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Abstract: In the paper, we introduce the concept of operatepreinvex function, establish some new Hermite-Hadamsgpe t
inequalities for operatom-preinvex functions, and provide the estimates of bothssafeHermite-Hadamard type inequality in which
some operaton-preinvex functions of positive selfadjoint operators iifbidrt spaces are involved.
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1 Introduction and we call it the continuous functional calculus for a
bounded self-adjoint operatée
Throughout this paper, I& = (—w, o) andRg = [0, ). If Ais a bounded self-adjoint operator ahds a real-

valued continuous function o8 A), then f(t) > O for

First we review the operator order B(H) which is
P B(H) @nyt € SpA) implies thatf (A) > 0, i.e. f(A) is a positive

the set of all bounded linear operators on a Hilbert spac )
(H;(.,.)), and the continuous functional calculus for a OPerator orH. Moreover, if bothf andg are real-valued

bounded self-adjoint operator. For self-adjoint opeator functions orS(A) such thatf (t) < g(t) foranyt € Sp(A),

A.B e B(H), we writeA < Biif (Ax,x) < (Bxx) for every  thenf(A) <g(A) in the operator order iB(H).

vectorx € H, we call it the operator order. A rgal valued continuous functiohon an interval =
Let A be a bounded self-adjoint linear operator on alX IS Said to be operator convex (operator concave) if

complex Hilbert space(H;{(.,.)). The Gelfand map f((L-A)A+AB) < (>)(1—-A)f(A)+AT(B)

establishes a-isometrically isomorphisn® between the .

setC(SpA)) of all continuous complex-valued functions N the operator order iB(H), for all A < [0,1] and for

defined on the spectrum o, denotedSp(A), and the ~©very bounded self-adjoint operatohsand B in B(H)

C*-algebra C*(A) generated byA and the identity —WhOse spectra are containedin

operator 44 on H as follows (see for instance2]| p.3). For some fundamental results on operator convex

For anyf,g € C(S(A)) and anya, 8 € C, we have (operator concave) and operator monotone functions, see

[2], [5], [6] and the references therein.
(i) @(af+pg)=ad(f)+pd(Q); In [3], Ghazanfari et al. gave the concept of operator
. N . preinvex function and obtained Hermite-Hadamard type
(i) @(fg) =@(f)@(g) and &(f")=(f)"; inequality for operator preinvex function.

(i) ||@(f) ||=|| f|l:== sup | f(t)]; Definition 1.1[[3]] Let X be a real vector space, a St
teSpA) . . h .
) X is said to be invex with respect to the m@pSx S— X,
(iv) @(fo)=14 and @(f;)=A, where if for everyx,y € Sandt € [0,1],
fo(t)=1 and fi(t)=t for teSpA). X+tn(xy) €S o)
With this notation, we define It is obvious that every convex set is invex with respect

to the mam (x,y) = x—y, but there exist invex sets which
f(A):=@(f) forall feC(SpA)) (1)  are not convex (sed]).
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LetSC X be an invex set with respecttp: Sx S— X.
For everyx,y € S, the n-pathP,y, joining the pointsx and
v:=X+n(y,X) is defined as follows

Rw:={z:z=x+tn(y,x),t € [0,1]}.
The mapping) is said to be satisfies the conditiod) if
for everyx,y € Sandt € [0,1],
ny:y+tn(xy)) =-tn(xy),
U(XaY‘f’m(Xa)’)):(1_t)’7(xa)’) (C)

Note that for every,y € Sand eveny;,t; € [0, 1] from
condition(C) we have

ny+tnxy).y+tnxy) =t—t)nxy), @)

see f], [7] for details.
Let A be aC*-algebra, denote b&s, the set of all self-
adjoint elements i\

Definition 1.2[[3]] Let SC B(H)sa be an invex set with
respect ton : Sx S — B(H)sa. Then, the continuous
function f : R — R is said to be operator preinvex with

respect taj on S if for everyA B € Sandt € [0, 1],
f(A+tn(B,A)) < (1-t)f(A)+tf(B) 4)

in the operator order iB(H).

Every operator convex function is operator preinvex
with respect to the map (A, B) = A— B, but the converse

does not holds (se€e3]).

Theorem 1.1[[3]] Let SC B(H)sa be an invex set with

respect ta] : Sx S— B(H )sa andn satisfy condition(C).
If for every A,B € SandV = A+ n(B,A) the functionf :
I CR — R is operator preinvex with respect tpon n-
pathPa, with spectra ofA and spectra of in the interval
|. Then we have the inequality

1
f(%) g/o F(A+tn(BA))ck < M;(B).

(®)

It is obvious that every operator 1-preinvex function
is operator preinvex, and every operatopreinvex with
respect to the map (A,B) = A— B is operatora-convex
function, that is,

Definition 2.2. Let | be an interval inRg. Then, the
continuous functionf : I — R is said to be operator
a-convex onl for operators irB(H)Z, if

f(tA+ (1—1)B) <t9F(A) +(1-t9)F(B)  (7)

in the operator order iB(H), for all t € [0,1] and every
positive operator# and B in B(H)J, whose spectra are
contained irl and for some fixedr € [0,1].

Lemma 2.1.Let SC B(H)Z, be an invex set with respect
ton:SxS—BH)L and f: 1 CRy — R be a
continuous function on the intervdl Suppose than
satisfies conditioiC) on S. Then for everyA,B € Sand

V = A+ n(B,A) and for some fixeda € [0,1], the

function f is operatora-preinvex with respect t@ on
n-pathPay with spectra ofA andV in the intervall if and
only if the functiongy ag : [0,1] — R defined by

$xaB(t) := (F(A+tn(B,A))x %) (8)

is a-convex on0, 1] for everyx € H.

Proof. Suppose thak € H and ¢xag : [0,1] = R is a-
convex on[0, 1] for some fixeda € [0,1]. For everyCy :=
A+11n(B,A) € Pay, Co :=A+1n(B,A) € Py, fix A €
[0,1], by (8) we have

(F(C1+ AN (Co,C1))x,%)
= (f(A+ (1= A)ta+At2)n(B,A))x,X)
= ¢xaB((1-2A)t1+Atp)
<(1-2%)dxas(t1) +A%PxaB(t2)
= (L= AN (F(C)x,X) + A% (f(C2)x,X). (9)

Motivated by the above results we investigate in this Hence, f is operatora-preinvex with respect tg on n-
paper the operator version of the Hermite-HadamardPathPay.

inequality for operatour-preinvex functions.

2 Operator a-preinvex functions

In order to verify our main results, the following definition

and lemmas are necessatry.

Definition 2.1. Let | be an interval ifRg andSC B(H)d,
be an invex set with respect tp: Sx S— B(H)Z,. Then,

the continuous functiorf : | — R is said to be operator

a-preinvex with respect tg on| for operators ir§, if

f(A+tn(B,A)) < (1—t%)f(A)+t?f(B) (6)

in the operator order iB(H), for all t € [0,1] and every

Conversely, leA\,B € Sand f be operatoo-preinvex
with respect ta] on n-pathPay for some fixeda € [0, 1].
Suppose thath,t; € [0,1]. Then for everyA € [0,1] and
x € H, we have

¢xaB((1—A)t1+Atp)
={f(A+((1-=A)t1+At2)n(B,A))X,X)
= (f(A+tn(B,A)+An(A+t2n(B,A),
A+t1n(B,A)))X,X)
< (L-AN(f(A+t1n(B,A))x,X)
+AY{f(A+t2n(B,A))X,X)

=(1-2%¢xap(t1) + AP aB(t2). (10)

positive operatord andB in Swhose spectra are contained Therefore, ¢, apg is a-convex on[0,1]. The proof of

in I and for some fixedr € [0, 1].

Lemma 2 is complete.
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3 Hermite-Hadamard type inequalities for
the operator a-preinvex functions

The following theorem is the generalization of Hermite-
Hadamard'’s inequality for operatar-preinvex functions.
Theorem 3.1.Let SC B(H)¢, be an invex set with respect
ton :Sx S— B(H)Z, andn satisfy condition(C) on S.

If for every A B € SandV = A+ n(B,A) and for some
fixed o € [0,1], the continuous functiori : | C Rg — R

is operatora-preinvex with respect t@ on n-path Pay
with spectra oA andV in the intervall. Then we have the
inequality

f<A+V> /fA+tn(BA))dt w.

(11)
Proof. Forx € H andt € [0,1], we have

((A+tn(B,A))x,x) = (AX,X) +t(n(B,A)x,x) € I, (12)

since(Ax,x) € SHA) Cland(Vx,x) € SpV) C .
Continuity of f and (2 imply that the operator
valued integral[y f (A+tn(B,A))dt exists.

Sincen satisfies conditior(C) and f is a-preinvex
with respect tay, for everyt € [0, 1], we have

f(A+%n(B,A))
_f (A+tn(B7A)+ :—ZLn(A+(1—t)r)(B7A)7A+tn(B7A)))
(1— 2%) (A+tn(B.A) + Ziaf(A+(1—
{ o <1—t>“]}f<A>
+ {t“ - 2% t9 — (1—t)”]}f(B).

Integrating the inequality 1Q3) overt € [0, 1] and taking
into account that

tn(B,A))

1
a
1-t7+ 5

13)

1 1
| tartn@ad = [1ara-onEad,
0 0

(14)
we obtain the inequality 1(1), which complete the proof
of Theorem3.

Remark 3.1.1.Choosinga = 1, we obtain Theorenti.

For some fixedry, az € [0,1], let f : 1 CRp— R be an
operatorr;-preinvex function and : | — R be an operator
a»-preinvex function on the interval Then for all positive
operatorsA andB on a Hilbert spacéd with spectra inl
and for anyx € H, we define real functionsl(A,B) and
N(A,B) onH by

Theorem 3.2.Let SC B(H)Z, be an invex set with respect
ton : Sx S— B(H)J, andn satisfy condition(C) on S If
for every A\B € SandV = A+ n(B,A) and for some
fixed ai1,02 € [0,1], the continuous function
f 11 C Ro — R is an operatonr;-preinvex function and
g: 1 — R is an operatoras-preinvex function on the
intervall with respect ta) on n-pathPa, with spectra of
AandV in the intervall. Then we have the inequality

/Ol<f(A+tn(B,A))x,x><g(A+tn(B,A))x,x>dt
aiaz; —1
~ (o1 +1)(a2+1)

{(F(A)%.%)(9(B)x, %)

(F(AXX) (9(A)X,%)

_|_

a+1
1

+ a;+1

1

_’_7
ar+ax+1

{(F(B)x.x)(9(A)%,%)

[M(A,B)(x) — N(A,B)(x)] (16)

holds for anyx € H, where M(A,B) and N(A,B) are
definedin (5).

Proof. Forx € H andt € [0, 1], we have

((A+tn(B,A)x,xX) = (Ax,X) +t(n(B,A)x,X) € I,

since(Ax,x) € SHA) C I and(Vx,x) € SpV) C .

From the continuity off, g, it shows that the operator
valued integraly f (A+tn(B,A))dt, [3g(A+tn(B,A))dt,
and [3(fg)(A+tn(B,A))dt exist.

Sincef : | — R is operatora;-preinvex andg : | —
R is operatora,-preinvex for some fixedr, az € [0, 1],
therefore for every € [0, 1] we drive

(f(A-+17 (B,A)X,X) (g(A+tn (B,A)x,X)
< (1-19)(1— 1) (F (A X) (A X)
+ (1t (F (A ) (9(B))x,X
(L —192) (£ (B)x, ) (G(AX,X)
L2 (B)x, X) (g(B))X,X).

X
X
17)
Integrating both sides of1{) overt € [0, 1], we obtain

the required inequality 16). The proof of Theorem3 is
complete.

Corollary 3.2.1. Under the assumptions of Theoré&nif
a1 = ao = a, then

/01<f(A+tr] (B, A))x, X) (G(A+tn (B, A))x,X)ct

M(A,B)(X) = (f(A)XX)(g(A)X,X) + (f(B)X,X)(g(B)X,X), < g—:<f(A)x,X><g(A)x X+ o i MABI(X)
N(A,B)(X) = (f(A)x.x)(a(B)X.X) + (f(B)X,X) (g(A)X,X). a
(15) i (a+1)(20+1)N( B)()- (18)
(@© 2017 NSP
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Specially, ifa; = a; = 1, then

/Ol<f(A+tn(B,A))x,x><g(A+tn(B,A))x,x>dt

_ 2M(AB)(X +N(AB)(X
< 5 .

(19)

Corollary 3.2.2. With the conditions of Theoren3, if
n(B,A) =B—A, then

/Ol<f(t5+ (1-1)A)X,X) (g(tB+ (1 - )A)x,x)ck
ajop—1
T (a1 (az+ 1)
1
a1 TAX X (aBxX
1
* ap+1
1

+7
o +o+1

(F (A% x) (g(A)x, %)

+

(f(B)x.x)(9(A)x.%)

[M(A,B)(x) — N(A,B)(x)]. (20)

Theorem 3.3.Let SC B(H){, be an invex set with respect
ton : Sx S— B(H)g, andn satisfy conditionC) on S If
for every A\B € SandV = A+ n(B,A) and for some
fixed ai,a2 € [0,1], the continuous function
f: 1 CRg— R is an operatorr;-preinvex function and
g: | — R is an operatora,-preinvex function on the
intervall with respect taq on n-pathPu, with spectra of
AandV in the intervall. Then we have the inequality

2(I(1+(I(2

(200 —1)(2%2— 1)+ 1

(5 o5 )

< [[{tat .m0 oA+ tn(B.A) X

+ (201 — 1(;;2_‘721_ 1) 4 1<f(A)X7 X> <g(B)X7 X>

+ a1 g B0 e

(21)

holds for anyx € H.

Proof. Sincef : | — R is operatoi;-preinvex andy: | —
R be operatom,-preinvex for some fixed, a» € [0,1],

therefore for every € [0, 1] we have
f AtV X, X AtV X, X
2 Y g 2 Y

= <f <A+tn(B,A)+%n(A+ (1-t)n(B,A),

A+tn(B,A))>x,x>
X <g<A+tn(B,A) + %n(A+ (1-t)n(B,A),
A+tn(B,A))>x,x>

<K1—2%) f(A+tn(B,A))
+ﬁf(A+( )n(B,A)): X,X>

X <K1— 2%)g(AHn(B,A}

—t)n(B,A)) x,x>

~—

_2_§2><f<A+m<B,A>>x,x>

A))XX)

-t)n(B,A)x.x)
t)n(B,A))x, x)

20{ 1+az (f(A
x (g(A+(1-

(22)

By integrating ovet < [0, 1] and taking into account that

/Ol<f(A+tr7 (B, A))xX) (g(A+n (B, A))x,)ct

:/01<f(A+(1—t)n(B,A))x,x>
X (g(A+ (1-t)n(B,A))x,x)dt,

we obtain the required inequality21). Thus Theorem3
is thus proved.

Corollary 3.3.1. Under the assumptions of Theoré&nif
a1 = ap = a, then

(5 (o))
g/01<f(A+tn(B,A))x,x><g(A+m(B,A))x,x>dt

4 a—-1
(20 —1)2+1

(27

N(A,B)(x). (23)
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