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Abstract: This paper deals with the Bayesian and maximum likelihodinesion of augmented strength reliabiliBg(k = 1,2,3)
under Augmentation Strategy Plan (ASP). In Bayesian comiexonsider gamma prior for unknown parameters of augrdesttength
reliability model under squared error loss function (SE&af linex loss function (LLF) for the generalized case of ASRlonte-Carlo
importance sampling procedure has been implemented toxippate the Bayes and quasi-Bayes estimatoRofThe performances
of Bayes and quasi-Bayes estimators of augmented stregigthility under both the loss functions are compared witit bf maximum
likelihood estimators on the basis of their mean square®aed absolute biases. We analyze simulated and real dsifarséustrative
purpose for validation of proposed estimators.
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1 Introduction

The Gamma distribution has widely been used to model thetinegent analysis in survival and reliability theory. This
distribution is been also used in many other areas e.g.rngarance claims and credit risks, climatology, meteomlog
telecommunication etc., the reader is suggested to r&fem(d [2]. for further applications and discussions of gamma
distribution. There exist comparatively less attempts amma model, may be because of non-availability of closed
form for cumulative distribution function, survival funoh and hazard rate etc. Moreover, this distribution cdasts
reproductive property, which leads us to choose this mamteht proposed ASP introduced I26].

The strength reliability is defined as the probability thret equipment will survive its usual life if its random strémg
(X) is higher than the random stress(Y) imposed on it, whichxpressed aR = P(Y < X). In reliability engineering
R is often called as measure of system performance. The sttesgyth model was first considered I8} [ising the
non-parametric approach. Thereafter the problem of systtiability under the stress strength set up have beercédtita
to the researchers due to its applicability in various rgaldituations. A plenty of works on system reliability arid i
inferences have widely been attempted by several authmrs sf the pioneer contributions ard],[[5], [6], [ 7] and [8]
and references therein.

In literature, a number of works on estimation of systematglity parameters are cited particularly for gamma life
distribution. The problem of estimation of system reliahifor gamma distribution was firstly considered &0[. They
extended the work of33] and attempted to find out the different representationB ef P(Y < X) for real and integer
valued shape parameters. A comparison between ML and amifeninimum variance unbiased estimators of the stress-
strength reliability were presented for known integermseal shape parameters. The similar work was followed by serie
of work of [11] and [12], in which bootstrap and different non-parametric confiskeimtervals oR are presented. In the
similar manner,9] attempted the estimation &and compared the parametric and non-parametric methogsimidion.
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Recently, 3] have studied the MLE and UMVUE of parameters of gamma saedstrength reliability with assumption
that the two shape parameters are known arbitrary real nemBenfidence interval estimation of strength reliability
have discussed by f]] for generalized gamma familyLf] proposed normal approximation due ] for two parameter
gamma distribution and they rectified that the proposed appration was suitable and useful for the calculation of
prediction and tolerance intervals and for the estimatibsystem reliability parameters and also given number df rea
life examples on two parameter gamma distributidty] [derived the mathematical expressions for strength riditiab

for several life distributions named as in gamma, compoumga, log gamma and generalized gamma models. A
non-parametric approach is also considered in estimatiagtrength reliabilities for life distributions, namehgrmal,
exponential, gamma and beta distributions b§j[

In Bayesian paradigm, the choice of appropriate prior ihistion is most essential. The gamma distribution is
frequently chosen as a prior distribution over the decdd&and [20] attempted ML and Bayes estimation Rfunder
gamma prior distribution, by considering both stress anehgtth are independently distributed as scaled Burr Type X
distribution and generalized exponential distributioespectively. 21] considered estimation of modified ML and Bayes
estimation ofR by assuming that X and Y are distributed as two independgrdrameter generalized exponential
random variables having different shape but same locatiwh stale parameters for gamma prior distribution. The
importance sampling procedure was employed for Bayes ctatipns. A numerical comparison between Bayes and
modified ML estimators oR = P(Y < X) through importance sampling procedure was carried ouRBytfy assuming
that the random variables X and Y are distributed as two ieddpnt four-parameter generalized gamma distribution
with same location and scale parameters. Some of the rettemtps on Bayesian estimationRiunder the assumption
of gamma prior may be referred fror@3], [24], [25 and [26] and references therein.

In this paper, we propose Bayesian and classical approadirdaing inferences on augmenting gamma strength
reliability for the generalized case of ASP. In fact, eveeprbrand of existing system has two obvious characteristics
(i) reliable and (ii) unreliable. For life time data analysif reliable equipments, several ideas including acceldrie
testing method are considered by researchers and therreésrare available in literature. There is a great difficuity
assessing and obtaining the failure time observationsefiaible equipment. We therefore recommend ASP to overcome
the situation when equipment has an impression of earlyriaf new system and frequent failures occur in used systems
due to poor quality of component. The ASP is useful in enhanttie strength reliability and protect from unwanted such
failures and sustain to survive its usual life.

ASP comprises three possible situations for enhancingttbagth of an equipment to face the common stress. The
cases under ASP are stated as: In the first case, the strérgghipment, having initially Gamma strength, is increasgd
m times of its initial stress. For second case, a suggestiorade to add n independent components, each having Gamma
initial strength with the equipment to face the stress. I§ini third case, the strength of the equipment is incrdase
adding independent components, each having m times dli@&mma stress. It is to be noticed that case-l and case-Il
of ASP are special cases of case-lll, which we call it as gdized case of ASP.

Initially, the augmenting strength reliability problemder exponential stress strength set-up was considere2ilby [
for three different possible cases. After one deca®@],discussed applicability of augmenting strength religbibf an
equipment under these three cases which is named as augioresteategy plan (ASP). They derived gamma strength
reliability models under ASP and numerically observed @nagmentation is fruitful. 29 attempted for augmenting
Inverse Gaussian strength reliability under ASP and nuwabyi it is verified that ASP performs quite effectively.
Recently, BO] and [31] have attempted the augmentation of strength reliabiltyaocoherent system, when its
components are connected in series and parallel set-uggonential and gamma life time models respectively.

Here, we consider that the stress (Y) and strength (X) arepeddently and identically gamma distributed random
variables with scale and shape parameters respectivadypidbability density function (pdf) of X (or Y) is given by

A

fx(x/a,/\)zﬁexp(—ax)xkl; x>0,a,A >0. 1)

Under the generalized case of ASP (i.e. case-lll), the pehblanced gamma strengifk = 1,2, 3), wherek stands
for case-l,ll and Il respectively, is given by

an)\

ka(Zk/av)‘) = mn)\l-(n)\)

exp(_rzzk)zw‘l; 2> 0,a,A >0 @)

where/nT is a positive real number anid' is positive integer. From equati@ the density functions of cases-1 and II
of ASP can directly be obtained by substituting: n = 1 andk = 2, m= 1 respectively.

Recently, B4] have attempted Bayes estimation of augmenting gammagstreneliability of a System under
non-informative prior distributions. In similar mannegre we attempted ML, Bayes and quasi-Bayes estimation of
augmented strength reliability for the generalized casdS® by assuming that both scdle) and shapéA ) parameters
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having gamma informative priors.

The rest of article is organized as follows. In section 2, maegalized form of augmented strength reliability models
under ASP are introduced. A generalized form of ML estimatdraugmented strength reliability under ASP is presented
in section 3. The asymptotic distributions as well as asyptiptonfidence intervals far, A andR¢(k = 1,2, 3) of ASP
are discussed in section 4. In section 5, we propose a gaeetébrm of Bayes and quasi-Bayes estimators of augmented
strength reliability parameters using importance sangplinder SELF and LLF. The methods proposed are illustrated
by analyzing simulated and real data sets in section 6. Alaiion study and its discussions based on findings of the
generalized case of ASP are reported in section 7. Finalyconcluding remarks are given in section 8.

2 Generalized Augmented Strength Reliability Models

In this section, a generalized form of augmented strendidbibty model under ASP is presented, which is suitable to
handle the situation of early stage failures of sophistidaiew equipments as well as frequent failures of used eaurifsm
due to its poor or weaker strength. To overcome such ciramass, the ASP is recommended to make the system failure
free by boosting the existing strength to survive its usifial In this view augmenting gamma strength reliability retsd

for three different possible cases under ASP are validatdalaveloped byZ8]. A more generalized form of augmenting
gamma strength reliability is given by

m © F(M+A+]), m

iop
AP L T 1)) (me1) K28 ©)

Rk:P(Zk>Y)=,_

The augmenting strength reliability expressions for caaedl || are particular cases Bf can be obtained by substituting
k=n=1 andk =2 ,m= 1 respectively in equatioB. One can find the strength reliability expression for cdbéy
substitutingk = 3 in equatiorB.

3 Maximum Likelihood Estimation of Generalized Augmented Srength Reliability

In this section, we present the estimation of parametersgrin@nted strength reliabilifg,. Suppos&y = (za1,ze..-Zn,)
andY = (y1,¥2...yn,) be the two independent random samples of sizeandn, drawn from the augmented gamma
strength and gamma stress distributions respectivelyn Tieelikelihood function is given as follows

a/\ (nm+ny) n

N1Z (M=1) & (A1)
Lk(a,A /data) = —o(—= . A 4
k(a,A/data) AN (NA )T (A )2 exp—a(— +n2)7)i|=!2k| lellyl 4)

The likelihood equations with respectdoandA are given by

dlogly(data/a,A) 0 anddlong(data/a,/\) _0 (5)

Jda oA

The maximum likelihood equations based on random sampdestaained by partial derivatives with respectot@andA
and equating to zero, which are given by

ﬁlong(gzta/a,)\) :/\(nnZ{Jr np) (% Froy) =0 ©)
ﬁlong(gita/a,)\) =(nm +ny)log(a) —nmlog(m) —ni(nA) — na(A)
N N2
+ni;I094i +i;Iogyj =0 (7)
where, (A) is the digamma function, defined ggA) = %. The maximum likelihood estimato® and A are

obtained as the simultaneous solution of equati®asd7. As the closed form solution is not possible to evaluate the
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above equations, thus any one of numerical iterative tegcteninay be used. The MLE of augmented strength reliability
(Rx) for generalized case of ASP can be obtained through inwagiproperty as follow

m °°r(n3\+5\+j)( m

i
FOn @ m T 2 TR L) miD) KT L23 @

Re—

Remarks: (1) The ML estimatorgi, andAy of augmented strength reliability parametersind A, respectively can be
obtained for each of respective cases I, Il and Il by sulttiti k = n = 1; k= 2,m= 1 andk = 3 separately in the
solution of equations and7.

(2) The MLE of augmented strength reliabiliffR;) for Cases-I, Il and Il under ASP can be obtained directly by
substitutingk = n=1; k= 2,m= 1 andk = 3 respectively in equatiod.

4 Asymptotic Distributions and Confidence Intervals ofRy

In this section, the asymptotic distributions and asymeptainfidence intervals (C.1.) far, A andR¢(k= 1,2, 3) for each
of the generalized case of ASP are derived. The asymptdatichaitions ofa andA for large samples are given as

VA8 = @) = N(O, I (@)) and V(A —A) > N(©, 177(2))

where, | (@) is the Fisher information matrix @ = (a,A), defined as

9% 9%y

o e ™ ) (b
2 oy k21 k22
axoa  9r?

where |y = logLy. The 10@1 — p)% confidence interval aff andA are given by

{aF2zy2v/v(a@)} and {A FZp/2 V(A)} respectively

where, z, is the upper 1(_)@3/2)th percentile of a sta}ndard normal random variable. The asytiopdistribution of
augmented strength reliability ag — c andn, — o« is given by

Rq— R«
2
i+%

Ml

—N(0,1)

where,R = aa andez = a/\ Here, MLE ofRy, Ry is not in explicit form, therefore, it is difficult to find ouhe exact
distribution ofR. We, therefore, construct the 1A0- p)% asymptotic confidence interval Bf, is given by

N
P2\ nale11(@) " ngliza(A)
where, I 11(@), lk22(A), R, and RZ, are the MLEs ofly11(a), lk22(A), R and R2, respectively and the Fisher
|nformat|on matnx is glven as
A(nng+ny) — (N +ny)
a2 a
k(@) =

*(nnéJrnz) nlw/(n)\ )+ nZ‘IJ, ()

where, /' (.) is the tri-gamma function, which is defined as follows

/oy 0%logl(nd)  T'(nA)F(nA) — (F'(nA))?
Y(MA)=—72 = (F(nA))2
oy 0%ogr (A)  TTA)FA)—(F'(2))?
YN =—%7 ~ ()2 '
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Thus the 1001 — p)% confidence intervals af andA for the generalized case of ASP is given by

X a2 q
aFz ~——— | an
p/2 A(nng +ny)

A% 252/ (' (o) + nop' (3 ))1]

respectively. One can also find the asymptotic distributibR,, which is asymptotically normally distributed with mean

Mmlcir ' n2le22

R« and variancw,%k = < Ra + Ro ) , whereRy; andRy, are defined as

_ R _
Ra=%g =0 |
Ry ORe_ mZrmaAt)( m e
_W_r(n)\)gD rA+1+j) \m+1

{(n+1)PG(0,nA + A + j) — nlogm— PG(0,A + j +1) +nPG0,nA ) }

Remark 3: PG(0,z) defines the first derivative of logarithmic of gamma functiowhich is defined by
PG(O Z) _ dlog{(yl'(z))
) z .

5 Bayesian Estimation of Generalized Augmenting Strength Bliability Models

5.1 Prior and Posterior

This subsection deals with the Bayes estimatioRgk = 1,2,3) and its parameters andA for generalized case under
ASP. In Bayesian paradigm, the choice of appropriate psonost essential and is also challenging task. The general
ideology behind the choosing of such prior is depends oropatselief and subjective knowledge. If one has adequate
information about the parameter(s), one should use infovenprior(s), which are combined with the likelihood fuinet

to update the information about a particular characteristithe known data. In this study, we considerand A are
independent random variables having conjugate (inforepgamma prior, i.eq ~ G(a,b) andA ~ G(c,d). The joint
prior probability density function ofr andA is given by

g(a,A) o a® A lexp{—(ba+dA)}; a,A >0; a,b,c,d>0. 9)

The hyper-parameteesb,c andd of prior density function are assumed to be known and areechssuch a way to
reflect the prior belief about the unknown parameters. Tim psterior probability distribution aff andA is given as

Me(a,A) =Kg(a,A)Lg(data/a,A) (10)

where Ly(data/a,A) is the likelihood function an& is normalizing constant which is defined as
K1— /Om /Ooog(a,)\)Lk(data/a,/\)dad)\. (11)

The marginal posteriors densitiesamfandA respectively can be obtained from equation (10) as
Tha (0 /data,A) o /Ooo M(a,A /data)dA (12)
Tho(A /data, a) o /Ooo My(a,A/data)da. (13)

Here, we consider two different loss functions for bettempoehension of Bayesian analysis, first one is squared error
loss function (SELF) which is symmetric and other is linesddunction (LLF) which is asymmetric. The Bayes estimator
of any parametric function, say(a,A) under SELF as well as LLF are respectively defined by

@(a,A)SE”:/(M<p(a,)\)n(a,)\/data)aaa/\ (14)
o(a, )" = %Iog[/( A)exp{—pqo(a,)\)}I'I(a,)\/data)aaa)\ . (15)
a,
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5.2 Bayes Estimation ofiRinder squared error loss function (SELF)

In this subsection, we propose the Bayes estimators of antymgestrength reliability(R¢;k = 1,2,3) under squared
error loss function for the general case of ASP. The jointgxas probability distribution of random variablesandA
for general case of ASP is obtained by combining likelihoadctionLy(a, A /data) and joint prior probability density
g(a,A) given by

exp{si(nA —1) — s}

My(a,A/data) O A (A T (A2

A texp{—A(d =)}

) (nn1+n2)+alexpl _ a(% +ny+b)l. (16)

The equatiori6 can also have a form as
My(a,A/data) O riq (o /data, A ) Tio(A /data, a )W (o, A) a7)
where,s; = §; 11Iogzk., S = 212 ,logy; and the adjustment factu(a, A) is defined as

exp{—(s¢+52)}a" nn+ny)

A)= 18
V(a,A) mMA T (NA )M (A )" 4o
and the marginal posterior density functionooéndA are respectively given by
Tia(a /data,A) DG<a, (%k+ N2y + b)) (19)
Tio(A /data,a) 0 G, (c, d—ns; —sp). (20)
Therefore, the Bayes estimator of augmented strengtlbilyaunder SELF for a generalized case of ASP is given as
Rl = /( , Rt A /data)dao) 1)
a,

where,Ry is the augmented strength reliability under ASP. The exginasof Bayes estimator in equati@i does not
have closed form solution and it cannot be solved analyyicélerefore numerical method is used for solution of the
proposed estimator. We therefore suggested Monte-Caporit@mnce sampling procedure to evaluate equatioiience,

Bayes estlmatdk’ieg of R¢ under this sampling procedure for generalized case of AgRé&n by

et 1N
Ig: Nzi [Rk} a=aj;A=A;
m F(MAi+Ai+j), m

J
N ZI\M< %A FOA) A+ mhh 20 T+ 1+ ) (G

(22)

As an alternative, we obtain the quasi-Bayes estimaﬁé'ré of augmented strength reliabilitg, by substituting the
Bayes estimatoraS®'" anda:®'" in the place ofA anda respectively in the augmented strength reliability exgies of

R¢ given in equatior8. Under SELF, the Bayes estimator¥'' anda:® " are obtained by its posterior meansioénda,
respectively given by

ASE”_/ amia(a/data,A) (23)

Al = /0 A io(A /data, ). (24)

It may be notice that the expressions of augmented streetiftbility R¢ given in equatior8 is free froma, therefore,

onIy Bayes estimator of is required in order to obtain quasi-Bayes estimator. Tthesrequired quasi-Bayes estimator

( gé) of augmented strength reliabili® for general case of ASP is given by

F’;,ie” rr(\kse” © n)\self+)\self

tom o
= ~ sel sel : (25)
QB I—(nAEe”)(l_'_m n)\k ler)\k |f % I— )\SEIf+1+J) ( )

m+1
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Remark 4: The expressions for Bayes estimators (and quasi-Bayenagstis) of augmented strength reliabiliti)
for Case-l, Il and lll under ASP can be obtained directly bpstitutingk = n = 1, k = 2m= 1 andk = 3 separately in
equation®2 and25.

5.3 Bayes Estimation ofiRinder Linex loss function (LLF)
Under LLF, The Bayes estimat()lREf ) of augmented strength reliabilityRy) for generalized case of ASP is given as
RIT = %In[E(e*pRﬂ/data)] — %1|n[/(' )e’kaﬂk(a,)\/data)dad)\} (26)
a,A

where,lk(a,A /data) being the joint posterior density @f and A for general case of ASP, which is defined in the

equationl6. The expression of Bayes estimaﬁ}jj of augmenting strength reliability for general case of ASEiven
in equation26, have not closed form solution and therefore analyticadiyrot be solved. Only numerical approximation
methods can be used for solution. We therefore importarmoglezg approximation is proposed. As an alternatively, we

obtain the quasi-Bayes estimaﬁ%B of augmented strength reliability for general case of AS&euh LF by substituting
the Bayes estimatont“giIf andf\”f in place ofa andA respectively inR defined in equatioB. The Bayes estimators of

a andA under linex loss function for generalized case of ASP aretehbyd, - andﬁ\l'(If are respectively given by
. -1 -1
a = ?In[E(e‘p“k/data)] = Fln [/( )e‘p"kml(a/data,/\)aa] (27)
a

A= %In[E(e’pAk/data)} = %In [ /We*mwlm /dataA)aA] (28)

where,miy (a /data,A) andrio(A /data, a) are defined in equatiori® and20 respectively. The quasi-Bayes estimator of
augmented strength reIiabiIi(ﬁL'(f?B) for the generalized case of ASP is given by

If

. M
Rios =

© )\Ilf AL mo
~ It 3 1f Z) If . . J)( )J- (29)

(n)\il(lf)(l_’_mn)\k A r )\ +1+j) m+1

Remark 5: Under LLF,(a) the expressions of Bayes estimators of augmented streglghility (Ry) for all three Cases

of ASP can be obtained under importance sampling in simikmmer of Bayes estimator under SELF (see2&).

(b) The quasi-Bayes estimators of augmented strength rétjalbiR) for Case-I, Il and Il of ASP can directly be
obtained by substituting=n= 1, k=2 m= 1 andk = 3 in equatior9.

6 Data analysis

In this section we illustrate the proposed ML and Bayesiart@dures to analyze the augmented strength reliabilities f
the generalized case (i.e., Case-lll) of ASP by consideahingimulated and real data sets.

Example 1:We generate the strength and stress data sets of 30 obsesvatich fronG(a/m,nA) andG(a,A)
respectively witha = 2.5,A = 0.5;m= 2 andn = 2. The true value for augmented strength reliability forecl§is
given asRz = 0.81650. Thus the maximum likelihood estimates of unknowesstistrength parametgis and A) are
glven asaz = 0.16654 andAg = 0.341475. Hence, the maximum likelihood estimate of augniestieength reliability
(Rg) is R; = 0.78162. To find out the Bayes estimate of augmented strenligbitity under square error and Linex loss
functions separately, we fixed the hyper-parameters 1.25b = 0.15,c = 2.5,d = 0.65.The Bayes estimate of
augmented strength reliability and its parameters hava heeerically approximated through the general importance
sampling of fifty thousand random generationsaodndA. The Bayes estimate of augmented strength reliability unde
SELF (LLF) is Q742880.74287. Similarly, the quasi-Bayes estimate of augmented strengjtability under SELF
(LLF) is 0.7584750.758209. To test which set of parameter estimates give better fit ® data sets, the
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Kolmogorov-Smirnov (K-S) distance between the empirical &tted distribution based on MLEs and Bayes estimators
have been calculated. The test was carried out with 5% lé@gnificance. For data set 1, we get the p-value for MLEs
(Bayes estimators) as3161(0.6452) and for data set 2, the p-value for MLEs (Bayes estimator@)064520.06455.
From the K-S test it is noticed that for both data sets, Bagémates gives the better fit than MLEs.

Example2 : We analyze the strength data sets reported3ay jising the two parameters gamma distribution. The
ML and Bayes estimates of augmented strength reliability imparameters are obtained. For the same data 88&}s, |
observed that 4-parameter generalized gamma distribwitoks quite well.

The data sets were initially reported I82], represent the strength of single carbon fiber and impregnb000-carbon
fiber tows which were measured in GPa. Single fibers weredestder tension at gauge lengths of 1, 10, 20, and 50mm.
Impregnated tows of 1000 fibers were tested at gauge lendt2€,050, 150 and 300 mm. We analyze here the
transformed strength data sets were considered %y The data sets are consider the single fibers of 20 mm (Dt Se
and 10 mm (Data Set Il) in gauge length, with sample sizes n &®9Om = 63, respectively. The data sets are presented
in Tables 1 and 2.

Assuming Data set 1x) as strength and Data set() as stress, the generalized case (i.e., case-Ill) of ASP was
applied to the strength data to augment the strength of tti@néiber. In order to obtain the enhanced strength dasa set
we added two units each having strength 0.004 (two timesitélirstress (0.002)) to the existing strength of carbon
fiber. The maximum likelihood estimates of augmented sttergiability (Rs) based on augmented strength data set is

R; = 0.94122 and ML estimates of parametéesand A) are given agr; = 2.6333 and\z = 1.6987.

Table 1: Data set 1(x)

0.312 0.314 0479 0.552 0.700 0.803 0.861 0.865 0.944 0.958
0.966 0.997 1.006 1.021 1.027 1.055 1.063 1.098 1.140 1.179
1.224 1.240 1253 1.270 1272 1274 1301 1301 1.359 1.382
1.382 1.426 1.434 1435 1478 1490 1511 1514 1535 1554
1566 1.570 1586 1.629 1.633 1.642 1.648 1.684 1.697 1.726
1.770 1773 1.800 1.809 1.818 1.821 1.848 1.880 1.954 2.012
2.067 2.084 2090 2.096 2.128 2.233 2433 2.585 2.585

Table 2: Data set 3y)

0.101 0.332 0.403 0.428 0.457 0.550 0.561 0.596 0.597 0.645
0.654 0.674 0.718 0.722 0.725 0.732 0.775 0.814 0.816 0.818
0.824 0.859 0.857 0.938 0.940 1.056 1.117 1.128 1.137 1.137
1177 1196 1.230 1.325 1.339 1.345 1420 1423 1435 1443
1.464 1472 1494 1532 1546 1577 1608 1635 1.693 1.701
1.737 1754 1762 1.828 2052 2.071 2086 2171 2224 2227
2425 2595 3.220

To find out the Bayes estimate of augmented strength ratyahihder square error and Linex loss functions
separately, we fixed the hyper-parameters 1.25b = 0.15,c = 2.5,d = 0.65. The Bayes estimate of augmented
strength reliability and its parameters have been obtaihezligh the general importance sampling of fifty thousand
random generations ofr and A. The Bayes estimates of augmented strength reliabilityeurSELF (LLF) is
0.7450280.737579. Similarly, the Bayes estimates of augmented strengthlritilly parametersr andA under SELF
(LLF) respectively are @454260.445226 and 02085030.208506, thus the quasi-Bayes estimate of augmented
strength reliability under SELF (LLF) is 74502845027.

In order to test which of the estimation method better fitsdiven data sets, we compute the Kolmogorov-Smirnov
(K-S) distance between empirical and fitted distributioasdd on ML and Bayes methods for different loss functions
(SELF and LLF) and tested at 5% level of significance. For taa et 1, the K-S distance based on MLEs (Bayes
estimates) is 0.9275(0.913) with corresponding p-valug845(0.3838). Similarly, for data set 2, the K-S distanasda

on MLEs (Bayes estimates) is 0.7302(0.6349) and the cavrelipg p-values are 0.6703(0.8223).Thus, for data sets 1
and 2 it is observed that the Bayes estimates give bettegfitttimt of MLES.
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7 Simulation Study and Discussion

This section presents the behavior of augmented strendjdbitidy parameters under the proposed augmentation
strategy plan through simulated samples with different lmioations of sample sizes and the stress-strength rétjabil
parameters. For this purpose, the random samples of diffeiges (ni,nz) from the distributions of stress and
augmented strength random variables were drawn. The peafaze of proposed maximum likelihood estimators of
strength reliability parameters have been compared withahBayes and Quasi-Bayes estimators under SELF and LLF.
The comparison among the different proposed estimatorsgrhanted strength reliabilities have been done on the basis
of their mean square errors (MSEs) and absolute biasesfferatit combinations of fixed strength reliability parasrst

as well as hyper parameters with different sample sizestdardo evaluate MSEs and absolute biases of the ML, Bayes
and quasi-Bayes estimators of augmented strength réjatiile whole procedure was randomly replicated 1000 times
The derived expressions of Bayes and quasi-Bayes estisnat@ugmented strength reliability models under ASP are
not in explicit form and involve the ratios of implicit integls. We, therefore used Monte-Carlo importance sampling
method to evaluate the integrals involved in the equatidnzosterior expectations of augmented strength reliadslit
and its parameters. The Monte-Carlo importance samplirg e@aried out with 5000 of intermediate iterations. The
importance sampling is a well-established method to apprate the integrals. To carry out the importance sampling
procedure numerically the following steps were taken as:

(i)Set trail densitiesgi(a) and g2(A) whose support is same as that of corresponding joint postel@nsity
M(a,A/data).

(i)Generate random samplesandA;; (i = 1,2,...,N) of size N from the trail densitiegs (o) andga(A).

(iii )Find the product oRy(ai,Ai) andWk(ai,A;) at each values of; and A; drawn from the corresponding marginal
posterior densitieg; () andgy(A) respectively.

(iv)The importance sampling estim&é,(ai, A;) can be found by evaluating the following equation

(1/N) 3N ) Re(ai, Ai) W (i, i)
(1/N) 3]y Wi (i, Ai)

The comparison among the proposed estimators of augmetmtyth reliabilities, for the generalized of ASP are
presented for varying values of stress-strength paramaten, n and a while keeping all the hyper-parameters fixed
(a=0.5,b=0.75,c=0.25,d = 0.75, p= 1.5) for different combinations of sample siz@s,n;). Similarly the effect of
hyper-parameters, b, c,d) in Bayesian estimation of augmented strength reliabilipdels have also been observed for
the generalized case and compared by that of MLE. The restiggned through simulation for the generalized case (i.e.
case-lll) of ASP are presented in the tabl@s- 6). In these tables the average estimates, mean square M®Es) and
absolute biases are tabulated for MLE as well as for Bayesqargi-Bayes estimates under SELF and LLF. The
following observations are made based on the results rgbortthe tables.

[éRk(aiv)‘i)Ls:

x In Table3 the effect of different values of (0.5, 1.5, 3) are presented by fixing rest of the other parameters and-hyper
parameters and it is observed that the MSEs of all the esimpadecrease for increasing sample sizes. For smaller
value ofA (0.5) the Bayes estimators are dominated by ML estimators butifdren values ofA (1.5,3) the Bayes
estimators dominate the ML estimator. It is also to be ndtitat the quasi-Bayes estimators perform quite effective
as an alternative to Bayes estimators.

x  The results for variation im(3,5) are presented in Tabk and it is noticed from the table that the quasi-Bayes
estimators under SELF perform well with minimum MSEs andofiite biases as compared to ML and Bayes
estimators. It is also observed that the larger sample sizhge the MSEs.

x Table5 presents the variation im(2.5,5) and it is noticed that the MSEs and absolute biases are iredsiog
in nature with increasing values of sample siZzag n,). For m = 2.5 the ML estimators dominate the Bayesian
estimators. Moreover the quasi-Bayes estimators of autgdesirength reliability gives more accurate result than
Bayes estimator. Similarly the Bayes estimators domirretedf ML estimators fom= 5.

% In Table6, three different choices of prior variances (small, motkeeand large) are chosen to observe the effect of
variability in the considered prior distributions, it istieed that the mean square errors for small variance prir ar
lesser than that of the moderate and large variance pribtss, The choice of minimum variance prior gives the better
precision in the Bayes estimates of the parameters.

8 Concluding remarks

In this paper, we have attempted the estimation of augngstiength reliability under ASP by adopting ML and Bayes
methods. Bayes and quasi-Bayes methods of estimationmibrtance sampling for two different loss functions (SELF
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and LLF) have been employed. We also derived the asymptistithaition of MLE of augmented strength reliability and

its parameters to construct the associated confidencevatgéerThe comparison among the different estimates of
augmented strength reliability models of ASP have beenethiut on the basis of mean square errors (MSEs) and
absolute biases with 1000 replications of Monte-Carlo than. The estimates of augmented strength reliabildied
mean square errors and absolute biases for the generadigedtASP are tabulated in the corresponding tables. From
the given tables, it may be notice that the mean square efkdEEs) and absolute biases gradually decrease for
increasing values of sample sizes. It may be noticed thatBtyes estimates and quasi-Bayes estimates for SELF and
LLF performs quite effectively than that of ML estimatesisliseen from the tables that, there are not much differences
among the different estimates with respect to loss funstioe., the Bayes and quasi-Bayes estimates give almost
similar results for SELF and LLF. The choice of priors withmimmum variability are suggestive. To validate both the
methods of estimation, the data analysis was carried ohtsiitulated as well as real data sets and it is observed #hat th
Bayes and quasi-Bayes estimates gives the better fit in aenpdL method.

This present problem remains some open problems to thercbsesa for future attempt, the problem of Bayesian and
ML estimation of augmenting strength reliability models fo) some other life time distributions(ii) different
censoring schemes of life time experimef(ilis) cost aspects of augmenting strength by adding new comp®aadtits

cost estimation.
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Table 3: Average estimates, MSE and Absolute bias of the estimaf@sgmented strength reliabilityRz) under SELF
and LLF with variation inA and samples size@y,nz) whena = 0.75,n=m= 2;a= 0.5b=0.75,c = 0.25d =
0.75,p=15

Bayes Quasi-Bayes
(M, n2) MLE SELF | LLF SELF | LLF
A =05, Rs — 0.816497
Estimate | 0.823853] 0.777285] 0.777179] 0.77930 ] 0.778898
(10,20)| MSE | 0.000663| 0.001542| 0.00155 | 0.001397| 0.001427
Abs. bias| 0.007356| 0.039212| 0.039318| 0.037197| 0.037599
Estimate | 0.823541| 0.777740| 0.777584| 0.774337| 0.773809
(20,10)| MSE | 0.000663| 0.001510| 0.001522| 0.001808| 0.001852
Abs. bias| 0.007045| 0.038757| 0.038913| 0.042160| 0.042687
Estimate | 0.820333| 0.799454| 0.799349| 0.791741] 0.791325
(20,30)| MSE | 0.000329| 0.000293| 0.000296| 0.000634| 0.000655
Abs. bias| 0.003836| 0.017043| 0.017148| 0.024755| 0.025172
Estimate | 0.819213| 0.799393| 0.799325| 0.795842| 0.79543
(30,50)| MSE | 0.000211| 0.000294| 0.000296| 0.000435| 0.000452
Abs. bias| 0.002717| 0.017103| 0.017172| 0.020655| 0.021067
Estimate | 0.818179| 0.789268| 0.789210| 0.789124| 0.788731
(50,50)| MSE | 0.000145 0.000744| 0.000747| 0.000757| 0.000779
Abs. bias| 0.001683| 0.027229| 0.027287| 0.027373| 0.027766
A = 15, R; — 0.929899
Estimate | 0.934318] 0.898406] 0.898244] 0.907882| 0.904306
(10,20)| MSE | 0.000540| 0.000999| 0.001009| 0.000512| 0.000681
Abs. bias| 0.004419| 0.031493| 0.031655| 0.022017| 0.025592
Estimate | 0.934490| 0.887998| 0.887562| 0.907100| 0.901410
(20,10)| MSE | 0.000559| 0.001785| 0.001821| 0.000558 0.000850
Abs. bias| 0.004592| 0.041901| 0.042337| 0.022799| 0.028489
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(20, 30)

Estimate
MSE
Abs. bias

0.932995
0.000304
0.003096

0.901384
0.000822
0.028515

0.901249
0.000829
0.02865

0.910285
0.000401
0.019614

0.908019
0.000495
0.021880

(30, 50)

Estimate
MSE
Abs. bias

0.931218
0.000208
0.001319

0.902236
0.000772
0.027663

0.902141
0.000777
0.027757

0.909598
0.000421
0.020301

0.908319
0.000475
0.021579

(50, 50)

Estimate
MSE
Abs. bias

0.931271
0.000163
0.001372

0.898933
0.000964
0.030965

0.898850
0.000969
0.031049

0.905873
0.000585
0.024026

0.904713
0.000642
0.025186

A:

3;R3=0.9

80338

(10, 20)

Estimate
MSE
Abs. bias

0.981264
0.000144
0.000926

0.955612
0.000614
0.024726

0.95556
0.000616
0.024778

0.961330
0.000370
0.019008

0.958668
0.000478
0.021670

(20, 10)

Estimate
MSE
Abs. bias

0.980702
0.000142
0.000363

0.974492
3.8e-050
0.005846

0.974443
3.9e-050
0.005896

0.980357
3.0e-060
1.9e-050

0.977567
1.2e-050
0.002771

(20, 30)

Estimate
MSE
Abs. bias

0.980851
9.5e-050
0.000513

0.961341
0.000364
0.018997

0.961302
0.000365
0.019037

0.966366
0.000199
0.013972

0.964763
0.000246
0.015576

(30, 50)

Estimate
MSE
Abs. bias

0.980894
5.5e-050
0.000556

0.965043
0.000236
0.015295

0.965022
0.000236
0.015316

0.968324
0.000146
0.012014

0.967396
0.000169
0.012942

(50, 50)

Estimate
MSE
Abs. bias

0.980388
4e-050
5e-050

0.975704
2.2e-050
0.004634

0.975693
2.2e-050
0.004646

0.978172
6e-060
0.002167

0.977499
9e-060
0.00284

Table 4: Average estimates, MSE and Absolute bias of the estimat@sgmented strength reliabiliffRs) under SELF
and LLF with variation inn and samples sizg®1,ny) whena = 0.75,A = 1.5n=2;a= 0.5,b=0.75,c = 0.25,d =

0.75,p=15

(n1,ny)

MLE

Bayes

Quasi-Bayes

SELF

LLF

SELF

LLF

n=

3; R3 =0.984284

(10, 20)

Estimate
MSE
Abs. bias

0.985109
8.7e-05
0.000825

0.968781
0.000247
0.015504

0.968691
0.00025
0.015594

0.977894
4.7e-05
0.00639

0.975662
8.2e-05
0.008622

(20, 10)

Estimate
MSE
Abs. bias

0.984311
0.000101
2.7e-05

0.967389
0.000298
0.016896

0.967225
0.000304
0.01706

0.979911
2.7e-05
0.004373

0.976371
7.3e-05
0.007913

(20, 30)

Estimate
MSE
Abs. bias

0.984711
5.2e-05
0.000427

0.968854
0.000243
0.015431

0.968799
0.000245
0.015486

0.975238
8.6e-05
0.009046

0.973851
0.000114
0.010433

(30, 50)

Estimate
MSE
Abs. bias

0.984742
3.7e-05
0.000458

0.962976
0.000458
0.021309

0.962929
0.00046
0.021355

0.968082
0.000267
0.016203

0.967224
0.000295
0.01706

(50, 50)

Estimate
MSE
Abs. bias

0.984466
2.6e-05
0.000182

0.977063
5.4e-05
0.007221

0.977043
5.4e-05
0.007241

0.980529
1.6e-05
0.003755

0.979884
2.1e-05
0.004401

n=

5; R3 =0.999281

(10, 20)

Estimate
MSE
Abs. bias

0.999051
2e-06
0.00023

0.987265
0.000145
0.012017

0.987247
0.000145
0.012035

0.985257
0.000199
0.014024

0.984875
0.00021
0.014407
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(20, 10)

Estimate
MSE
Abs. bias

0.999065
1le-06
0.000216

0.978481
0.000434
0.020801

0.978442
0.000435
0.020839

0.977449
0.000481
0.021833

0.976853
0.000507
0.022428

(20, 30)

Estimate
MSE
Abs. bias

0.99915
le-06
0.000131

0.998608
4.8e-06
0.000673

0.998608
4.9e-07
0.000674

0.999319
1.9e-08
3.8e-05

0.999207
2.9e-08
7.4e-05

(30, 50)

Estimate
MSE
Abs. bias

0.999208
4.2e-07
7.3e-05

0.99822
1le-06
0.001061

0.99822
1le-06
0.001061

0.99883
2.3e-07
0.000451

0.998736
2.2e-07
0.000545

(50, 50)

Estimate
MSE
Abs. bias

0.999253
2.4e-07
2.8e-05

0.991546
6e-05
0.007735

0.991540
6e-05
0.007742

0.993802
3e-05
0.005479

0.993531
3.4e-05
0.005750

Table 5: Average estimates, MSE and Absolute bias of the estimaf@sgmented strength reliabilityRz) under SELF
and LLF with variation inm and samples size®,n,) whena = 0.75A = 1.5m=2;a=0.5b=0.75,c=0.25,d =
0.75,p=15

Bayes
SELF LLF

Quasi-Bayes

MLE SELF | LLF

(n1,n2)

m=2.5; Rz =0.954803

(10, 20)

Estimate
MSE
Abs. bias

0.958217
0.000373
0.003414

0.911241
0.001900
0.043562

0.911099
0.001912
0.043703

0.905190
0.002485
0.049613

0.904043
0.002600
0.050759

(20, 10)

Estimate
MSE
Abs. bias

0.956846
0.000356
0.002043

0.909120
0.002119
0.045683

0.908657
0.002161
0.046146

0.928975
0.000703
0.025828

0.923411
0.001025
0.031392

(20, 30)

Estimate
MSE
Abs. bias

0.956263
0.000212
0.001461

0.924730
0.000913
0.030072

0.924599
0.000920
0.030204

0.933589
0.000464
0.021214

0.931464
0.000559
0.023339

(30, 50)

Estimate
MSE
Abs. bias

0.955973
0.000134
0.001171

0.943939
0.000122
0.010863

0.943876
0.000124
0.010926

0.950188
2.6e-05
0.004615

0.949047
3.8e-05
0.005755

(50, 50)

Estimate
MSE
Abs. bias

0.955646
le-04
0.000843

0.937522
0.000303
0.017281

0.937452
0.000306
0.01735

0.943672
0.000129
0.011131

0.942635
0.000153
0.012168

m=

5, R:3=0.9

90527

(10, 20)

Estimate
MSE
Abs. bias

0.990475
5.3e-05
5.2e-05

0.963454
0.000743
0.027073

0.963324
0.000751
0.027203

0.974657
0.000262
0.015871

0.972343
0.000341
0.018184

(20, 10)

Estimate
MSE
Abs. bias

0.990123
5.3e-05
0.000404

0.970524
0.000414
0.020003

0.97038
0.00042
0.020147

0.982685
6.9e-05
0.007842

0.979879
0.000123
0.010648

(20, 30)

Estimate
MSE
Abs. bias

0.990433
3.4e-05
9.4e-05

0.97536
0.000234
0.015167

0.975305
0.000236
0.015222

0.981563
8.4e-05
0.008964

0.980388
0.000107
0.010139

(30, 50)

Estimate
MSE
Abs. bias

0.990662
1.9e-05
0.000135

0.99338
8e-06
0.002853

0.993377
8e-06
0.00285

0.994878
1.9e-05
0.004351

0.994586
1.7e-05
0.004059

(50, 50)

Estimate
MSE
Abs. bias

0.990429
1.6e-05
9.8e-05

0.986802
1.5e-05
0.003726

0.986792
1.5e-05
0.003735

0.989444
2e-06
0.001083

0.989031
3e-06
0.001496
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Table 6: Average estimates, MSE and Absolute bias of the estimat@sgmented strength reliabiliffRs) under SELF
and LLF with variation in hyper-parametdia b, c,d) and samples siz€s,n;) whena =0.75A =1.5m=n=2;R3 =

0.929899

(n1,n2)

MLE

Bayes

Quasi-Bayes

SELF

LLF

SELF

LLF

{(Small varian

Ce=0.28p—=15Db=056C=175d=0.75p=15

(10, 20)

Estimate
MSE
Abs. bias

0.934724
0.000533
0.004825

0.88793
0.001765
0.041969

0.88777
0.001778
0.042129

0.883442
0.002175
0.046457

0.881445
0.002366
0.048454

(20, 10)

Estimate
MSE
Abs. bias

0.93437
0.000514
0.004471

0.873376
0.003228
0.056523

0.872905
0.003281
0.056993

0.891077
0.001554
0.038822

0.885499
0.002019
0.044400

(20, 30)

Estimate
MSE
Abs. bias

0.933653
0.000345
0.003754

0.881582
0.002338
0.048317

0.881471
0.002349
0.048428

0.885748
0.001964
0.044151

0.88395
0.002125
0.045949

(30, 50)

Estimate
MSE
Abs. bias

0.931871
0.000188
0.001972

0.907022
0.000528
0.022877

0.906937
0.000532
0.022962

0.913673
0.000272
0.016225

0.912357
0.000316
0.017542

(50, 50)

Estimate
MSE
Abs. bias

0.93095
0.000151
0.001051

0.913402
0.000278
0.016497

0.913326
0.00028
0.016573

0.919503
0.000115
0.010396

0.918333
0.00014
0.011566

{(M

oderate variance=5a= 0.25,b = 0.

30,c=0.35

. d=0.60,p

=15

(10, 20)

Estimate
MSE
Abs. bias

0.933952
0.000517
0.004053

0.876329
0.002876
0.053569

0.876188
0.002891
0.053711

0.876813
0.002835
0.053086

0.875695
0.002954
0.054203

(20, 10)

Estimate
MSE
Abs. bias

0.934842
0.000556
0.004943

0.958691
0.000836
0.028792

0.95858
0.00083
0.028681

0.967972
0.001456
0.038073

0.964274
0.001189
0.034375

(20, 30)

Estimate
MSE
Abs. bias

0.93285
0.000316
0.002951

0.886513
0.001886
0.043386

0.886415
0.001895
0.043484

0.890372
0.001577
0.039527

0.888597
0.00172
0.041302

(30, 50)

Estimate
MSE
Abs. bias

0.931498
0.000206
0.001599

0.894544
0.001253
0.035355

0.894486
0.001257
0.035413

0.898174
0.001015
0.031725

0.897045
0.001088
0.032854

(50, 50)

Estimate
MSE
Abs. bias

0.930934
0.000157
0.001036

0.914588
0.00024
0.015311

0.914514
0.000242
0.015385

0.920782
8.9e-05
0.009117

0.919605
0.000112
0.010293

{(Large variance=1Gp= 0.20,b=0.40,c=0.50,d = 2.50,p=1.5

(10, 20)

Estimate
MSE
Abs. bias

0.934376
0.000521
0.004477

0.914562
0.000242
0.015337

0.914416
0.000246
0.015483

0.924093
5.5e-05
0.005806

0.920474
0.000109
0.009425

(20, 10)

Estimate
MSE
Abs. bias

0.933585
0.000533
0.003687

0.872962
0.003271
0.056937

0.872535
0.003319
0.057364

0.888538
0.001759
0.041361

0.883028
0.002244
0.046871

(20, 30)

Estimate
MSE
Abs. bias

0.932557
0.000324
0.002658

0.920857
9.2e-05
0.009042

0.92072
9.4e-05
0.009179

0.929528
1.1e-05
0.000371

0.927202
1.8e-05
0.002697

(30, 50)

Estimate
MSE
Abs. bias

0.932105
0.000203
0.002206

0.909400
0.000427
0.020499

0.909316
0.000430
0.020583

0.915809
0.000207
0.014090

0.914499
0.000246
0.015400

(50, 50)

Estimate
MSE
Abs. bias

0.930578
0.000153

0.000679

0.889414
0.001645
0.040484

0.889323
0.001652

0.040576

0.896728
0.001109
0.033171

0.895601
0.001185
0.034298
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