Leta be the order orfX, k). If ':2 =0
AO < Al < < Ak < AkJrl < ...< AP _k z l(—l)kU(AgA(])ASAIJ(_Ai)}
< 4
. . — U(ARALA?) — L(ALAZAZ)  L(AQACA2
with respect to ordea and these are the vertices ofpa = U(AGATAT) — U(AGAGAT) — U(AgATAT)
or (p— 1)-digital simplex of(X,k), a set of the vertices + U(AJA3AZ) + u(ASAIAT) — u(ASAZAT)

AS.-.. ASAKHL. . AP are the vertices dfX x |, k).
Let fo, f1 1 (X, k) — (X x |, K’) be the digital simplical

maps, andy : (X x I,k’) — (X, k) is defined ag(Ag) = 2
g(A;) = Afor everyAwherel = [0,m]|z, andmis a positive ~ DSU(A’AA?) = 5 (—1)K3u(AS- - AKAK... AZ)
integer. Thery is a digital simplicial map such that k=
2 k . —
go fo=go f1 = idx 4 (3.15) 2 | 2 DIu(A- Ay ASAY - AY)
= =
- 1K (%7 Wi 2 .
Let us definedDu € CP~X(X;Z) with S (C1)uAS. AR AT A2))
p-1 =
Du(AC...AP-1) = %(—1)ku(A8---A5A';---A§"1) = U(APATAT) — U(AQATAT) + U(AJAGAY)

& 316 — U(ASADAY) — UASALAR) + U(ASALAD)
wherep > 0, A?... AP~1 s the digitgl(p— 1)-simplex in —u(AJALAZ) 1 u(AOAIAY) + u(ASAZAZ)
(X, k) with the ordera for ue CP¥ (X x I;Z). D is the — U(AJAZA?) + u(AQASAZ) — U(ASABAZ)
homomorphism

D:CPK (X x 1;Z) — CPLK(X; 7). Since
fo and f; induce homomorphisms u(A%ATAZ) — u(ASAGA3) = fiu(ACALA?) — fu(ACALA?),
f&, £ CPX (X x 1;Z) — CP¥(X;Z). we getDou = —dDu.
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The relations among operatiobs 2, andff are
Du= f}(u) — fi(u) —D3(u) ;ue CP¥ (X x1;Z), p> 0
(3.17)

0= fi(u)— f5(u)—D3(u) ;ue CO¥ (X x I;Z) (3.18)
Proof of 3.18.
ODU(A) = Su(ApA1) = u(A1) — u(Ao)
= F(W(A) ~ f(u)(A).0

Proof of 3.17.Similar to Example 3.12Ddu = —d4Duon
the digital p-simplexA°- - - AP. From

U(A--- AP —u(AS- - AD) = Fu(AC. .. AP) — f2U(AC. .. AP)
and 318, we get the resuli]

Sinceg’(u) is zero on digital simplexes of the.16)
for anyu € CP¥(X;Z) it follows that

Dy’ = 0. (3.19)

Let ap anda; be two orders inX, k). DefineX x I,
fo, f1, g with the orderingag as in the product complex.
Let

of : CPK(X;Z) — CPX' (X x 1;Z)

be the digital cochain mapping induced §yThe orders
define two cup product-?, —1tin (X, k).

An order(ag, o) is defined inX x | as follows where
| = [0,m]z: Order(Ap) such that corresponding points in
(A) are ordered witlwg, and similarly ordefA;) such that
corresponding points ifA) are ordered witto;. Suppose
that a vertex of X x 0,k’) precedes one dX x m,k’) on
any digital complex irX x I. Then(ap,a1) defines cup
producton(X x I, k"). f&(f#) maps—;into—0 (1) from
(3.1) sincefp(f1) preserves the order (o) respectively.

Define a new product ofX, k) corresponding taxg
anda; as follows:

uVviv=D(g;u—i g’v) ; uc CPX(X;Z),v € CH(X;Z).
_ (3.20)
This product isv; : CPX(X;Z) — CPHa—I-1K(X: 7Z); v is
bilinear sinceD, ¢ linear and— bilinear. If we applyd to
(3.20), and us€3.17), (3.15), and definition o, we get

S(uViv) =u—iv—u-Lv
—[(=1)PTI UV v (—1)PHPE Y g U
+0uViv+ (—1)Puv; dv] (3.21)
If u=vis adigital cocycle, then

duviv)=u—tu—u—Lu—[(-1)'+ (=1)Pluvi_tu.
(3.22)
Theorem 3.13.If the ordersag, a1 coincide, then

uviv=_0.

Proof. Sincegfu —? gfv = g (u —j v) from (3.1), we have
thatgis order preserving. If we appl{d.19) to (3.20), we
complete the proaf]

Let us consider the relative casedifandt are digital
simplexes inX — A, then eithero —; T is zero or a digital
simplex ofX — A. If uandv are zero digital cochains i,
then u —; v is zero. ThusSq can be defined for
HP:K(X,A;Z,) groups. Hence we g&qf* = f*Sq.

If we CPX(A;Z,), we may observe it as an element
of CP¥(X;Z,) by defining it zero on digital simplexes of
X — A. Thenw has two coboundarieiw anddxw; and

OxW = QAW+ V

wherev € CPHLK (X A, Z,). If w e ZPK(A;Z3), daw =0
so that

Ox : ZPK (A Zo) — ZPTIR(X A Zo)

homomorphically. Since 6 OxdxwW = dxdaW + OxV it
follows that & maps BPK(A;Z,) to BPTLK(X A Z,).
Hence Ox preserves digital cohomology classes and
induces a homomorphism

5 T HPM(A Zg) — HPPY (X, A Zo).

Because of beingx f* = f*9x for a digital simplicial map
f, it follows that

f*5* — 5/*(”8)*

whered’™ : HPK' (B; Zy) — HPTLK (Y, B; Zy).

Suppose thaA contains any digital simplex of such
that vertices inA. If o and 1 are digital simplices o\,
thus the productr —; T on X andA coincide, and here we
use the same ordering wik

Order the vertices of such that every vertex of — A
precedes each vertex 8f If 0 € Aandt € X — A, then
(o, 1) is noti-regular since the first vertex afis noting.
Hence ifw € CPX(A) andv € CH+* (X, A), thenw —; v=0.
In particular, ifw € ZPX(A), thenw —; oxw = 0. If we
apply this to(3.8), we get

S(W—i_1 W) = W —i dW— [(—1)' + (—1)Plw —i_p W

And this proves the following statement:
Theorem 3.14.5qd* = 6*Sq_1 wherei > 1.

Theorem 3.15.If i > p, then Sq{uP} = 0 where
ue HPK(X,A).

Proof. SinceuP —; uP = 0 wheni > p,

Sq{uP} ={uP —;uP} =0.0

4 Some Properties of the Steenrod Squares

Now we give some important properties of squarring
operation over digital images. The proofs of the following
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theorems are analogues to algebraic topology @88 [ and the last term represerfsSq+1u.
(9sd™tue {c—p-j-1c}; p—j=i)0
Sq and Sot A special case of the lemma&Sd = Sdt. We want

_ ' to show thatSd is the identity homomorphism in digital
Let B denote the Bockstein homomorphism attachedprojective plane. Before doing this, let us determine the

to the exact coefficient sequence digital cohomology group of the digital projective plane:
0 Z Z Zo 0.
Thenp is a homomorphism B T e
B:H*(X,AZz) = H* (X,AZ), - m.
which raises dimension by one. It is defined on c" oh

x € H*(X,A;Z;) as follows: represent the clagsby a
cocyclec; choose an integral cochaghwhich maps tac el ol
under reduction mod 2; thedc' is divisible by 2 and

Bx= 3(5¢) representgx.

Fig. 3: Digital Projective Plane
The composition of f and the reduction
homomorphism gives a homomorphism

. p.K . p+1,k . Since
O HPH(X,AZy) — H (X,A;Zs) et—0,H(c.0)—c

which we also call "the Bockstein homomorphism”; in et =1,H(c12,1) = c11, H(Co,1) = Cs,

fact, it is the Bockstein of the sequence H(c1,1) =cs4, H(C2,1) =3
et=2H (Clla 2) = C10, H(05,2) = Cg,

0 Zp Za Zz 0. H(cs,2) = c7, H(cs,2) =g

ot =3,H(C10,3) = Cy, H(Cs,3) =7

Definition 4.1. Let us show the homomorphism ®t=3,H(Cs,4)=H(c7,4)=cs

Sd = Sa;-i by .
for the digital homotopy map! : P?° x [0,4]; — P?6, H
Sq : HIK (X;Zp) — HITK(X;Z5): i =0,1,--- ,q. is the 6-deformation retract ¢¥>° [11]. ThenP? has the
_ same homology group with the one-pointed digital image:
Sd is the zero homomorphism foexcept 0< i < g.
0, jisodd; H&(PZ;ZZ) = {
Sg*l, jis even.

Z2,9=0;

Lemma 4.2.5,Sd = { 0, q>0.

Proof. Given u € HP*(X,A;Zy), let ¢ be an integral By Theorem 2.10, we get

cochain such that the reduction mod 2cd6 in the class HO (P2, Z,) =~ Hom(Hg(PZ),Zz) D Ext(HEl(PZ),ZZ)
u. ThenSdu is the class ofc—p_; c) by the definition. ~ Hom(Zs, Zz) & EXt(0, Z)
dc = 2a for some integral cochain € CPTLK(X; A). If ’ ’

we writei instead of(p— j), by the coboundary formula =22

wheng =0,
HO(P?Z) = Hom(HE(P?), Z2) & EXt(HG(P?), Z2)

>~ Hom(0,Zy) ® Ext(Z2,Zy)
~75

8(c—i¢) =(-1*P e —i 1 e+ (~1)P e i s C
+0c—ic+(—1)Pc—; dc
=[(-1) + (~D)Pe—isc
+2a—jc+(-1)Pc— 2a
_ wheng=1, and
%(Squ) = a—i ¢+ ¢ —j a+ (s)(c —ij_1 c) where the 602 6/p2 6 (p2
coefficientj is 0 or 1 according to whetheris even or  H%°(P%Z2) = Hom(Hg(P?),Z2) ® Ext(Hg_1(P?),Z2)
odd, respectively. But the sum of the first two terms is a =~ Hom(0, Zz) & Ext(0,Zy)
coboundary, namely, ’ ’

=0
—i 2
S(c—ipra) =(-1*" e —ja+ (-)PPa—ic wheng > 2. Consequently, we have
+dc—iy1a+(—1)Pc—i,; da
7 =0,1;
=a—i C+C—ja(mod2) H%8 (P2 7Z,) = {02, g# o1
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By Lemma 4.2,
&(sd(a)) = sd(a)

wherea denotes the generator &f-6(P?;Z,). Sincea
is the non-zero element &f16(P?;7Z,) = Z,, it must be

—a—a=0a’#0=Sd(a)#0

Sd(a) = a. By appliying naturality condition, we get
Sfo=sdf*a=fSfa=fa=0c
where if f : MSG, — P25, then

% H*(P% Zy) — H*(MSG; Zy)
a—f*(a)=0

such thato is the generator afl*(MSGy; Z,). Thus being

identity homomorphism is true in digital projective plane

P28 for Sd : H38(P?%; Z,) — H6(P?% Zy).
Cartan Formula
Sq(x—y) = ZdeVSd ly

Before proving the Cartan formula, we should better

give the following fact.

Proposition 4.3. Let X be a digital image with the
k-adjacency, and

A (X,K)— (X xX,K)

denote the diagonal map where= ¢y, is the adjacency on
X andk’ = ¢ny1n, adjacency oiX x X. If X,y € H*(X; Zy),

thenx —y e A*(xx y).

Proof. If x € HPK(X;Zy), then there exist
uP = 5 gigP € CPX(X;Zy) such thatuP € {x}. Similarly

if y € H%(X;Zp), then there exist
Vi = ygjo; € C¥(X;Zy) such thatvd € {y}. We can
write

x—y=(y 90" — (3 9i0})
=Y (@9j)o’ Uay.
If the right side is not a lineap + g-simplex, thenuP, )
is not O-regular. But if the right side is a linear

p + g-simplex, then (uP\) is O-regular and
uP — VA e CPTaK (X, Zy).

Af(ux V)(A2, ..., APTA) =(ux v)A(A?, ..., APTY)
=(UP(moA)(A°,...,AP)
(M(TRoA)(AP, ..., APHA)
=(uP(AY, ..., AP)
(VI(AP, ..., AP+Y)
=uP — VA(AD .. APTO)
here we user oA =
APH(xx y).00

idx = Tko A. Hence we gex — y €

with Squ) =

Proof of Cartan Formula. If x —y e A*(xx y) for x,y €
H*(X;Zy), then

Sd(x —y) =SdA*(xxy)
= A"Sd(xxy)

=A* ' Soxx Sq~!

JZD X X y

- i;msdxx sqy)
j=

= ZSdXV Sqd-ly.0
=

Definition 4.4. Let us definesq: H*(X,Z2) — H*(X,Z3)
Y Sdu.

The sum given above is finite and this sum does not
have to be irHPX for any p.

Proposition 4.5.Sqis a ring homomorphism.
Proof. By the Cartan formula,

Squ) — :zSdeZde

hasSd(u — v) as itsp+ q+ i-dimensional term. Hence

Squ—v) =Squ) — Sqv).O
Proposition 4.6.Sd(ul) = (f) utl forue HYX(X; Zy).

Sqv)

Proof. 0
If j =0, thendimu <i= Sq(uwW)=0= (i)ui.
Forj—1,letSd(ul-1) = = B gisi-t

i
Let's show that the statement is true for

sd(uh) =sd(u— u )
- 3 i) — 544w

=S (u) — Sd(u 1) +Sd — Sd ()
+Sdf(u) — S~ 2(u Y + ...
=Sd(u) — Sd(u )+ S — Sqd~L(ul?)

- () s (17 2)or
(e (o

| () ()

()
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Adem Relations

The Adem relation has the form

(E
R=SdSd+ ZO (b __°2_01> SGP°Sd = 0 (mod2)

wherea < 2b and[| §|] denotes the greatest integer less or

equal tos.

Example 4.7.S¢"1Sd' = 0 for everyn.

n-c—1>2n-1-2c=c>n

n-c-—1 i
- <2n—1—2c> =0 ve

=S¢ 1sd =0.

0/ —c
n:1:>Sq18q1:CZO<1_2C)Sq2‘°Sq°:O
nzz;ss&sﬁzci)(l_(:)s&*sd

_ @ ;82;+ (‘D sdsd = 0.0

Lemma 4.8.Let R be an Adem relation. IR(y) = 0 for
every clasy dimension ofp, thenR(z) = O for every class
zdimension of(p—1).

Z2,9=0,1;
0, q#0,1.
Proof. Let u be the generator di14(MSGCy; Zy). Sdu =0

for everyi > 0:
o If i=1,then

Remark [10]: H**(MSG; Z,) = {

Sdt: HY4(MSG; Z,) — H24(MSG; Zs)
u— Squ=0

o If i > 1, sincedim u=1 andi > dim u we have
Sdu=0.

By Cartan formula

Sd(uz) = ;(Sd u)(sd-'2)

J=
= SduSdz+ Squsq 'z
= uSdz+0Sd 'z
= uSdz

If dimu=1 anddim z= p— 1, then

dim (u—g z) = dim(uz) = p.

ThusR(uz) =0 and
181 /py
R(uz) = SFSd(uz) + Zo (ba_°2C1> SE s (uz)
131
= usdsdz+u Zo (b;_c_ 1) Sq+P-csdfz

2c
=uR(2)
=0.

Sinceu # 0, we getR(z) = 0.0
Lemma 4.9.

(2) ’ (qil) - (S:D + (2;1) = 0(mod2)

except the casggs=q=0andp=0,q= —1.
Proof.

p—1 p-1 (p—1)! p—1)!

<Q—1)+< q >_(p—q)!(q—l)!+(p—q—1)!q!

aip—1!'+(p—a)(p—1)!
(p—9)'d!

p(p—1)!

(p—a)'q!

“ o (o)

From this equation, we have

(@65 G0)+ (62 -G+ ()= () (G0)
~(a-2) ("0 )+ (aha)+ ()
- (qil> " (qil>
:2<q£l>

=0 (mod2).

If p=q=0,then

@ " @ * (j) + <_11> — 14040+ 0=1(mod2).

If p=0,9=—1, then

(_01) + (8) + (:;) + (_01> =0+1+0+0=1(mod2).

O

Lemma 4.10.Lety be a fixed cohomology class such that
R(y) = 0 for every Adem relatiorR. ThenR(xy) = 0 for
every one-dimensional cohomology classnd evernyR.
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Proof. Let x be any one-dimensional class antias the
property thaR(y) = O for everyR.

dim x=1= Sq(xy) = i(SdX)(Sd‘jy)

=
= SPxSAy -+ Soixsg 1ty
= xSdy + xSy

By using Cartan formula again, we get the form(l& as
follows:

SESP(xy) = SF(xSdy + x2S~ y)
=Sd*(xSdy) + SF(x*SP1y)

=ki(squ>(8cf‘k8d’y>

2
+ 3 (S (S msdy)
m=0

=SPxSGSPy + SaixSdtsdy-+
SPsqsd "ty + sgxsd sty
+SPPSd2sdty

=xSdSdy + x°Sq ISPy + x°SFSP Ly
+0+x*sd2sdYy.

Similarly, we get the formuld2) as follows wheres =
S(c) = (b— c— 1>:
a—2c
S (5SS d(xy) =x 5 (9)Sd"°Sdfy
+ XZSq’Hrbfcflsd:y
+ X2 z (S)Sq’:ﬂrbfcscffly
+ X4 z (s)sq’:ﬂrbfcfZS(ffly'

The first terms match in the formulgs) and(2):

xSASPy+x Y (9)SdP Sy =x(SqSdy+
Y (5S¢ °sdy)
=XR(y); sinceR(y) =0
=0

a < 2b implies (a—2) < 2(b— 1), and hence the fourth
terms also match: sind®(y) = 0 for everyR,

wherec = ¢+ 1. SinceR(y) = 0 for everyR, by using
R(a—1,b) we can change the left-hand side watf1Sd
and hence we get

sdsdy+y (;—_2Cc_—11> S CSfy =
S (9SG ISy + 5 (s)S P,
We have three cases:

Case 1:
a=2b-2=a-2c=2b—-2-2c=2(b—-c-1).

k#0=(s) = (zkk) =0;
C#b—1= RHS=SFSP ly+ SqHiSd %

k7 1= (;— 2Cc—11> - <2kk— 1) =0
c#b—2= LHS=SqSP ly+ S sd 2y
So RHS=LHS.
Case 2:The proofis the similar foa = 2b— 1.
Case 3:f a< 2b—2, then byR(a,b—1)

b—c-2 tboc-1
2 S isdy

Sdsdy=73 (
Also
S(osdresd =y (7, sdesd

_ Z ( b—c'-2 ) SFH-T-1y

a—2c -2

b-c-1
a—2c
b—c-2
+—(a_20_2>(m0d2)D

whered =c—1.

b-c-2 n b-c-1
a—2c a—2c—1

5 Conclusion

R(a—2,b—1)=0. The aim of this paper is to study properties of Steenrod
squares on digital images. In order to do this we first
define the digital cup product by using the regularity
notion. Then we present the properties of the squarring
operations such as naturality, identity homomorphism
(Sd), Bockstein homomorphisnsSgt), Cartan formula,

and Adem relations. We hope that this work will be useful

for the researchers studying on image processing.

sd 25 ly= 3 (7, )sd sy

_ ; <b —c - 1) SGHb-¢ 25 -1y

a—2c
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