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We present a numerical study for the relativistic effect of hydrogen atom in presence of

a strong magnetic field. In particular we explore the manifestation of the quantum chaos

taking into account the relativistic correction. We observe that as soon as the magnetic

field rises any symmetry will be destroyed and the energy levels will be crossed.
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1 Introduction

Recently the interaction of atoms or similar systems with electromagnetic fields has

raised a lot of interest [1–8]. It leads to interesting quantum features such as soliton prop-

agation [9, 10], entanglement [11], antibunching [12], squeezing [13] and bistabilty [14].

The problem of the hydrogen atom in a strong magnetic field constitutes a general phys-

ical problem which has not been completely solved yet. In the strong magnetic field, the

dynamical symmetry of the hydrogen atom disappears completely [15,17]. The most diffi-

cult region to investigate where the Coulomb and magnetic field forces are of comparable

strength (B ≈ 107−1011Gauss) [18–20]. That part of the spectrum, where these conditions

are met, has been called the “strong field mixing regime” [21]. To significantly disturb the

hydrogen atom in its fundamental state, we must apply gigantic external magnetic fields of

the order of105 T (a field prevailing at the surface of pulsars), and that seems to be non

experimental feasible [15,22–24]. Atomic diamagnetism was observed for the first time by

Jenkins and Segré (1939) in sodium and potassium Rydberg states [17,19,25,26]. Modern

interest in the diamagnetism of Rydberg states originates from the experiments of Garton

and Tomkins in1969 [27]. Classically, the motion of an electron in the Coulomb field of
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the proton turns chaotic when a diamagnetic interaction, called some times the quadratic

Zeeman effect, of comparable strength is added [28–31].

A lot of papers neglect all relativistic terms in the interaction between the electron and

nucleus, that’s why no effect of the spin-orbit interaction is included [32]. In this work,

we study the influence of relativistic terms to level energies. We developed a code (digital

diagonalization with Maple) taking in to account the relativistic term. Our code is validated

by comparing our simulations to Delande ones [15]. We find an agreement. Relativistic

terms is added to see its effect on the diagrams. It is worth to mention that just recently, the

free iterative complement interaction method has given a very high precision for solving

the Schrdinger and Dirac equations of Hydrogen atom in a strong magnetic field [16] .

2 Atom Hydrogen in uniform magnetic field

The Dirac equation in the weakly relativistic domain [33,34] is:

H = mec
2 + H0 −Wmv + WSO + WD + .... (2.1)

with: mec
2 is the rest-mass energy of the electron,H0 = P 2

2m + V (r) is the non-

relativistic Hamiltonian and the following terms

Wmv =
P 4

8m3
ec

2
,WSO =

1
2m2

ec
2

1
r

dV (r)
dr

−→
L .
−→
S ,WD =

~2

8m2
ec

2
4 V (r)

are called fine structure terms.

All the fine structure terms are about104 times smaller than the non-relativistic Hamil-

tonian [33].

The effect of an external magnetic field
−→
B is taken into account by replacing

−→
P by

(−→p + e
−→
A ) in the Hamiltonian.e is the electron charge and

−→
A is the vector potential of the

field which satisfies
−→
div(

−→
A ) = 0. Choosing

−→
A =

−→
BΛ−→r

2 ,we have

P 2

2me
=

1
2me

(−→p + e
−→
A )2 =

p2

2me
+

e2

2me

−→
B.
−→
L +

e2−→A 2

2me
(2.2)

Furthermore, by considering the spin magnetic moment−→µ = − e
me

−→s of an electron as-

sociated with its spin angular momentums = ~
2 , an extra term e

me

−→
B.
−→
S has to be added

into the hamiltonian. If we take
−→
B along theθ = 0 direction of polar coordinate system

(r, θ, ϕ), then
−→
BΛ−→r = Br sin θ. The third term in equation (2.2) becomes:

e2−→A 2

2me
=

e2B2

8me
r2 sin2(θ) (2.3)

Considering equations (2.2, 2.3) and the spin magnetic moment, we write the Hamiltonian

of hydrogen atom in a uniform magnetic field as:

H = mec
2+

p2

2me
+

e2

2me

−→
B.(

−→
L +2

−→
S )+

e2B2

8me
r2 sin2(θ)−Wmv+WSO+WD+.... (2.4)
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Hp = e2

2me

−→
B.(

−→
L + 2

−→
S ) andHd = e2B2

8me
r2 sin2(θ) represent the paramagnetic and dia-

magnetic terms respectively. We are studding in this paper the diamagnetic term effect on

highly excited hydrogen atom (Rydberg atom).

The diamagnetic termHd ( in atomic unitsHd = B2

8 r2 sin2(θ)) [35] is responsible for

the difficult nature of the problem,by which chaos arrives. In order to make the movement

chaotic, the term diamagnetic has to be of the same Hamiltonian order of value, in the

absence of the magnetic field. This could be realized by using highly excited atoms to

which, the Coulombian interaction is weak.

In case of small atomic size (like atom hydrogen) and weak magnetic field, the diamag-

netic part of the HamiltonianHd has a much smaller effect on the total energy. However,

sinceHd ∼ r2 andr ∼ n2, Hd scales as fourth power of the principal quantum number

n. When an atomic is excited to high Rydberg system states(characterized by principle

quantum numbern = 10 − 300), the effect ofHd grows quickly and hence can no longer

be neglected.

3 Methods of Computation

All computed spectra presented in this paper are obtained by diagonalization of the

Hamiltonian matrix in a suitable basis. The spherical Sturmian basis is used for hydrogen

in a magnetic field.

3.1 Sturmian Spherical Basis

The base’s choice allowing efficient calculations requires considerations of symmetry.

All hydrogenöıd states of the same value M are mixed. Therefore, it’s necessary to consider

a dynamic group including the different states. The groupSO(2, 2) satisfies the previous

criterion.

The eigenstates bases built thanks to this group are the bases of Sturmien functions en-

suring the global representation of the states’ space (discreet,continuum) with a countable

base at the expense of the loss of orthogonality of base’s vectors.

The Sturmien base is the proper base describing the system of two oscillators equal to

hydrogen atom. The Schrödinger equation is expressed with a simple algebraic form in

function of generators(
−→
S (α),

−→
T (α)) of dynamic groupSO(2, 2).

The Hamiltonian ”oscillator” obtained coincides with his expression in the context of

the classic mechanic.
(

S
(α)
3 + T

(α)
3 +

γ2

2(−2E)2
(S(α)

1 + S
(α)
3 )(T (α)

1 + T
(α)
3 )

(S(α)
1 + S

(α)
3 + T

(α)
1 + T

(α)
3 )− 1√−2E

)
|Ψ〉 = 0 (3.1)
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with α = 1√−2E
. We can write a more general equation by taking any value of the ad-

justable parameterα [15, 40]. (which leads us to adjust the length scale defining the Stur-

mian functions, or the frequency1α of the oscillator system). We obtain:

[
A(α) − α + (−2Eα2)B(α) +

γ2α4

2
C(α)

]
|Ψ〉 = 0 (3.2)

with :
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2
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T
(α)
− |nlm〉(α) =

√
(n + l)(n− l − 1)

2
|n− 1lm〉(α) −

√
(n− l − 1)(n− l − 2)

2

Cl+1
M |n− 1l + 1m〉(α) +

√
(n + l)(n + l − 1)

2
Cl

M |n− 1l − 1m〉(α)

and

Cl
M =

√
l2 −M2

4l2 − 1
(3.3)

From these relationships a simple form for the overlap matrix in the basis of Sturmian

functions of common exponentζ follows

Enl,n′l′ =
∫ ∞

0

Sζ
nl(r)S

ζ
n′l′(r)dr.

This matrix takes the simple form

Enl,n′l′ =





n
ζ n′ = n l = l′

− 1
2ζ[(n + l + 1)(n− l)]

1
2 n′ = n + 1 l = l′

0 l 6= l′

It is also found that the matrix elements of the quadratic magnetic potential, namely

Qnl,n′l′ =
∫ ∞

0

Sζ
nl(r)r

2Sζ
n′l′(r)dr.

are non-zero only for|n− n′| = 0, 1, 2, 3, |l − l′| = 0, 2, and in these cases take the

following simple forms:

Qnl,n′l′+2 =

− 1
2ζ−3[(n− l − 1)(n− l − 2)(n− l − 3)(n− l − 4)(n− l − 5)(n + l)]

1
2 n′ = n− 3

ζ−3[(3n + 2l)(n− l − 1)(n− l − 2)(n− l − 3)(n− l − 4)]
1
2 n′ = n− 2

− 5
2ζ−3[(3n + l)(n− l − 1)(n− l − 2)(n− l − 3)(n + l + 1)]

1
2 n′ = n− 1

10nζ−3[(n + l + 1)(n + l + 2)(n− l − 1)(n− l − 2)]
1
2 n′ = n

− 5
2ζ−3(3n− l)[(n + l + 3)(n + l + 2)(n + l + 1)(n− l − 1)]

1
2 n′ = n + 1

ζ−3(3n− 2l)[(n + l + 4)(n + l + 3)(n + l + 2)(n + l + 1)]
1
2 n′ = n + 2

− 1
2ζ−3(n + l + 5)(n + l + 4)(n + l + 3)(n + l + 2)(n + l + 1)(n− l)]

1
2 n′ = n + 3

and

Qnl,n′l′ =

2nζ−3[5n2 − 3l(l + 1) + 1] n′ = n

− 3
2ζ−3[5n(n + 1)− l(l + 1) + 2][(n + l + 1)(n− l)]

1
2 n′ = n + 1

3ζ
−3

(n + 1)[(n + l + 1)(n− l)(n + l + 2)(n− l + 1)]
1
2 n′ = n + 2

− 1
2ζ−3[(n + l + 1)(n + 2− l)(n− l)(n + l + 3)(n + l + 2)(n + 1− l)]

1
2 n′ = n + 3

Charles W. Clark and K. T. Taylor [27] have found, that it is usually preferable to

choose higher values ofζ; for instance, in calculations usingζ = 2
n , intended to determine

energies near the ionization limit.
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Our numerical simulations consist in diagonalizing the matrix representing the operator

(3.2) in a Sturmien base. The matrix elements of generators are notα dependent.

3.2 Types of simulations realizable:

The four terms involved in the equation (3.2) depend on the parameterα so differently.

By setting 3 of 4 coefficients, we obtain a general problem for eigenvalues of the form :

(M − λN) |Ψ〉 = 0

whereM and N matrix are fixed,λ and |Ψ〉 are the eigenvalues and eigenvectors

searched

3.2.1 Simulation at fixed magnetic field:

We opted forα = α0 = Cte and we fix the magnetic field. We obtain an equation in

the generalized eigenvalues with :

M = A(α) − α0 +
γ2α4

0

2
C(α)

N = B(α)

λ = −2Eα2
0

which determines the energy levels.

3.2.2 Simulation at fixed energy:

We opted forα = α0 = Cte and we fix the energy. We obtain an equation in the

generalized eigenvalues with :

M = A(α) − α0 + (−2Eα2
0)B

(α)

N = C(α)

λ =
γ2α4

0

2

which determines the spectrum of magnetic field values corresponding to the fixed energy.

Note: The two types of simulations lead strictly to the same results. The choice of one or

the other is dictated slowly by considerations of convenience.

3.2.3 Diagonalization algorithm and convergence criterion:

The matrix elements of generators (
−→
S (α),

−→
T (α)) in a Sturmian basis have rules selec-

tion. The matrix eigenvalue problem generalized to solve are real symmetric matrices in

strips.
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To calculate the eigenvalues and eigenvectors we used our technique (digital diagonal-

ization with Maple).

Control parameterα0 : For each of the two types of simulations possible, have an

adjustable parameterα0 to check convergence. In fact,α0 is related to the natural frequency

of the basic oscillator (Sturmian) chosen. Exact searched values are not dependent on this

parameter. At a fixed base size, the function representing the eigenvalue as a function of

α0 has a bearing more or less marked around the exact eigenvalue. A wide bearing and flat

ensures that the result is converged [15].

3.3 Energy diagrams:

By using the simulation 3.2.1 at fixed magnetic field, we can draw for a large number

of points diagramsEnergy = f(γ2) in the fig.1, fig.2, fig.3 and fig.4. The levels are

followed from their zero-field positions through the inter-l and inter-n diamagnetic mixing

regimes.

Figure 3.1: The energy spectrum of hydrogen atom highly excitedn = 33 in strong magnetic

field. [1]

Fig. 3.1 shows the diagramE(Hartree ) = f(γ2) for Rydberg statesn = 33 in the

system with rather low field (B < 3T ). Diamagnetism breaks the zero-fieldl-degeneracy

of hydrogen.

In very weak field (l-system inter-mixing), the diamagnetic term completely removes

the degeneracy of the levels proportional toγ2. This is known as thel-mixing regime. We

see the rovibrationnelle structure:

(a) the vibrational levels below the diamagnetic multiplet
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(b) the rotational levels up the diamagnetic multiplet

(c) and to the transition between the two: the effect of the conventional separation char-

acterized by a tightening levels.

Figure 3.2: Level scheme of the hydrogen atom(corresponding to principal quantum numbersn =

30− 32) in the energy [Hartree] as a function of the square of the magnetic field strength. [1]

Fig. 3.2 shows the behavior of the energy levels of the hydrogen atom originating from

multiplets with principal quantum numbers between30 and32 in the magnetic field range

1− 3T . In this regime where the classical movement is regular, the energy levels intersect.

Fig. 3.3 represents the diagramE = f(γ2) for Rydberg statesn = 30−32 in the regime

of intermediate field where the Coulomb and diamagnetic interactions are of comparable

strength. A new phenomenon occurs: classically chaotic dynamics appears, it is precisely

the classical movement near the separation between rotational and vibrational states which

becomes chaotic for the weakest fields. In fact, these states do not possess a well defined

symmetry [41]. The vibrational symmetry is destroyed. Finally, in a strong field, higher

thanβ =
γ2

(−2E)3
> 60, Fig. 3.4 shows that the rotational symmetry is destroyed, the

classical dynamic is totally chaotic and quantum spectrum includes only large anticrossing

[42].

3.4 The effect of relativistic terms4El =
α2

2n3l(l + 1)
on the diagrams.

The relativistic effects and the spin of the electron contribute to the splitting of the

atomic levels. For the hydrogen atom, the relativistic effects are not great and can be taken

into account within the limits of the perturbation theory. However, for heavy atoms the
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Figure 3.3: Diagram of energy levels of the hydrogen atom in strong magnetic field. Regime of

intermediate magnetic field(β = γ2

(−2E)3
' 2). [1]

Figure 3.4: Diagram of energy levels of atomic hydrogen in strong magnetic field. Intense regime

field (B > 18 T ).

relativistic effects are significant. The levels shift [27] due to this effect can be written as

4El =
α2

2n3l(l + 1)
,
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whereα =
1
~c
' 1

137
is the fine structure constant which defines the scale of the splitting.

We have realized the simulation at fixed energy forn = 31 by varying l from 20 to 30.

We have obtained in the Fig. 3.5 the diagram of the magnetic field squareγ2 in function of

orbital angular momentuml which illustrates the presence of an extremely negligible fact.

We worked with Maple, with 30 digits. We found a difference between the values, for

Figure 3.5: Plot of the magnetic field square as a function ofl ∈ {20, 22, 24, 26, 28} for energy

E(Hartree):E20=-0.00052029136103,E22=-0.00052029136139,E24=-0.00052029136167,E26=-

0.00052029136188,E28=-0.00052029136206.

l = 0 andl = 25 start to deviate after the20th digit.

4 Conclusion

Our work is based on the study of the hydrogen atom which is excited by a magnetic

field. We have numerically calculated the spectrum and the eigenstates using the diagonal-

ization calculus developing an effective code ”Digital diagonalization with Maple”. The

choice of state basis(sturmian basis) adopted to dynamic symmetries is essential in order

not to fulfill the computer memory. We explored some quantum characteristics. More

precisely, in a weak field the diamagnetic term removes the degeneracy of energy levels.
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Table 3.1: digitalγ2 values respectively forl = 0 andl = 25.

l = 0 l = 25
8112. 48887151932428052036789625 8112. 48887151932428052038597198

10. 5497442621773535663292557818 10. 5497442621773535663284177593

3. 02914395117583018951410518181 3. 02914395117583018951390427913

1. 61221133342516959894728897195 1. 61221133342516959894718913517

1. 03831258540381408533201380784 1. 03831258540381408533195280131

. 738537746730232564534039579702 . 738537746730232564533997817243

. 559685417472607242089800213308 . 559685417472607242089769303825

. 442492199317050804030807541345 . 442492199317050804030783761362

. 358420161980715210789558271207 . 358420161980715210789541396220

. 145329892956338988582252985358 . 145329892956338988582248351595

. 291177146019978828877059598414 . 291177146019978828877052263475

. 171378671744125914435791750787 . 171378671744125914435786579823

. 239974276777479248254893091822 . 239974276777479248254887245569

As soon as the magnetic field rises any symmetry will be destroyed, the different states

will integrate and the energy levels will be strengthly crossed. This effect is known as the

quantum chaos. Furthermore, we studied the energy difference taking into account the rel-

ativistic effect (spin-orbit interaction). We show that the effect of spin-orbit is very low (20

order of magnitude lower) compared to non-relativistic Hamiltonian and can be neglected.
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de Paris and Université Pierre-et-Marie-Curie in France in

1998. He spent the last two years in USA as researcher at

the Institute for Quantum Science and Engineering Institute for

Quantum Studies, Texas A&M University as well as visiting

scientist at Princeton University. He is an associate member at the International Centre

of Theoretical Physics in Trieste. His research interest is related to quantum optics, non-

linear, chaotic processes, stochastic processes and mathematical physics as well as their

applications.


