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Abstract: In this paper, we deal with the oscillatory behavior of fate@cond order nonlinear functional integro-dynamic equat
of the form

(r()x*(1))” = e(t) £ pt)x/(1(t) +/Ot k(t,9)f(sx(1(s)))As,

and
ot

(r)x* (1)) =e(t) + pt)x(T(t) —/0 k(t,9)f(s,x(1(s)))As,

on time scaledl, wherer(t), p(t) ande(t) are right dense continuous (rd-continuous) functionslo®scillation behavior of these
equations dose not studied before. Our results improve stiemh@ some results established by Grace etld. We also give some
examples to illustrate our main results.
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1 Introduction The main goal of this paper is to establish some new
criteria for the oscillatory behavior of forced second arde

In recent years, there has been an increasing interest ijonlinear functional integro-dynamic equations on time
studying the oscillation and nonoscillation of dynamic scalesT of the form
equations on time scales Hilger introduced the theory of
time scale which was expected to unify continuous and t
discrete calculus. We refer the reader to the bogi@){  (T(DX*(t))* =e(t)+ p(t)xV(r(t))+/0 k(t,s)f(s,x(1(s)))4s,
papers [1-3], [5-7], and the references cited therein. (1.2)
and

Research on oscillation theory for integro-dynamic A t
equations is limited due to lack of techniques available on(r(t)X” (£))* = e(t)+ D(t)X(T(t))—/o k(t,s)f(s,x(1(s)))As.
time scales (seel] and [11-13]). 1.2)
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2 Some Preliminarieson time scales The delta derivative rules of the product and the quotiertivof
differentiable functions andg are given by
A time scal€eT is an arbltrary nonempty closed subset (F.9A(1) = FAOg) + TG 1) = TG 1)+ FA(0)g° (1)
of the real number®. On any time scalé, the forward A &
d backward t defined b fagy — 2ot -ft)g? (1) o
and backward jump operators are defined by (g) (t) — OF40) ,g9° #0.

The integration by parts formula reads

o(t) =inf{se T,s>t} and
p(t) =sup{se T,s< t}.

b b
A pointt € T is said to be left-dense ip(t) =t, é‘f(t)gﬂ(t)m:[f(t)g(t)]g—é{‘fA(t)gU(t)At
right-dense ifo(t) = t, left-scattered ifp(t) < t, and or,

right-scattered i (t) > t. The graininess functiop for a b b

time scaleT is defined byu(t) = o(t) —t. The setT* is / f(t)g* (M)At = [f(t)g(t)]‘;—é fAngnat

defined byTX = T —mif T has a left-scattered maximum
m, Otherwise TX = T.

A function f : T — R is called rd-continuous T
provided that it is continuous at right-dense pointsTof b/
and its left-sided limits exist at left-dense pointsibfThe
set of all rd-continuous functions is denoted@y(T,R).

By CL(T,R), we mean the set of functions whose delta 3 Basic Lemmas
derivative belong t&,y (T, R).
A function f : T — R is regressive provided that

1+ut)f(t)£0 forall teTk

and the infinite integral is defined by

t

f(s)as= Jim / f(s)As.
b

Lemma3.1([14]) If X and Y are nonnegative, then
XA —(1-A)YA —AxYA1<0,A <1,

and
holds. The set of all regressive and rd-continuous funstion

f: T — Ris denoted by
Z=2(T)=2%(T,R).

XA (A —1YA —AXYA1>0,) > 1,
with equality holding iff X=Y .

) . . Lemma3.2([10]) Lety, f € Cq(T,R), ze Z*(T,R), z>0and
If g€ #, then we define the exponential functieg(t,s) acR

by If

qy(t,s) = exq} &un(a(r)At)  for  steT, yt) <a +th)[f(3) Jez&y§)a]asforallte T,

then
where the cylinder funcnloﬁh(z) is defined by y(t) < aep(tto) forallt € T,
$n(2) = pLog(1+2zh). where fit) = f(t) ¢ z(s)4s.

For a functionf : T — R (the rangeR of f may be actually
replaced by any Banach space), the delta derivétivis ]
defined by 4 Main results

4 (t)= f(U(t)):tf(t) ,

a(t) In this section, we give some new oscillation criteria for

provided f is continuous at t and t is right-scattered. If t is not equations 1.1) and (1.2). We begin by introducing the class of

right-scattered, then the delta derivatifv%(t) is defined by fu.nction§IZI which will be used in the proof of the first part of
this section. Let
D = {(tss € T x T : t > s > to},
’ _fo)—ft) . f(t)—f(9) Do = {(t,s) e TxT:t>s>ty}. A function H € Cq(D,R)
() = Sl'ﬂl T t-s Sl'jtl T i_s belongs to the class, if it satiesfies the following conditions:
provided that this limit exists. (Cp)H(t,t) =0,t > tp, H(t,s) > 0 onDy,
A function f : [a,b] — R is said to be differentiable if its (Cz2)H has a non positive continuoud-partial derivative
derivative exists. The derivativd® and the shiftf° of a H%(t,s) and a non negative continuous second-order
function f are related by A-partial derivativeH2% (t,s).

£9 = f(a(t)) = F(t)+ u(t) FA(1). (CaHA(t,1) = O, lime_ses 8] = O(D).
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4.1 Oscillation criteria for Eq. {.2):

In the following, we establish oscillation criteria for E(..1)
subject to the following conditions:

(Hi)r,e,p: T — Randk: T x T — R are rd-continuousk(t,s) >
0 fort > sand there exist rd-continuous functiomsn: T —
(0,0) such that

k(t,s) <a(t)m(s) forallt > s.

(H2)yis a quotient of odd positive integers such that § < 1.

(H3)f : T xR — R is continuous and there exist rd-continuous

functionq: T — (0,) and real numbef with 0 < 3 < 1
such that

0 < xf(t,x) < q(t)[xP** forx+£0,t>0. (4.1)

(Hg)T: T — T and lim_e T(t) = oo.
In the following, we denote

At) =e(t) + (1 - B)BP/ (1=Pat) [§ gB/(B=1) (9ml/ (1-B) (59 (1-F) (9)as.

(4.2)

where g : [0,c0)r — (0,) is a given rd- continuous

function.

A solutionx(t) of (1.1) or (1.2 is said to be oscillatory
if, for everyty > 0, we have

inf x(t) < 0 < supx(t).

t>tg t>to
Otherwise, it is said to be nonoscillatory .

Theorem 4.1Assume that(t) <t, H;-H hold and there
exists a kernel function H, s) such that

(HA(t,9)r(s))% >0, (4.3)

Iir&s{ypﬁ /t: H(t,0(s)a(s) /:r(u)g(u)Au]As(<4 o:)

MSUR o gy Ly H (, 0(9))[A(S) — koa(9)]As+ [ Gt 9)As] = oo,
(4.5)

lIMinfy e ks UL H (. 0(9)IA®) — kea)]as— [TV G(t,9)As = —o,
(4.6)

where,

G(t:9) = (v~ DY/ V[(H(t,0* (9)r(0"(9)(0(9) 1Y V(H(t.o(r ()P (T )T () ),

o*(s) andt*(s) are the inverse functions of(s) and 7(s)

respectively, and ‘it) = max{+p(t),0}. Then every

solution Xt) = O(t) of Eq. (L.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution ofL(1). We
may assume that(t) > 0, x(t(t)) > 0 for allt >t; > 0.
UsingH; andHs in (1.1), we have
eft) = (r(e (©)2 7 pOXY (1))
- /0tl K(t.9)f (s X(1(s))As
> (rxA ) - p* XY (1)
- /0tl K(t.9)f (s X(1(s))as

- /tt K(t.9) (s X(1(9)))ds, @
My

wherep*(t) = max{£p(t),0}. Hence

eft) > rep )2 — p* OV (x(t)

_ am/tl m(s)|f(s X(1(9)))|As— am/t m(9)f(sX(1(3))As. “8)
0 ity ’
Setting,

ki = max{|f(t,x(t(t)))], t € [O,t1]r} <o  and

ko = —ka Jg- M(s)As,
then,
eft) > (r(tp ()2 - p* (%Y (x(1)) +kpa(t)
~alt) /t; m(s)a(s)P (1(s))as

> (8 )2 - p* X (1(1) + kpalt)

t
+al [ [9ox(r()

t
—me)a(spP ((9))as-aft) /tl g(sX((9)as @9)
Using LemmaB.1, we get

g(eX(1(9)) ~m(s)a(8)xP (1(s)) > (B — 1)BF/ AP /B-1(gm!/-F)(8)gt/ (+-F)(s).

. _ (4.10)
Now, From @.10 in (4.9), we obtain

A(t) > (r(t)x* (1) — ' ()X(1(t)) + kea(t) —al(t) I£J(‘5)><<T<S))A‘5~ (4.11)
Jtg

Multiplying (4.11) by H(t, o(s)) and integrating fron to
t1, we have
/tl H(t.o()AEAs> /t; H(L.0(9)(r (944 (9) s - /tl H(t.0(9)p" (99 (1() s

t t 'S
+ko /11 H(t,o(s))a(s)As— /‘1 [H(t, o(s))a(s) /‘1 g(u)x(t(u))Au)As. (4.12)

Using integration by parts two times, we have

tH(t,o(s))(r(s)xA(s))AAs:—H(t,tl)r(tl)xd(tl)— IHAS(t,s)r(s:)xA(s)As
Jyy !

= —H(t,t)r(t)x® (ta) + HS(t,ta)r (t)x(ta)

+ t'l(Hﬂsa,s)r(s))45x<a<s))As
1

=A(t,tg) + /tt(HAs(t,s)r(s))Asx(a(s))As, (4.13)
o

where
At,ty) = —H (t,t)r(tg)x? (tg) + HAs(t, ty)r (ty)x(ty).
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From 4.13 in (4.12, we get
/t H(t.ﬂ(s))A(s)AszA(t.tl)+/t (Hs (t,9)r(s) Asx(a(s))As
5]

/Htas

- /tl[ (t.o(s)als) [1 guX(T(u)Auas

)As+k2/ H(t,a(s))a(s)As

At + /U”(fz (HAS(t, 0% (9)r(0" (9))2Sx(9) (0" (52 As

—/T(t) H(t,o(t*(s)))p*(
Tty

thy / H(t, o(s)a(9)As— / [H(t.a(s)a(s) / g(U)X(T(W)AulAs (4.14)

™ ()X (5)(1* ()4 As

Sincert(t) <t, then

/t H(t, 0(5) A4S At ty) +/r<t) (HOs (t, 0% (9)r (0* (5)))Sx(8)(0* (9))D As
Ty a(ty)

t
[ Mot )p (o 91r* ()0 s
T(t1)

+k2/t; H(t o(9)a(9)bs— /t;[H(t.ﬂ(s))a(s) /tig(u)x(r(u))Au]As

> B(tty) +kp /t H(t, 0(s)a(9)As

t
—/tl[ (t,o(s)a(s) / g(u u))AujAs
+ /tlm (2.0 (9)r(0* ()% (0" (9)*x(9)

—H(t,0(T" (8)p" (T* (9)(7* ()XY (5))As, (4.15)

where B(t,t1) =
Alt ) + [ohy, ) (HA5(t,07(9))r (07 (5)))%sX(5) (07 (5) 2 As

1 * * (% * A
= Jeey H(E,0(T°(9))) p* (T7(8))¥ (8) (17 (8))*As.
Applying Lemma3.1, we get
(HAS (1, 0% (9)r(0* (5)))45 (0% (9) 2 X(5) —H(t, 0 (T*(9))p* (T (8))(1* () A XV (9)
> (y= )Y IV [(HA 1, 0% (9)r (0% ()4 (o ()4 Y/ (V1)
(H(t.o(T*(9))p* (T (9))(1* (8)2) 1/ (1Y)
=G(t,s)
Hence, 4.15 becomes

t T(t) 't
/ H(t, o(s)A(S)As > B(ul)+/ G(t,s)as+ kz/ H(t.o(s)a(9)as
ity .

—/t;[Htas as)/ AU]AS
tt H(t,o(s))[A(s) — koa(s)|As— | " G(t,s)As (4.16)
>B(t) - [ HLo@)as [Twgw L auas
(4.17)

Multiplying (4.16 by H=1(t,t;), using @.4), and taking
the lower limit of @.16, we get a contradiction witd(6).
This completes the proof.

Theorem 4.2Assume that(t) > t, H;-Ha hold and there
exists a kernel function H,s) such that

(HA(t,9)r(s))% >0, (4.18)
T(u)g(U)AujA < oo,

. 1 t s
Ilrtrfmupm/tl[H (t,G(S))a(S)/tl
(4.19)

I|m Sup (tlt)/rmH(t,a(r*(s)))syp*(r*(s))(r*(s))AAs<oo (4.20)

1 t t

Iir;n’lj:pm [/tl H(t, o(5))[A(s) — kza(s>]As+/r(t1) G(t, 948 =w, (4.21)

iint [/ (t, () [A(S) — kaa(s )]Asf/rttl) G(t.5)As = —», (4.22)
where,
Glt,9) = [(y— DY/ AV [(HAS (1, 0% (9)r (0% (5))48 (% (9)41Y/(V-1)
(H(t, o(t*(9))p* (% (9) (1% (9)) Y/ (1Y), a*(s) and 1 ( ) are the inverse
functions of o(s) and 1(s) respectively, and
p*(t) = max{£p(t),0}. Then every solution(k) = O(t)

of Eq. (L.1) is oscillatory.

Proof. Let x(t) be a nonoscillatory solution ofL(2).
We may assume thatt) > 0, x(t(t)) > 0 forallt > t;¢,0.
Proceeding as in the proof of Theordmito get @.19

"t 0(s)AS)BS AL ) + T‘j<HAS(t,o*(s>>r(a*<s>>>A5x<s>(a*<s>>4As
Jy Joty

T(t)
- o @)p (9 () s
+ka IH(t,cr(s))r:l(s:)As:
Jtg
- [ osas [Tguxw)adss
4 ity

sincert(t) >t, then
/t H(t.0(9)A®A5> Alt.ty) + | L3S0 () (0" (9)55x(9(0" (9)A 8
Jty Ja(ty)
t " ok Y.
*/ H(t, a(t*(9))p* (7% ()XY () (T*(5) 2 As
(tg)
’/tr(t)Hu,a(r*(s)))p*(r S (9)(T*(9)2 85
tko /;H(t.a(s))a(sms—/tl [H(t, o(s)a(s) 41 g(u)X(T(W)AulAs
Hence,

~T(t)

[ Rt oeasasz Bt~ [ HEOTE)p (TR (9)%as
1

+/I [(HA(t,07(9))r (07 (9)))*x(s)(0"(5))*
T(ty)

—H(t.o(T(9)p'(T7(8)X(5)(T°(s)*]As

+kz/tIH(t,o(s))a(s)As—/tI[H(t,o / g(uX(t(u)Aulds,

where,
B(t,tl) =

Alt, t1)+f (HAS( 0*(9))r(0%(s)))*x(s)(0*(s))*As.
Therefore,

tt H(t,o(s))[A(s) — koa(s)|As— t(t )G(t s)As> Bt,t;)
- [Heospas [ rwew T auas

/ H(t,o(t"(s))s'p (T*(S))(iss))y( (s))*4s,

Multiplying (4.23 by H1(t,t;), using é.19, (4.20 and
taking the lower limit of 4.23, we get a contradiction
with(4.22. This completes the proof.
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Example41Consider the integro-differential equation (Ms3)7:T — T with 7(t) <t and lim_« T(t) = co.

(T=R) In the following, we denote
. t E(S) A/(L1-A) t /(A-1) 1/(1-1) 1/(1-2)
¥ (t =t3:|:t2 txY(t / X A t>0 hy (t) =e(t) £ (A —1)A" b(t) [ V! (s)n™ (syu (s)4s,
® Sintx’(t) + 0o (t*+1)(s8+1) 5 =7 /O (4.26)
(4.24)  wherev € Cq(T, (0,)).
where 0 <y, B < 3% Here, , . Now, we give sufficient conditions under which a
rt) =1, et) =t°, plt) =t°sint, k(t,S) = @og@rm»  nonoscillatory solutions(t) of (1.2 satisfying
at) = & ms) = 3, f(x) =xF, 1(t) =t. To apply X1)=0(1) t—w.
Theorem 4.1, let g(t) = m(t) and H(t,s) =t —s.
Therefore Theorem 4.3Let A > 1, M1 — M3 hold for all ty > 0 such
that
H'(t,s)r(s)) =0, o
(H(t.9)r(s) / L pscw (4.27)
and to (S
t S t S 1 00 1 S
A H(t,s)a(s)[/tl rug(u)duds= [ H(t,s)a(s)[/tl —duds /to g . bOIagIas <, (4.28)
t -1.1 1
= H(t7s)a(s)[€[§ - t*5]d5 © 1 r1(s .
: P [l e @) @) agas <. (429)
B N U S to T(S) i)
6 Jy SR If,
H , . t S
ence limsup i[ hy(&)A¢]As<
t s tooe Jig 1(S) Ui
limsu /Ht,sas / T(u)g(u)duds< oo, t s
Lo PHE) (492l t (Waldy liminf i[ h_(§)A&)As> —o, (4.30)
oo Jiy 1(S) i
T(t) _
Jy " Glt,$)ds=0, then every nonoscillatory solutioriby of (1.2) satisfies
and
. limsupx(t) < co. (4.31)
H(t,5)[A(S) — koa(s)lds e
tl . Proof. Let x(t) be a nonoscillatory solution ofL(2). We
= [ (t—9[s— }(1_5)8/(1—8)[% _ 7i] _ kzi]ds may assume that(t) > 0, x(7(t)) > 0 for all't > t;, for
t 7 S t{st st somet; > 0. UsingM; andM; in (1.2), we have
— 00 ast— . A
(r(t)x*(1))* = et) + pt)x(z(t))
Therefore, Eq.4.24) is oscillatory. t
a-4.29 Y — [ kit,9)f(s x(1(s)))As
0
t
4.2 Oscillation criteria for Eq. 1.2): ks k(t,s)f(sx(1(s)))As
1
Here, we establish oscillation criteria for E4.2) subject <e(t) + pt)x(t(t)) — b(t)Cl/o n(s)As
to the following conditions: t
, bt / (U)X (1(s))As
(Mp)r,e,p: T — R andk: T x T — R are rd-continuous, t
r(t) > 0, k(t,s) > 0 for t > s and there exist < e(t) + p (t)x(T(t)) + cab(t)

rd-continuous functionb,n: T — (0, ) such that
k(t,s) > b(t)n(s) forallt > s. t

(Mo)f : T xR — R is continuous and there exist where
rd-continuous functionu : T — (0,0) and a real

number with A > 1 such that ¢p = min{f(t,x(1(t))) :t € [0,ts]7} <0,

(5]
XF(t,%) > ut) XML forx£0,t >0, (4.25) Co = ‘Cl/o n(s)As > 0 andp’(t) = max{0, p(t)}
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Hence,

(r(t)x2(1)2 < e(t)+ p*(t)x(T(t)) + cab(t)

“b(t) / “n(9u(s)X (1(9))As

t

< e(t)+ plet)x(T(t)) + cob(t)
+b(t) / t M(9X(T(5)) — n(s)u(s)X* (1(9))]4s,

t

Applying Lemma3.1 to v(s)x(1(s)) — n(s)u(s)x (1(s))
with
X=(nuix, and Y= (le(nu)‘%)A—l,
we obtain
V(9X(1(s) — n(s)u(s)x* (1(s)) <
(A — 1),\A/(1—A)\/\/(A—1)(5)n1/(1—/\)(S)ul/(l—/\)(s)_

Therefore,
(r)x2 ()2 < hy(t)+ p*()X(T(t)) + cabo(t).

Integrating ¢.34) fromt; tot, we have

I’(t)XA(t) < I’(tl)XA (t1) + /t hi(s)As

+ / P (
Therefore,

rit)x®(ty) 1t
W (t) < WJFE/H h, (5)4s

it it
+%/ﬁ p*(s)x(r(s))As+3/ b(s)As

r(t) t
(t)x® () 1
,T-i-m/tlm(sms

(4.34)

As+c2/b As. (4.35)

7(t)
+%/r(t1t) T ()X AAS+ /b sAs.
(4.36)
Integrating front; tot, we get
t As
X(t) < X(ty) +1(t2)X" (t) /tl e
t s g .
+ [r(s) , h+(E)AE]As+Cz/tl[@ 3 b(£)AE|As
/tl /tl X(&)(T"(£))2A¢]As
(4.37)
Hence,
* A
+/tl /tl (&)(1°(£))2A¢)As
(4.38)

whereK is an upper bound for the expression

X(t) + 1 (t)X4 (1) jfl 25 4 fo ks fen (§)agas+
C2 Jy [t Jis B(E )AE]As,
fort > t1. Applying Lemma3.2to inequality .38 and
then using condition4.29, we get

limsupx(t) < oo,
t—o0

(4.39)

If X(t) is eventually negative, we can set —x. Hencey

satisfies Eq.1.2) with e(t) replaced by—e(t) and f(t,x)

by —f(t,—y). In a similar way, we get
limsup(—x(t)) < co.

t—o0

From @.39 and @.40, we conclude that4.31) holds.

Theorem 4.4LetA > 1, My —Ms3, (4.27), (4.28), (4.29 and
(4.30 hold. If

(4.40)

t 1 S
limsu ——[ ] h_(§)Aé]As= oo,
too P to F(S)[ to (£)Ag] ®
limin t 1
imin —
= Jig r(s)[ to

hy (£)A&]As= —o,

for all to > 0, then every solution ofl(2) is oscillatory.

Proof. Assume that X.2) is nonoscillatory on[tg, o).
Then there is a solutioxof (1.2) and a point; € [tg, )T
such thai(t) andx(z(t)) are of the same sign dfy, ).
Consider the casgt) andx(z(t)) are positive orjty, o).
The proof whenx is eventually negative is similar.
Proceeding as in the proof of Theordn3, we get

X(t) < X(t1) 4+ (t)¥ (t1) / ' 4s

tl@
t s

Ty h+<£>AEAs+cZ/t[i [oeagias

r(s) ty ty r(s) ty

/ﬁ /tl X(&)(T"(£))2A¢]As

Clearly, the conclusion of Theoref3holds. Hence, the

second and the last two integrals in the above inequality

are bounded. Finally, taking liminf as— o« and using
(??), we get a contradiction with the fact thatt) is
eventually positive. This contradiction completes the
proof.

Theorem 4.5LetA =1, M; — Mg, (4.27), (4.28, and @.29
hold. If

fo 5

(T"(8))A A€ Ag|As < o, (@.42)

and,
t

. 1 s
imsup [ 5 /t e(§)AE]As= o,
liminf ti[/se(f)Af]As:—oo,

= Jig 1(S) i

for all tg > 0, then every solution ofl(2) is oscillatory.
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