
Appl. Math. Inf. Sci. 6-3S, No. 3, 959-966 (2012) 959

Applied Mathematics & Information Sciences
An International Journal

c⃝ 2012 NSP
Natural Sciences Publishing Cor.

Basic Universal Triple I Restriction Methods for FMP
Problem
Yiming Tang1,2,3 and Yanxiang Chen1

1 AnHui Province Key Laboratory of Affective Computing & Advanced Intelligent Machine, School of Computer and Information,
Hefei University of Technology, Hefei 230009, China

2 State Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China
3 Information and Communication Engineering Postdoctoral Research Station, Hefei University of Technology, Hefei 230009, China
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1. Introduction
Currently fuzzy reasoning plays a vital role in the areas of
fuzzy control, artificial intelligence, decision making, af-
fective computing and so on [1–4]. The most basic form
of fuzzy reasoning is fuzzy modus ponens (FMP) as fol-
lowing:

FMP: for a given rule A → B and input A∗,

to compute B∗ (output),, (1)
where A,A∗ ∈ F (U), B,B∗ ∈ F (V ), and F (U), F (V )
denote the set of all fuzzy subsets of U, V , respectively.
To solve it, an excellent method is the triple I method pro-
posed by Wang in 1999 [5]. The triple I method is broadly
researched by lots of scholars [6–9], and such results il-
lustrate that it has some ideal advantages including strict
logic basis and consistency.

Song et al. [10] further established the α-triple I re-
striction method. Its solution is the largest B∗ (or small-
est A∗) such that the following formula holds for all u ∈
U, v ∈ V :
(A(u) → B(v)) → (A∗(u) → B∗(v)) ≤ α, (2)
where α ∈ (0, 1].

Later, Peng [11] proposed the basic triple I restriction
method. Its solution is the largest B∗ (or smallest A∗) mak-
ing the left-hand of (2), i.e.
(A(u) → B(v)) → (A∗(u) → B∗(v)) (3)

takes its minimum for all u ∈ U, v ∈ V . Wang et al. [12]
analyzed such two triple I restriction methods, and gave
related expressions for family of implication L − λ − G .
Then Liu, Wang [13] obtained the unified forms of α-triple
I restriction method.

Moreover, from the viewpoint of fuzzy system, we gen-
eralized the triple I method to the universal triple I method
[14,15] (which has more comprehensive advantages). Then
we further put forward the α-universal triple I restriction
method [16] derived from
(A(u) →1 B(v)) →2 (A∗(u) →2 B∗(v)) ≤ α, (4)
in which α ∈ (0, 1]. It is found that the α-universal triple
I restriction method is superior to the α-triple I restriction
method.

Similar to (4), we also need to research the restriction
method from the left-hand of (4), i.e.,
(A(u) →1 B(v)) →2 (A∗(u) →2 B∗(v)), (5)
which is called basic universal triple I restriction method.
The aim of this paper is to systematically investigate the
basic universal triple I restriction methods for FMP.

The rest of the paper is organized as follows. Section 2
is the preliminaries. In Section 3, the unified forms of basic
universal triple I restriction method are presented for FMP
problem. In Section 4, the related results of basic triple I
restriction method are achieved and improved. Section 5
summarizes this paper.
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2. Preliminaries

Definition 1.If a mapping I : [0, 1]2 → [0, 1] satisfying

I(0, 0) = I(0, 1) = I(1, 1) = 1, I(1, 0) = 0,

then it is said to be an implication on [0, 1]. I(a, b) is also
written as a → b for any a, b ∈ [0, 1].

Definition 2.An implication I is defined as a residual im-
plication if the following conditions hold:

(C1) I(a, b) is non-decreasing w.r.t. b (a, b ∈ [0, 1]).
(C2) I(a, b) is right-continuous w.r.t. b (a ∈ [0, 1] ,

b ∈ [0, 1) ).
(C3) {x ∈ [0, 1]| I(a, x) = 1} ≠ ∅ (a ∈ [0, 1] ).

Especially, if I also satisfies
(C4) a ≤ b iff I(a, b) = 1 (a, b ∈ [0, 1], and iff denotes

“if and only if”),
then I is said to be a strongly residual implication.

Definition 3.Suppose that T, I are two [0, 1]2 → [0, 1]
mappings, then (T, I) is said to be a residual pair or, T
and I are residual to each other, if the residual condition
as following holds for any a, b, c ∈ [0, 1]:

T (a, b) ≤ c iff b ≤ I(a, c).

It is easy to find that for a mapping I which has a resid-
ual pair, its residual mapping T is unique, and vice versa.

Theorem 1([14]). If a mapping I : [0, 1]2 → [0, 1] satis-
fies (C1), (C2) and (C3), and construct T : [0, 1]2 → [0, 1]
as the following:

T (a, b) = inf{x ∈ [0, 1]| b ≤ I(a, x)}, a, b ∈ [0, 1] (6)

then (T, I) is a residual pair, while the following formula
holds:

I(a, b) = sup{x ∈ [0, 1]| T (a, x) ≤ b}. (7)

By the definition of residual implication, together with
Theorem 1, we can get Theorem 2.

Theorem 2.Suppose that I is a residual implication and
that T is obtained from (6), then (T, I) is a residual pair,
and (7) holds.

Definition 4.Suppose that Z is any nonempty set, and that
F (Z) is the set of all fuzzy subsets on Z, define partial
order relation ≤F on F (Z) (by virtue of pointwise order)
as:

A(z) ≤F B(z) iff A(z0) ≤ B(z0)

for any z0 ∈ Z, in which A,B ∈ F (Z).

Lemma 1([14]). < F (Z),≤F> is a complete lattice.

3. Basic universal triple I restriction method
for FMP

Based on the idea of basic universal triple I restriction
method, we can achieve the key principle:
Basic universal triple I restriction principle for FMP:
The conclusion B∗(v) (in < F (V ),≤F> ) of FMP (1) is
the largest fuzzy set making (5) get its minimum.

Such principle obviously improves the previous basic
triple I restriction principle for FMP in [11].

Definition 5.Let A,A∗ ∈ F (U), B ∈ F (V ), if B∗ (in
< F (V ),≤F>) makes (5) get its minimum for any u ∈ U
and v ∈ V , then B∗ is called a FMP-universal triple I
restriction solution (FMP-universal solution for short).

Definition 6.Suppose that A,A∗ ∈ F (U), B ∈ F (V ),
and that nonempty set E is the set of all FMP-universal
solutions, and finally that D∗ is the supremum of E, then
D∗ is defined as a SupP-quasi-universal triple I restriction
solution (SupP-quasi-universal solution for short). And, if
D∗ is the maximum of E, then D∗ is also called a MaxP-
universal triple I restriction solution (MaxP-universal so-
lution for short).

Theorem 3.Suppose that A,A∗ ∈ F (U), B ∈ F (V ) and
that →2 satisfies (C1), then the minimum of (5) is as fol-
lows:

M(u, v) = (A(u) →1 B(v)) →2 (A∗(u) →2 0),

and there exists a unique SupP-quasi-universal solution
B∗. Furthermore, if →2 is left-continuous w.r.t. the second
variable, then B∗ is the MaxP-universal solution.

Proof.(i) Since →2 satisfies (C1), it follows that

A∗(u) →2 B∗(v) ≥ A∗(u) →2 0,

and thus

(A(u) →1 B(v)) →2 (A∗(u) →2 B∗(v))

≥ (A(u) →1 B(v)) →2 (A∗(u) →2 0)

= M(u, v) (u ∈ U, v ∈ V ).

This implies that M(u, v) is the minimum of (5). Notice
that

E = {D∗ ∈ F (V ) | (A(u) →1 B(v)) →2 (A∗(u)

→2 D∗(v)) = M(u, v), u ∈ U, v ∈ V }.

From the fact that 0 ∈ E, we know that E is not empty.
Therefore there exists the SupP-quasi-universal solution
B∗ which is unique, and B∗ = supE.

(ii) When →2 is left-continuous w.r.t. the second vari-
able, we show that B∗ ∈ E (where B∗ is obtained in (i)).
In fact, suppose on the contrary that B∗ /∈ E, then there
exist fuzzy sets D1, D2, · · · in E such that

lim
n→∞

Dn(v) = B∗(v) (v ∈ V ).
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From the fact that B∗ = supE, we get

Dn(v) ≤ B∗(v) (v ∈ V )

and hence B∗(v) is the left limit of

{Dn(v)| n = 1, 2, · · ·}(v ∈ V ).

Since D1, D2, · · · ∈ E, it follows that (n = 1, 2, · · · ;u ∈
U, v ∈ V ):

M(u, v) = (A(u) →1 B(v)) →2 (A∗(u) →2 Dn(v)).

Because →2 is left-continuous w.r.t. the second variable
and →2 satisfies (C1), we obtain (u ∈ U, v ∈ V ):

M(u, v)

= lim
n→∞

{(A(u) →1 B(v)) →2 (A∗(u) →2 Dn(v))}

= (A(u) →1 B(v)) →2 (A∗(u) →2 B∗(v)).

Thus B∗ ∈ E, which contradicts the previous suppose.
To sum up, we get B∗ ∈ E. Therefore B∗ is the maxi-

mum of E, and hence B∗ is the MaxP-universal solution.
The proof is completed.

Remark.In Definition 5, A,A∗, B should be unchangeable
and B∗ changeable, while B∗ should make (5) get its min-
imum for any u ∈ U and v ∈ V . Suppose that →2 satisfies
(C1). For (5), once there exists a FMP-universal solution
B∗, then every fuzzy set D which is less than B∗ (D ∈
F (V )), will be a FMP-universal solution. This means that
there are many different FMP-universal solutions, includ-
ing

B∗(v) ≡ 0.

This last is a special solution, for which (5) always takes its
minimum no matter what major premise A →1 B and mi-
nor premise A∗ are adopted. Therefore, when the optimal
FMP-universal solution exists, it should be the largest one;
in other words, it should be the supremum of all solutions
(i.e. the supremum of E).

Theorem 4.If →2 is a strongly residual implication satis-
fying the following condition:

(C5) I(a, b) is strictly increasing w.r.t. b if a > b
(a, b ∈ [0, 1]),

and T is the mapping residual to →2, and A,A∗ ∈ F (U),
B ∈ F (V ), then the SupP-quasi-universal solution can be
expressed as

B∗(v) = 0χE1 + χEc
1
, v ∈ V,

where

E1 = {u ∈ U | T (A∗(u), A(u) →1 B(v)) > 0}

and χE denotes the characteristic function of the set E
which is defined as

χE(u) =

{
1, u ∈ E
0, u /∈ E

,

and Ec
1 = U − E1.

Proof.Since →2 is a strongly residual implication, it fol-
lows that →2 satisfies (C1) and (C4).

(i) Suppose that

T (A∗(u), A(u) →1 B(v)) = 0,

i.e. T (A∗(u), A(u) →1 B(v)) ≤ 0. It follows from the
residual condition that

A(u) →1 B(v) ≤ A∗(u) →2 0

holds. From the fact that →2 satisfies (C1) and (C4), we
get

M(u, v) = (A(u) →1 B(v)) →2 (A∗(u) →2 0) = 1,

and

A(u) →1 B(v) ≤ A∗(u) →2 0 ≤ A∗(u) →2 B∗(v),

and hence (5) is equal to 1 = M(u, v), which is indepen-
dent of B∗, thus we should take B∗(v) = 1.

(ii) Suppose that

T (A∗(u), A(u) →1 B(v)) > 0.

It follows from the residual condition that

A(u) →1 B(v) > A∗(u) →2 0

holds (actually, if A(u) →1 B(v) ≤ A∗(u) →2 0, then

T (A∗(u), A(u) →1 B(v)) ≤ 0,

a contradiction). Thus it is not difficult to get A∗(u) > 0
and M(u, v) < 1 (noting that →2 satisfies (C4)).

We shall show that (5) is equal to M(u, v) iff B∗(v) =
0. If B∗(v) = 0, then obviously (5) is equal to M(u, v).

If (5) is equal to M(u, v), i.e.

(A(u) →1 B(v)) →2 (A∗(u) →2 B∗(v))

= M(u, v) = (A(u) →1 B(v)) →2 (A∗(u) →2 0).

Suppose, on the contrary, that B∗(v) > 0.
(a) If A∗(u) ≤ B∗(v) or

A(u) →1 B(v) ≤ A∗(u) →2 B∗(v),

then considering →2 satisfies (C4), it follows that (5) is
equal to

(A(u) →1 B(v)) →2 (A∗(u) →2 B∗(v)) = 1 > M(u, v),

a contradiction.
(b) If A∗(u) > B∗(v) and

A(u) →1 B(v) > A∗(u) →2 B∗(v),

then considering →2 satisfies (C5), we have

A∗(u) →2 B∗(v) > A∗(u) →2 0,
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and hence

(A(u) →1 B(v)) →2 (A∗(u) →2 B∗(v))

> (A(u) →1 B(v)) →2 (A∗(u) →2 0) = M(u, v),

a contradiction. Therefore we achieve B∗(v) = 0.
To sum up, B∗(v) = 0χE1 + χEc

1
(where E1 = {u ∈

U | T (A∗(u), A(u) →1 B(v)) > 0}) is the SupP-quasi-
universal solution (by Definition 6).

The proof is completed.

It is noted that in Theorem 4, B∗(v) = 0χE1 + χEc
1

(v ∈ V ) means that

B∗(v) =

{
0, u ∈ E1

1, u ∈ Ec
1
.

Theorem 5.Suppose that →2 is a strongly residual im-
plication satisfying (C5), and that A,A∗ ∈ F (U), B ∈
F (V ), then the SupP-quasi-universal solution B∗ is the
MaxP-universal solution.

Proof.From the proving process of Theorem 4, we can get
that B∗(v) = 1 is a FMP-universal solution if

T (A∗(u), A(u) →1 B(v)) = 0,

and that B∗(v) = 0 is a FMP-universal solution if

T (A∗(u), A(u) →1 B(v)) > 0.

As a result, the SupP-quasi-universal solution B∗(v) =
0χE1 + χEc

1
is a FMP-universal solution, thus B∗ is the

maximum in all FMP-universal solutions, i.e., it is the MaxP-
universal solution.

The proof is completed.

Example 1.These implications as following are strongly
residual implications satisfying (C5) where Iep, Iy−0.5 are
from [14,17], and I9 is from [18].

IL(a, b) =

{
1, a ≤ b
a ′ + b, a > b

(Lukasiewicz implication);

IG(a, b) =

{
1, a ≤ b
b, a > b

(Gödel implication);

IGo(a, b) =

{
1, a = 0
(b/a) ∧ 1, a ̸= 0

(Goguen implication);

Iep(a, b) =

{
1, a ≤ b
(2b− ab)/(a+ b− ab), a > b

;

Iy−0.5(a, b) =

{
1, a ≤ b
1− (

√
1− b−

√
1− a)2, a > b

;

I9(a, b) =

{
1, a ≤ b
1− a+ ab, a > b

(revised Reichenbach implication).
We get from Theorems 4 and 5 that if →2∈ {IL, IG, IGo,
Iep, Iy−0.5, I9} then the SupP-quasi-universal solution (al-
so the MaxP-universal solution) is

B∗(v) = 0χE1 + χEc
1
(v ∈ V ).

Moreover, we get the following results by computing: (i)
If →2∈ {IL, I9}, then

E1 = {u ∈ U | A∗(u) + (A(u) →1 B(v)) > 1}.

(ii) If →2∈ {IG, IGo, Iep}, then

E1 = {u ∈ U | A∗(u) ∧ (A(u) →1 B(v)) > 0}.

(iii) If →2∈ {Iy−0.5}, then

E1 =

{u ∈ U |
√

1−A∗(u) +
√

1− (A(u) →1 B(v)) < 1}.

We only prove the case →2∈ {IL} as an example. It is
easy to get

TL(a, b) =

{
a+ b− 1, a+ b > 1
0, a+ b ≤ 1

is the mapping residual to IL, so

E1 = {u ∈ U | T (A∗(u), A(u) →1 B(v)) > 0}
= {u ∈ U | A∗(u) + (A(u) →1 B(v)) > 1}.

Theorem 6.Suppose that →2 is a residual implication sat-
isfying the following conditions:

(C6) I(0, b) = 1, I(a, 1) = 1 (a, b ∈ [0, 1]),
(C7) I(a, b) is strictly increasing w.r.t. b if a > 0

(a, b ∈ [0, 1]),
and that A,A∗ ∈ F (U), B ∈ F (V ), then the SupP-quasi-
universal solution can be computed as

B∗(v) = 0χE2 + χEc
2
(v ∈ V )

where

E2 = {u ∈ U | A∗(u) ∧ (A(u) →1 B(v)) > 0}.

Proof.Since →2 is a residual implication, it follows that
→2 satisfies (C1).

(i) Suppose that A∗(u) = 0 or A(u) →1 B(v) = 0.
From the fact that →2 satisfies (C6), we get that

M(u, v) = (A(u) →1 B(v)) →2 (A∗(u) →2 0) = 1

and hence (5) is equal to 1 = M(u, v), which is indepen-
dent of B∗, thus we should take B∗(v) = 1.

(ii) Suppose that A∗(u) > 0 and A(u) →1 B(v) > 0.
We shall show that (5) is equal to M(u, v) iff B∗(v) = 0.

(a) If B∗(v) = 0, then it is obvious that (5) is equal to
M(u, v).

(b) If (5) is equal to M(u, v), i.e.

(A(u) →1 B(v)) →2 (A∗(u) →2 B∗(v)) = M(u, v)

= (A(u) →1 B(v)) →2 (A∗(u) →2 0).

Suppose, on the contrary, that B∗(v) > 0. Since →2

satisfies (C7), we obtain (noting that A∗(u) > 0, A(u) →1

B(v) > 0):

A∗(u) →2 B∗(v) > A∗(u) →2 0,
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and hence

(A(u) →1 B(v)) →2 (A∗(u) →2 B∗(v))

> (A(u) →1 B(v)) →2 (A∗(u) →2 0)

= M(u, v),

a contradiction. As a result, we achieve B∗(v) = 0.
it follows from Definition 6 that the conclusion is cor-

rect.
Summarizing above, B∗(v) = 0χE2 + χEc

2
(where

E2 = {u ∈ U | A∗(u) ∧ (A(u) →1 B(v)) > 0}) is the
SupP-quasi-universal solution (by Definition 6).

The proof is completed.

Similar to Theorem 5, we can prove Theorem 7.

Theorem 7.Suppose that →2 is a residual implication sat-
isfying (C6) and (C7), and that A,A∗ ∈ F (U), B ∈
F (V ), then the SupP-quasi-universal solution B∗ is the
MaxP-universal solution.

Example 2.The following two implications are all residual
implications satisfying (C6) and (C7):

IY (a, b) = ba (IY (0, 0) = 1) (Yager implication);
IR(a, b) = 1− a+ ab (Reichenbach implication).

Thus by Theorems 6 and 7, we can get that if →2∈ {IR, IY },
then the SupP-quasi-universal solution (which is also the
MaxP-universal solution) is

B∗(v) = 0χE2
+ χEc

2
(v ∈ V ).

Theorem 8.If →2 is a strongly residual implication satis-
fying the following condition:

(C8) I(a, b) = f(a) if a > b, in which f(a) is a
function which is independent of b (a, b ∈ [0, 1]),

and T is the mapping residual to →2, and A,A∗ ∈ F (U),
B ∈ F (V ), then the SupP-quasi-universal solution can be
expressed as

B∗(v) = inf
u∈E1

{A∗(u)}χE1 + χEc
1
(v ∈ V ).

Proof.Since →2 is a strongly residual implication, it fol-
lows that →2 satisfies (C1) and (C4).

(i) Suppose that

T (A∗(u), A(u) →1 B(v)) = 0,

then it is similar to Theorem 4(i) that we get that (5) is
equal to 1 = M(u, v), which is independent of B∗, thus
we should take B∗(v) = 1.

(ii) Suppose that

T (A∗(u), A(u) →1 B(v)) > 0.

By the residual condition we have

A(u) →1 B(v) > A∗(u) →2 0

holds (actually, if A(u) →1 B(v) ≤ A∗(u) →2 0, then

T (A∗(u), A(u) →1 B(v)) ≤ 0,

a contradiction). Thus it is not difficult to get A∗(u) > 0,
and

M(u, v) = (A(u) →1 B(v)) →2 (A∗(u) →2 0)

= f(A(u) →1 B(v))

< 1,

where note that →2 satisfies (C4).
We shall show that (5) is equal to M(u, v) iff B∗(v) <

A∗(u).
(a) If B∗(v) < A∗(u), then

A∗(u) →2 B∗(v) = f(A∗(u)) = A∗(u) →2 0,

thus (5) is equal to M(u, v).
(b) If (5) is equal to M(u, v), that is,

(A(u) →1 B(v)) →2 (A∗(u) →2 B∗(v)) = M(u, v).

Suppose, on the contrary, that A∗(u) ≤ B∗(v). Since →2

satisfies (C4) we have that A∗(u) →2 B∗(v) = 1, and
hence (5) is equal to 1 > M(u, v), a contradiction. Thus
we get B∗(v) < A∗(u).

To sum up,

B∗(v) = inf
u∈E1

{A∗(u)}χE1 + χEc
1

is the SupP-quasi-universal solution (by Definition 6).
The proof is completed.

Theorem 9.Suppose that →2 is a strongly residual im-
plication satisfying (C8), and that A,A∗ ∈ F (U), B ∈
F (V ), and finally that

A∗(u) > inf
u∈E1

{A∗(u)}

holds for any u ∈ E1, then the SupP-quasi-universal solu-
tion B∗ is the MaxP-universal solution.

Proof.From the proving process of Theorem 8, if

T (A∗(u), A(u) →1 B(v)) = 0,

we can get that B∗(v) = 1 is a FMP-universal solution; if

T (A∗(u), A(u) →1 B(v)) > 0,

i.e., u ∈ E1, it follows from given conditions that

B∗(v) = inf
u∈E1

{A∗(u)} < A∗(u)

holds, thus B∗ is also a FMP-universal solution.
As a result, the SupP-quasi-universal solution

B∗(v) = inf
u∈E1

{A∗(u)}χE1 + χEc
1

is a FMP-universal solution, thus B∗ is the MaxP-universal
solution.

The proof is completed.
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Example 3.The following two implications are all the strong-
ly residual implications satisfying (C8):

IGR(a, b) =

{
1, a ≤ b
0, a > b

(Gaines-Rescher implication);

I10(a, b) =

{
1, a ≤ b
a ′, a > b

(from [19]).

Thus it follows from Theorems 8 and 9 that if →2∈ {IGR,
I10} , then the SupP-quasi-universal solution is

B∗(v) = inf
u∈E1

{A∗(u)}χE1 + χEc
1
(v ∈ V ).

Moreover, if

A∗(u) > inf
u∈E1

{A∗(u)}

holds for any u ∈ E1, then B∗(v) is the MaxP-universal
solution. By computing, we get that

E1 = {u ∈ U | A∗(u) ∧ (A(u) →1 B(v)) > 0}

if →2 takes IGR, and that

E1 = {u ∈ U | A(u) →1 B(v) > (A∗(u))′}

if →2 takes I10.

4. Basic triple I restriction method for FMP

When →1=→2, the basic universal triple I restriction method
degenerates into the basic triple I restriction method. De-
note →,→1=→2. Inspecting the results mentioned above,
we can similarly get the related definitions (including FMP-
solution, SupP-quasi-solution and MaxP-solution) and fol-
lowing conclusions of the basic triple I restriction method
for FMP.

Definition 7.Let A,A∗ ∈ F (U), B ∈ F (V ), if B∗ (in
< F (V ),≤F>) makes (3) get its minimum for any u ∈ U
and v ∈ V , then B∗ is called a FMP-solution.

Definition 8.Suppose that A,A∗ ∈ F (U), B ∈ F (V ),
and that nonempty set E1 is the set of all FMP-solutions,
and finally that D∗ is the supremum of E1, then D∗ is
called a SupP-quasi-triple I restriction solution (SupP-quasi-
solution for short). And, if D∗ is the maximum of E1, then
D∗ is also called a MaxP-triple I restriction solution (MaxP-
solution for short).

Proposition 1.Suppose that A,A∗ ∈ F (U), B ∈ F (V )
and that → satisfies (C1), then the minimum of (3) is

M1(u, v) = (A(u) → B(v)) → (A∗(u) → 0),

and there exists a unique SupP-quasi-solution B∗. Fur-
thermore, if → is left-continuous w.r.t. the second variable,
then B∗ is the MaxP-solution.

Remark.In [11], the FMP-triple I restriction method was
investigated. Theorem 1.1.1 in [11] coincides with Propo-
sition 1 in this paper (noting that the MaxP-solution is
called the solution of triple I restriction method for the
FMP problem in [11]). Further, we point out by Propo-
sition 1 that if → satisfies (C1), then there exists a unique
SupP-quasi-solution. Thus Proposition 1 includes the con-
clusions of Theorem 1.1.1 in [11].

Proposition 2.Suppose that → is a strongly residual impli-
cation satisfying (C5), and that T is the mapping residual
to →, then the SupP-quasi-solution is

B∗(v) = 0χE3 + χEc
3
(v ∈ V )

where

E3 = {u ∈ U | T (A∗(u), A(u) → B(v)) > 0}.

Moreover, B∗ is also the MaxP-solution.

Proposition 3.Suppose that → is a residual implication
satisfying (C6) and (C7), then the SupP-quasi-solution is

B∗(v) = 0χE4 + χEc
4
(v ∈ V )

where

E4 = {u ∈ U | A∗(u) ∧ (A(u) → B(v)) > 0}.

Moreover, B∗ is also the MaxP-solution.

Proposition 4.Suppose that → is a strongly residual impli-
cation satisfying (C8), and that T is the mapping residual
to →, then the SupP-quasi-solution is

B∗(v) = inf
u∈E3

{A∗(u)}χE3 + χEc
3
(v ∈ V ).

Moreover, if
A∗(u) > inf

u∈E3

{A∗(u)}

holds for any u ∈ E3, then B∗ is also the MaxP-solution.

Example 4.Let →∈ {IL, IG, IGo, Iep, Iy−0.5, I9, IR, IY ,
IGR, I10} in (3), the results of FMP-solutions are as fol-
lows:

(i) Suppose →∈ {IL, IG, IGo, Iep, Iy−0.5, I9}, then the
SupP-quasi-solution (which is also the MaxP-solution) is

B∗(v) = 0χE3 + χEc
3
, v ∈ V.

Moreover, if →∈ {IL, I9}, then

E3 = {u ∈ U | A∗(u) + (A(u) → B(v)) > 1};

if →∈ {IG, IGo, Iep}, then

E3 = {u ∈ U | A∗(u) ∧ (A(u) → B(v)) > 0};

if →∈ {Iy−0.5}, then

E3 =

{u ∈ U |
√

1−A∗(u) +
√

1− (A(u) → B(v)) < 1}.
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(ii) Suppose →∈ {IR, IY }, then the SupP-quasi-solution
(which is also the MaxP-solution) is

B∗(v) = 0χE4 + χEc
4
, v ∈ V.

(iii) Suppose →∈ {IGR, I10}, then the SupP-quasi-
solution is

B∗(v) = inf
u∈E3

{A∗(u)}χE3 + χEc
3
, v ∈ V.

If →∈ {IGR}, then

E3 = {u ∈ U | A∗(u) ∧ (A(u) → B(v)) > 0};

if →∈ {I10}, then

E3 = {u ∈ U | A(u) → B(v) > (A∗(u))′}.

Further, if

A∗(u) > inf
u∈E3

{A∗(u)}

holds for any u ∈ E3, then B∗ is the MaxP-solution.

Remark.By Theorems 1.1.4 and 1.1.5 in [11], Peng pro-
vided the MaxP-solutions based on IL, IGo, IR, IY . It is
not difficult to find that these MaxP-solutions are the same
as the related conclusions of Example 4(i)(ii) in this paper.
What is more, notice that Example 4(i)(ii) can be deduced
by Propositions 2 and 3 in this paper, thus Theorems 1.1.4
and 1.1.5 in [11] are special cases of Propositions 2 and 3.

5. Conclusion

The basic universal triple I restriction method is proposed
and researched, which includes:

(i) New basic universal triple I restriction principle for
FMP is put forward, which improves the basic triple I re-
striction principle for FMP.

(ii) The existence condition of FMP-universal solution-
s, and the condition (that the SupP-quasi-universal solution
is the MaxP-universal solution) are achieved, and then the
unified forms of basic universal triple I restriction method
for FMP are established.

Moreover, the related SupP-quasi-universal solutions
(or MaxP-universal solutions) are achieved for 5 familiar
implications that →2 takes respectively.

(iii) As a particular case of basic universal triple I re-
striction method, the related conclusions of basic triple I
restriction method are achieved and improved.

How can we apply the basic universal triple I restric-
tion method to fuzzy control, artificial intelligence [20–25]
and so forth? It will be our next work.
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