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Abstract: This paper is committed to solve nonhomogeneous fractionalordinary differential equations both of single and multiple
fractional orders where in most cases, the celebrated Mittag-Leffler function is involved in the nonhomogeneous part. Avital result is
established and the solution of forced nearly simple harmonic vibration equation is graphically represented amongst others.
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1 Introduction

Integral transform methods are amongst the most effective methods of solving both differential and integral equations
of integer and fractional order. According to Belgacem and Silambarasan [1], integral transform method is most gifted
technique in the mathematics world for solving differential equations.
The Natural transform evolved from the Fourier integral andit converges into Laplace transform [2,3,4] and Sumudu
transform [5,6] given a unit value to each transform parameters respectively. The definition of the Natural transform and
the study of their properties and applications were first done by Khan and Khan [7]. Several research works in connection
with Natural transforms properties and applications are published in [1,7]. More about Laplace and Sumudu transforms
relating to definition and properties, list of transform of several functions and applications are available in [2,3,4] and [8,
9,10,11] respectively.
In this paper, we solve non-homogeneous fractional ordinary differential equations where the non-homogeneous part isa
product of polynomial of fractional order and Mittag-Leffler functions using the Natural transform which makes it unique
from the previous articles such as [12]. Indeed, the Natural transform is the generalization of the Laplace and Sumudu
transforms hence, the technique has combined advantages associated with Laplace and Sumudu methods. An important
theorem is proved and some basic definitions and concepts used in this paper are also presented. In Section 2 we review
basic definitions and results. In Section 3 the Natural transform will be used to solve certain non-homogeneous fractional
differential equations. In the last section we state our conclusions.

2 Basic Definitions

Fractional calculus: Given a functionv(t) , the Caputo derivative [13] is defined as

C
0Dα

x (v(x)) =

{

1
Γ(n−α)

∫ x
0 (x− t)n−α−1 dnv(t)

dtn dt, n−1< α < n
dn

dtn v(t) , α = n
(1)

while Riemann-Liouville derivative [14] is

Dα
x (v(x)) =

{

1
Γ(n−α)

dn

dxn

∫ x
0 (x− t)n−α−1v(t)dt, n−1< α < n

dn

dtn v(t) , α = n
, (2)
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wheren∈ Z
+ α ∈ R

+.

The Riemann-Liouville fractional integral operator [14] of orderα ≥ 0, of a functionv(t), is defined as

Jαv(x) =
1

Γα

∫ x

0
(x− t)α−1v(t)dt, α > 0, x> 0. (3)

The Natural transform of a real valued, sectionwise continuous and exponential order functionv(t)> 0 andv(t) = 0 for
t < 0 defined in the set

A=

{

v(t) |∃M, τ1, τ2 > 0, |v(t)|< Me
t

τ j , if t ∈ (−1) j × [0∞)

}

, (4)

is given by [1]

N
+ [v(t)] = R(s,u) =

∫ ∞

0
e−stv(ut)dt; s> 0, u> 0, (5)

wheres andu are the transform variables. The Natural transform converges to Laplace transform whenu ≡ 1 [2,3,4]
while it converges to Sumudu transform whens≡ 1 [5,6].

The inverse Natural transform is defined in [15]

N
− [R(s,u)] = v(t) =

1
2π i

∫ c+i∞

c−i∞
e

st
u R(s,u)ds. (6)

The duality relation between Natural-Laplace and Natural –Sumudu transforms [1] are given by

R(s,u)=
1
u

F
( s

u

)

;R(s,u)=
1
s

G
(u

s

)

. (7)

whereR(s,u) is the Natural transform,F(s) is the Laplace transform andG(u) is the Sumudu transform. The following
standard results on Natural transform of derivatives, the Natural transform of fractional derivative and integral of orderα,

multiple shift and convolution theorem were found to be useful in this paper and are stated inform of lemmas but proof
with other details are referred to [16,12].

Lemma 1.If f (t) is a function defined on the set A as in equation(4), and its nth order derivative of f(t) with respect to t
exists then, the Natural transform of the nth derivative is given by

N
+
[

f ′(t)
]

=
s
u

R(s,u)−
f (0)

u
, (8)

N
+
[

f ′′(t)
]

=
s2

u2 [R(s,u)− s f(0)]−
f ′ (0)

u
, (9)

and generally,

N
+
[

f (n)(t)
]

=
sn

un R(s,u)−
n

∑
k=0

sn−(k+1)

un−k f (k) (0) . (10)

where R(s,u) denotes the Natural transform of the function f(t) . Furthermore, the Natural transforms of the
fractional derivative and fractional integral both of order α of the function f(t) are defined respectively by

N
+ [Dα [ f (t)]] =

sα

uα R(s,u)−
n

∑
k=0

sα−(k+1)

uα−k f (k) (0) , (11)

and

N
+
[

D−α [ f (t)]
]

=
uα

sα R(s,u) . (12)

Lemma 2.If F1 (s,u) andF2(s,u) are the Natural transforms of the functions f1 (x) and f 2(x) respectively, defined in set
A then the convolution is given by

N
− {uF1(s,u)F2(s,u)}=

∫ t

0
f1 (x) f2(t − x)dx. (13)
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Mittag-Leffler function: The special function

Eα (x) =
∞

∑
k=0

xk

Γ(αk+1)
, α > 0, (14)

and its general form

Eα ,β (x) =
∞

∑
k=0

xk

Γ(αk+β )
, α > 0, β > 0, (15)

are called Mittag-Leffler functions [17,18].

Theorem 1.For α,β ∈R and if f(t) is defined on A then,

N
+
[

tβ−1Eα ,β (λ tα)
]

=
1
u

[

(

s
u

)α−β

(

s
u

)α
−λ

]

, for all α > 0, β > 0. (16)

Proof: By definition of the Natural transform

N
+ [v(t)] = R(s,u) =

1
u

∫ ∞

0
e−stv(ut)dt or N

+ [v(t)] = R(s,u) =
1
u

∫ ∞

0
e−

st
u v(t)dt,

so that

N
+
[

tβ−1Eα ,β (λ tα)
]

=
1
u

∫ ∞

0
e−

st
u tβ−1Eα ,β (λ tα)dt =

1
u

∫ ∞

0
e−

st
u tβ−1

∞

∑
k=0

(λ tα)k

Γ(αk+β )
dt,

=
1
u

∞

∑
k=0

λ k

Γ(αk+β )

∫ ∞

0
e−

st
u tβ+α−1dt =

1
u

∞

∑
k=0

λ k

Γ(αk+β )

∫ ∞

0
e−

st
u tβ+αk−1dt.

Putting x= st
u ,

1
u

∞

∑
k=0

λ k

Γ(αk+β )

∫ ∞

0
e−

st
u tβ+αk−1dt =

1
u

∞

∑
k=0

λ k

Γ(αk+β )
(

s
u

)β+αk

∫ ∞

0
e−xxβ+αk−1dx,

=
1
u

∞

∑
k=0

λ k

Γ(αk+β )
(

s
u

)β+αk
Γ(αk+β ) =

1
u

1
(

s
u

)β

∞

∑
k=0

λ k

(

s
u

)αk ,

=
1
u

1
(

s
u

)β

∞

∑
k=0

(

λ
(

s
u

)α

)k

=
1
u

1
(

s
u

)β

[

(

s
u

)α

(

s
u

)α
−λ

]

=
1
u

[

(

s
u

)α−β

(

s
u

)α
−λ

]

,

as required.

Remarks: The following results are worth noting as special cases of the theorem above:

1.

If α > 0, β = 1 then, N
+ [Eα ,1(λ tα)] =

1
u

1
(

s
u

)

[

(

s
u

)α

(

s
u

)α
−λ

]

. (17)

2.

If α > 0, β = α then, N
+
[

tα−1Eα ,α(λ tα)
]

=
1
u

[

1
(

s
u

)α
−λ

]

. (18)

3.

If α > 0, β = 1 then, N+ [1−Eα(−λ tα)] =
1
u

1
(

s
u

)

[

λ
(

s
u

)α
+λ

]

. (19)
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3 Natural Transform Application

In this section, the natural transform will be used to solve certain non-homogenous fractional differential equations.
Example 1.Solve a forced nearly simple harmonic vibration equation using the Natural transform,

Dα [V (t)]+ω2V (t) = k, 1≤ α ≤ 2 (20)

with the initial conditions
V (0) = c0, V ′ (0) = c1.

Solution: By taking the Natural transform of equation (20) and applying the initial conditions, using equation (11) and
together with relevant standard results (16) and (19), it gives

N
+ [Dα [V (t)]]+ω2

N
+ [V (t)] = kN+ [1]

( s
u

)α
R(s,u)−

n

∑
k=0

sα−(k+1)

uα−k f (k) (0)+ω2R(s,u) =
1
u

k
(

s
u

) ,

i.e.
( s

u

)α
R(s,u)−

sα−1

uα V (0)−
sα−2

uα−1V ′ (0)+ω2R(s,u) =
1
u

k
(

s
u

) ,

or
( s

u

)α
R(s,u)+ω2R(s,u) =

1
u

[

sα−1

uα−1c0+
sα−2

uα−2c1+
k
(

s
u

)

]

,

or
[( s

u

)α
+ω2

]

R(s,u) =
1
u

[

sα−1

uα−1c0+
sα−2

uα−2c1+
k
(

s
u

) ,

]

R(s,u) =
1
u





(

s
u

)α−1

[

(

s
u

)α
+ω2

]c0+

(

s
u

)α−2

[

(

s
u

)α
+ω2

]c1+
k

ω2

ω2

(

s
u

)

[

(

s
u

)α
+ω2

]



 .

Taking the inverse Natural transform, it gives

V (t) = c0Eα ,1

(

−ω2t
α
)

+ c1tEα ,2
(

−ω2tα)+
k

ω2

[

1−Eα(−ω2t
α
)
]

. (21)

The solution is plotted below in Figure 1a and 1b at differentvalues ofω for c0 = c1 = k= 1:
Example 2.Solve the non-homogeneous fractional ordinary differential equation using Natural transform method

Dα [V (t)]+V (t) = tβ−1Eα ,β (t
α) , 0< α ≤ 1, β > 0, t > 0, (22)

subject to initial conditionV (0) = 0.
Solution: By invoking the Natural transform on equation (18) and applying the initial conditions, using equations (11)
and together with standard results from Theorem 1, so that

N
+ [Dα [V (t)]]+N

+ [V (t)] = N
+
[

tβ−1Eα ,β (t
α)
]

,

sα

uα R(s,u)−
n

∑
k=0

sα−(k+1)

uα−k f (k) (0)+R(s,u) =
1
u

[

(

s
u

)α−β

(

s
u

)α
−1

]

,

[( s
u

)α
+1
]

R(s,u) =
1
u

[

(

s
u

)α−β

(

s
u

)α
−1

]

,

R(s,u) =
1
u

1
[

(

s
u

)α
+1
]

[

(

s
u

)α−β

(

s
u

)α
−1

]

,
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Figure 1a: A 3D plot of solution (21) as a function oft andα for ω = 5.

Figure 1b: A 3D plot of solution (21) as a function oft andα for ω = 10.

V (t) = N
−







1
u

1
[

(

s
u

)α
+1
]

[

(

s
u

)α−β

(

s
u

)α
−1

]







.

Now, the convolution theorem is easily applied to evaluate the inverse Natural transform thus:

N
− {uF1(s,u) .F2(s,u)} =

∫ t

0
f1 (x) f2(t − x)dx,

N
−







1
[

(

s
u

)α
+1
]







= tα−1Eα ,α (tα) ,
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Figure 2a: A 3D plot of solution (23) as a function oft andβ for α = 0.1.

N
−

[

(

s
u

)α−β

(

s
u

)α
−1

]

= tβ−1Eα ,β (−tα) ,

N
−







1
u

1
[

(

s
u

)α
+1
]

[

(

s
u

)α−β

(

s
u

)α
−1

]







=
[

tα−1Eα ,α (tα)
]

∗
[

tβ−1Eα ,β (−tα)
]

=

∫ t

0
xα−1Eα ,α (xα)(t − x)β−1Eα ,β

[

−(t − x)α]dx,

Comparing with the standard result below as in [16]

∫ x

0
uγ−1Eα ,γ (yuα)(x−u)β−1Eα ,β

[

z(x−u)α]du=
yEα ,β+γ (yxα)− zEα ,β+γ(zxα)

y− z
xβ+γ−1

,

wherey,z∈C;y 6= z, β > 0, γ > 0, it implies that

∫ t

0
xα−1Eα ,α (xα) (t − x)β−1Eα ,β

[

−(t − x)α]dx=
Eα ,β+α (tα)+Eα ,β+α(−tα)

2
tβ+α−1

,

∴ V (t) =
Eα ,β+α (t

α)+Eα ,β+α(−tα)

2
tβ+α−1

. (23)

The solution (23) is also plotted at four different values ofα against thet andβ in Figure 2a-2c.
Example 3. Solve the multi-order non-homogeneous fractional ordinary differential equation using Natural transform
method.

Dα [V (t)]+Dβ [V (t)] =−V (t)+ t−αE1,1−α (t)+ t−βE1,1−β (t)+et (24)

subject to initial conditionV (0) = 0.
Solution: By invoking the Natural transform on equation (24) and applying the initial conditions, using equations (11)
and standard results from Theorem 1,

N
+
[

Dα [V (t)]+Dβ [V (t)]
]

=−N
+ [V (t)]+N

+
[

t−αE1,1−α (t)
]

+N
+
[

t−β E1,1−β (t)
]

+N
+
[

et]
,

( s
u

)α
R(s,u)−

n

∑
k=0

sα−(k+1)

uα−k f (k) (0)+
( s

u

)β
R(s,u)−

n

∑
k=0

sβ−(k+1)

uβ−k
f (k) (0)+R(s,u)
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Figure 2b: A 3D plot of solution (23) as a function oft andβ for α = 0.5.

Figure 2c: A 3D plot of solution (23) as a function oft andβ for α = 0.9.
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=
1
u

[

(

s
u

)α

s
u −1

]

+
1
u

[

(

s
u

)β

s
u −1

]

+
1
u

[

1
s
u −1

]

,

( s
u

)α
R(s,u)−Dα−1[V (t)]t=0+

( s
u

)β
R(s,u)−Dβ−1[V (t)]t=0+R(s,u)

=
1
u

[

1
s
u −1

][

( s
u

)α
+
( s

u

)β
+1

]

,

( s
u

)α
R(s,u)+

( s
u

)β
R(s,u)+R(s,u) =

1
u

[

1
s
u −1

][

( s
u

)α
+
( s

u

)β
+1

]

,

R(s,u) =
1
u

[

1
s
u −1

]

,V (t) =N
−

{

1
u

[

1
s
u −1

]}

= et
. (25)

Example 4.Solve the non-homogeneous fractional ordinary differential equation

Dα [V (t)]−V (t) =
tβ−α−1

Γ(β −α)
−

tβ−1

Γ(β )
, 0< α < 1, ∞ < β < ∞, t > 0, (26)

subject to initial conditionV (0) = 0.
Solution: By invoking the Natural transform on equation (26) and applying the initial conditions, using standard results
from [1]

N
+ [Dα [V (t)]]−N

+ [V (t)]=N
+

[

tβ−α−1

Γ(β −α)

]

−N
+

[

tβ−1

Γ(β )

]

,

sα

uα R(s,u)−
n

∑
k=0

sα−(k+1)

uα−k f (k) (0)−R(s,u) =
1

Γ(β −α)
N

+ [

tβ−α−1
]

−
1

Γ(β )
N

+ [

tβ−1
]

,

sα

uα R(s,u)−Dα−1[V (t)]t=0−R(s,u) =
1

Γ(β −α)
Γ(β −α)

uβ−α−1

sβ−α −
1

Γ(β )
Γ(β )

uβ−1

sβ ,

but
Dα−1[V (t)]t=0 = 0.

sα

uα R(s,u)−R(s,u) =
uβ−α−1

sβ−α −
uβ−1

sβ ,

(

sα

uα −1

)

R(s,u) =

(

u−α

s−α −1

)

uβ−1

sβ , R(s,u) =
uβ−1

sβ =
1

Γ(β )
Γ(β )

uβ−1

sβ .

By taking the inverse Natural transform

V (t) =
1

Γ(β )
N

−
[

Γ(β )
uβ−1

sβ

]

=
tβ−1

Γ(β )
,

∴V (t) =
tβ−1

Γ(β )
. (27)

4 Conclusion

In this paper, the Natural transform was applied to solve single and multi-order nonhomogeneous fractional differential
equations. Some basic concepts about the Natural transformand fractional calculus were also presented as background of
the work.
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