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Abstract: This paper studies the fractional order model of a planbikiere. For this model, the stability of three fixed pointe ar
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1 Introduction

During the past decades, several mathematical models leaveilivestigated to model plant-herbivore interactidn®, [
3,4,5,6,7,8]. These models are based on prey-predator system. The stad@ing of the relationships between
herbivores and plants are extremely important for land meameent. Fractional differential equations has been ameacti
field of research currently due to their applications in margas of life §,10,11,12,13 14,15]. In the present paper, we
consider fractional order to model plant-herbivore intdicms. The paper is organized in the following manner. i8act

2 introduces a plant-herbivore model with fractional or@erd discusses the boundeness of the solutions of the
plant-herbivore fractional order model. Sections 3 disdhg stability of the equilibrium points of the model. Sent#
simulates the dynamics of the system of plant-herbivoretifsaal order model using generalized predictor corrector
algorithm. Section 5 summarizes the results obtained saper.

2 Model Formulation

The plant-herbivore model can be written as follods]{

dx B2y

m_x(q_x)_l+xz7 (1)
dy _ By
dt 7 14x2 Wa

wherea, B, 81 andy are real positive constants. Recently, mathematical nsoti¢h fractional order are become suitable
than models with integer order as fractional order moddtsvaimore degrees of freedom and due to the existence of
memory effects, se®[10]. The plant-herbivore interactions are described by tlHieviang system of nonlinear fractional
ordinary differential equations:

DIx = x(q—x) — 2%

1+x2° 2)
2
Diy= —zﬁfxy — W,

whereD{ is the Caputo fractional derivative.
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Lemma 1.The solutions of the plant-herbivore model are uniformlyded .

Let (x(t),y(t)) be the solution of the plant-herbivore fractional order &ld@). Since

BXy
Dfx=X(q-%) ~ 1= ®)
S X(q—X),
then
x < gfort — oo, 4)
Let
. B
W = X+ =Y (5)
1
then
Df’W:Dt"><+EDf’y=><(t4—><)—&/yzx(q—xwvx—v(><+E ) (6)
B B B
Now, the maximum value of(q—X) is %2 since 0< x < g, then
QR
D{’WquJrZ—V\N:L—V\N (7)
wherelL = yq+ %2. By Lemma 9 16 , we have
0<W(xy) <W(x(0),¥(0)Eq (—19) + Lt"Eq,a+1 (— 1) =W, 8)

where E; and Eq o1 are the one-parameter and two-parameter Mittag-Lefflectian respectively. Then the
solutions of the plant-herbivore fractional order modgiw&h non negative initial conditions in the regid@p, s.t

Q={(X,Y,Z) eEW:0<W <W,} 9)

remain in the regio2 . Thus, the regiom is positively invariant with respect to the of the plantdigore fractional
order model (2)l
In the next section, we will study the dynamical analysishef fractional order plant-herbivore model (2).

3 Stability of Equilibrium Points and Hopf Bifurcation

Leta € (0,1] and consider the following fractional order commensurgteadhical system:
DIx = fi (x1,%2), i=12 (10)

Let E = (x;,%5) be an equilibrium point for the fractional order system (%04 x = X" + ni, wheren; is a small
disturbance from the equilibrium point. This implies that

D' ni = D' ()
= i (xq+ N1, %+ n2)

_ . 9fi(E) dfi(E)
~Mn Xm 2 (9X2 '

The system (11) can be written as:
Df'n =Jn, (12)

wheren = (n1,n2)" andJ is the variational matrix evaluated at the pdiht= (X3, %5). Following Matignon’s theorems
[17], the fractional order linear system (12) is asymptoticathble if for all eigenvalues of the Jacobian mattiat the
fixed points, the conditiofarg(A)| > % is satisfied.
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Theorem 1.[18,19,20] Consider the following commensurate nonlinear fractibo@er system:

Dfx = g(x), X(0) = Xo, ae€(0,1). (13)
an equilibrium point of system (13) is locally asymptotigatable if all the eigenvalues of the Jacobian matrix $gatis
larg(A)| > .

If @ (x) =x2+ ayx+ay, then the discriminar®(®) of a polynomiald is given by

la a
2a; 0
02y

The generalized Routh-Hurwitz stability conditions aneegi by the following propositiord[8, 19, 20].
Proposition

One assumes th& exists inRZ .
1. 1f D(®) > 0, a; > 0 anday > 0, then the equilibrium point is locally asymptotically Iske.
2.1fD(®) < 0and

In the following we evaluate the equilibrium points. Let

D(®) =— = af — 4ay. (14)

/ _ 2
tan~t ( V2273 ‘ > 4%, a € [0,1) then the equilibrium point is locally asymptotically stabl

a1

Dfx=0, Dfy=0.

Then we obtain:
1. The first trivial equilibrium point i€€g = (0,0) .The pointEg always exists.
The Jacobian matri¥, for the plant-herbivore fractional order model (2) evatubat the equilibrium poir, is:

_(ao0
Jo= (0 _y) |
Theorem 2.The trivial equilibrium point i of system (2) is a saddle point.

The trivial equilibrium pointEy is locally asymptotically stable if all the eigenvalugg, i = 1,2 of Jp satisfy
Matignon'’s conditions. The eigenvalues correspondingéoetquilibriumEg areAg1 = qandAg, = —vV.

Then we havelp; > 0 andAg2 < 0 . It follows that the node equilibrium point of system (2) isaddle point, non-
empty stable manifolds and an unstable manifilld.

2. The second free herbivore fixed poinis = (x1,y1) = (g,0) when the herbivore is absent in the plant, in this case
(y = 0), therefore the plant is fully susceptible. The pdintalways exists.

Theorem 3.For the fractional order plant-herbivore model (2), the Bageproduction number is

2
Ry = Biq .
y(1+a?)
Rewrite the equations by which classes of the herbivore latipay first and then the plant populaticnsecondly, we
have

By
a — —
DI y= 1—|—X2 122 (15)
Bx%y
a fr— — —
D{x = x(q—X) T
one can write the system (14) in the form

doXx

o = (X = vIX),
where )

Bixy

_ f1 I Vi %%
fX)= [fz} N [—E;(zy]  VX) = [vz] n [—x(q—x) '
1+x2
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Next, we define the matricés(X) andV(x), such that

ofy ofy vy 0vi
F(X) = [fé VOO = | g %] !
ox oy ox o9y
then ~
2P xy Mz
- (1+X2)2 1+x: _ 0 y
F(X)= —2Bxy —Bx? V(X)) = —gq+2x0|’

(1+X2)2 142

at the free herbivore poirfif; = (qg,0), we have

Using the equatiof -V~1 — A1 | =0, one obtain

B

e R T
_qu _)\ 1)
y(1+?)

2
thenAy = % A =0.

Therefore, the spectral radiusggF - V1) = max(A;), i = 1,2. ThenRy = Pr?

v(1+e?)’
. L .. I . a—x3) (143

3. By (2), The third point is a positive equilibrium poiBt, = (X,,y.) = < /Fy—v’ %’52))

Remark 1.

1) The free plant whose population density is denoted lfy = 0 andy = +ve), does not exist, because herbivore
depends on the existence of the plant, 30 0 then it should be thakx,= 0 is the free equilibrium poirEy again.

2) E; must be have non negative component, then we have the am@it> y andx, < /g for E,.

The variational matrixJ; for the plant-herbivore fractional order system given ing2aluated at the free herbivore

equilibrium pointE; is given by:
g B2
J1= 1+g2 .
0 y(Ro—1)

Theorem 4.The free herbivore equilibrium point;Es a saddle unstable point.

The Jacobian matri%; has the following eigenvalueg1 = —gq andAi2 = y(Ry— 1) > 0. Hence, the free herbivore
equilibrium pointE; is not locally asymptotically stabl.In the next section, we will discuss the asymptotic stabdit
the positive equilibrium poinE, of the plant herbivore fractional order model (2). The Ja@olmatrixJ, of the positive
equilibrium pointE, = (x,,y;) is given as:

2Bxpyp  —Px:
A-2¢= (67 Td
b= 2P1%2Y> 0
2\2
(1+x3)
The characteristic equation df is
A2 —Tr(J)A +detd) =0, (16)

where

2
Tr(‘JZ) =(q- 2X2_ ﬂﬂZz and det\]z) = %Xzy; > 0.
(1+3) (1+x3)

The characteristic equatiofi§) have the rootd,;, A2 = 3 [Tr(Jz) + \/TrZ(Jz) —4detdy) | .
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Theorem 5.The equilibrium point E of the plant herbivore fractional order system (2) is logadsymptotically stable if

the following conditions are satisfied:
) a< 5%
ii) 2y > By and

iii) Tr(J) < 2,/det(Jz) cog &F).

Itis clear that T¢J) < 0 if and only ifg <
the three conditions holdl

¥
2y-p1

implies that 3 > B1, then|arg(Azj)| > %47 , j = 1,2, if and only if

Theorem 6.For the plant herbivore fractional order model (2), the fmMling statements can be obtained.
(@lIfg< 2??23’1, then for0 < a < 1, the equilibrium point & is locally asymptotically stable,
(b) 2y > B,
(c) If 0 < Tr(J) < 2y/det(Jp), then for anya € (0,a*), the equilibrium point & is locally asymptotically stable,

—1 Tr(%)
cos ? (7 )

(d) If Tr(J2) > 24/detJ2), the equilibrium & is unstable for anyr € (0,1).

wherea* = 2 and

The conclusions (a), (b) and (d) are obvious. For the statéfog due to 0< Tr(J;) < 2,/detJ,), the equation16)

has two complex roota,1, A2», and their real part i@ > 0. Then|arg(A;j)| = cos™? (%) j =1,2. Besides,

according to the condition cos (2 Tgif(;)) = &7 a € (0,a%) ifand only if |argiAy))| > 4, j = 1,2[18,19,20,2,4,
21], itis concluded that Theorem 3.6 is trull

According to the statement of Theorem 4 and Theorem 5, it eacobcluded that the positive equilibrium is locally
asymptotically stable if and only tf € (0,a*). At a = a* the Hopf bifurcation is expected to take place. As increases
above the critical value™ the positive equilibrium is unstable and a limit cycle is egfed to appear in the proximity of
E, due to the Hopf bifurcation phenomenon.

4 Numerical Methods and Simulations

We applying the generalized predictor corrector algoritbrfind the numerical solution of the plant herbivore frantb
order model (2). By setting = % ,‘tm=mhm=0,1,2,,....M € Z", then Eq. (2) can be discretized as follows:

Xoq = Xob — 1 |xP P mt1) Ymi1 a Xi(q—x;) — Y|
m+1 Xo r(a+2) - m+l(q m+1) 1+(X§H_1)2 I_(G-l-Z) gl j,m-1 J(q J) 1+X12
_ ) 5
h? B1 (Xr?q+1) yr?q+1 p h m lejyj
= —+ — S — a _ il
Ym+1 = Yo ra+2) _ 1+(X,'?q+1)2 YW1 r(a+2) le jm+1 1+Xj2 j
where )
1 m BX5y;j
P _ _ _ i
Xml—xo+mgobj7m+l [Xj(q_xj)_ 1—|—X12 )
1 Bix2y;
P _ . i .
Y1 =Yot+ == Bjmi1 | —= — Wil
m1 r(a) jZO 1+
m'1—(m—a)(m+1), j=0,
ajmi1=q (M—j—2)7 4 m— )T —2(m-j+ 1" 1<j<m
1 j=m+1,
ha . . .
bjmi1 = [(M=j+1)%—(m=}7], O0<j<m
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Numerical results of the fractional order plant-herbivatedel (2) are presented in Figs. 1-4, it is clear that the
numerical solutions of the fractional order plant-herb@&aodel (2) depends on the fractional orderWe use some
parameters likgy = 8, B = 1.25 B; = 1.2, y =1 and(xo,Yo) = (2.2,12).The approximate solutiongt) andy(t) by
the generalized predictor corrector algorithm are dispdan Figs. 1-4, with different values af. Where T(J;) =
1.606553371detJ,) = 1.921310675 the values of the basic reproductive nuriger 1.181538462, the equilibrium
pointEy = (X2,Y2) = (2.23606797712.3730020F anda* = 0.606482273Whena < a* the trajectory of fractional order
plant-herbivore system (2) converges to the equilibriegas shown in figure 1 foa = 0.59 and figure 2 foa = 0.6.
Whena > a* the trajectory of fractional order plant-herbivore syst@&jconverges to converges to an asymptotically
stable limit cycle as shown in figure 3 far= 0.61 and figure 4 foo = 0.62.

o, =0.59 ol =0.59
14 . . 13.4 r : :

12 MMMM o 1 132} 1

13

10+ 1

128+

y(®

1241

12.2

2 MM-‘-"" () |

12+

o 50 100 150 1.8 2 22 26 28 3

t xztf:)

Fig.1. The phase portraits of plant herbivore model (2) eoges to the equilibriurk, for a = 0.59.
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o =0.6 a=06
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Fig.2. The phase portraits of plant herbivore model (2) eoges to the equilibriurg, for a = 0.6.

o= 0.61 o =061
14 . . 134 . ; ;

¥(t)

12 1
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Fig.3. The trajectory of plant herbivore model (2) convertgean asymptotically stable limit cycle far= 0.61.
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o =0.62 o= 0.62
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Fig.4. Whena = 0.62 the trajectory of system (2) converges to an asymptdtistdble limit cycle.

5 Conclusions

In this paper, We have proposed a fractional order modeh@irtteraction between plant and herbivore. We analyze the
fractional order model with regard to stability of the edhrilum points. We have established the condition for umifor
boundeness of the model. We have also given a numericaltsessing Adams-Bashforth-Moulton algorithm. The
theoretical and numerical results for the fractional dyitansystem model presented in the paper show that the
plant-herbivore model may exhibit rich dynamical behavior
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