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1 Introduction

The notion ofI−convergence initially introduced by
Kostyrko, Salat and Wilczynski [1]. Later on, it was
futher investigated from the sequence space point of view
and linked with the summability theory by Salat, Tripathy
and Ziman [2,3], Tripathy and Hazarika [4,5,6] and
Kumar and Kumar [7], Aiyub [26], Khan et.al [27] and
many others authors.

Let X be a non-empty set, then a family of setsI ⊂ 2X

(the class of all subsets ofX) is called anideal if and only
if for eachA,B∈ I , we haveA∪B∈ I and for eachA∈ I
and eachB ⊂ A, we haveB ∈ I . A non-empty family of
setsF ⊂ 2X is afilter on X if and only if φ /∈ F , for each
A,B ∈ F , we haveA∩B ∈ F and eachA ∈ F and each
A ⊂ B, we haveB ∈ F. An ideal I is callednon-trivial
ideal if I 6= φ andX /∈ I . Clearly I ⊂ 2X is a non-trivial
ideal if and only ifF = F(I) = {X−A : A∈ I} is a filter
onX. A non-trivial idealI ⊂ 2X is calledadmissibleif and
only if {{x} : x∈ X} ⊂ I . A non-trivial idealI is maximal
if there cannot exists any non-trivial idealJ 6= I containing
I as a subset. Further details on ideals of 2X can be found
in Kostyrko, et.al [1].

Lemma 1.1.([1, Lemma 5.1]) IfI ⊂ 2N is a maximal ideal,
then for eachA⊂ N we have eitherA∈ I or N−A∈ I .

Example 1.2.If we take I = I f = {A ⊆ N : A is a finite
subset}. ThenI f is a non-trivial admissible ideal ofN and

the corresponding convergence coincide with the usual
convergence.

Example 1.3. If we take I = Iδ = {A⊆ N : δ (A) = 0}
whereδ (A) denote the asymptotic density of the setA.
Then Iδ is a non-trivial admissible ideal ofN and the
corresponding convergence coincide with the statistical
convergence.

Kızmaz [8] defined the difference sequence spaces
ℓ∞(∆),c(∆) andc0(∆) as follows: ForZ = ℓ∞,c andc0

Z(∆) = {x= (xk) : (∆xk) ∈ ∆Z},

where∆x= (∆xk) = (xk− xk+1), for all k∈ N. The above
spaces are Banach spaces, normed by

‖x‖= |x1|+ sup
k
‖∆xk‖ .

The idea of Kizmaz [8] was applied to introduce
different type of difference sequence spaces and study
their different properties by Tripathy ([9,10]), Et and Esi
[11] and many others.

Recall in [12] that anOrlicz function Mis continuous,
convex, nondecreasing function is defined forx > 0 such
that M(0) = 0 and M(x) > 0. If convexity of Orlicz
function is replaced byM(x+ y) ≤ M(x)+M(y) then this
function is called themodulus functionand characterized
by Ruckle [13]. An Orlicz function M is said to satisfy
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∆2−condition for all values ofu, if there existsK > 0
such thatM(2u)≤ KM(u), u≥ 0.

Lemma 1.4.Let M be an Orlicz function which satisfies
∆2−condition and let 0< δ < 1. Then for eacht ≥ δ , we
haveM(t)< Kδ−1tM(2) for some constantK > 0.

Two Orlicz functions M1 and M2 are said to be
equivalentif there exist positive constantsα,β and x0
such that

M1(α)≤ M2(x)≤ M1(β )

for all x with 0≤ x< x0.
Lindenstrauss and Tzafriri [14] studied some Orlicz

type sequence spaces defined as follows:

ℓM =

{

(xk) ∈ w :
∞

∑
k=1

M

( |xk|
ρ

)

< ∞, for someρ > 0

}

.

The spaceℓM with the norm

||x||= inf

{

ρ > 0 :
∞

∑
k=1

M

( |xk|
ρ

)

≤ 1

}

becomes a Banach space which is called anOrlicz
sequence space. The spaceℓM is closely related to the
space ℓp which is an Orlicz sequence space with
M(t) = |t|p, for 1≤ p< ∞.

In the later stage, different classes of Orlicz sequence
spaces were introduced and studied by Parashar and
Choudhary [15], Esi and Et [16], Et, Altin, Choudhary
and Tripathy [17], Altinok, Altin and Isik [18], Gungor,
Et and Altin [19], Hazarika et.al [24], Hazarika and Esi
[25], Esi and Ozdemir [28] and many others.

Throughout the articleN and R denote the set of
positive integers and set of real numbers, respectively.
The zero sequence is denoted byθ .

A sequence spaceE is said to besolid (or normal)if
(yk) ∈ E whenever(xk) ∈ E and|yk| ≤ |xk| for all k∈ N.

Lemma 1.5.([20, page 53]) A sequence spaceE is normal
impliesE is monotone.

Let n∈ N andXn be a real vector space of dimension
n. A real-valued function‖., ..., .‖ on Xn satisfying the
following four conditions:

(i) ‖x1,x2, ...,xn‖ = 0 if and only if x1,x2, ...,xn are
linearly dependent,

(ii) ‖x1,x2, ...,xn‖ is invariant under permutation,
(iii) ‖αx1,x2, ...,xn‖= |α|‖x1,x2, ...,xn‖, α ∈ R,
(iv) ‖x1+ xı

1,x2, ...,xn‖≤‖x1,x2, ...,xn‖+‖xı
1,x2, ...,xn‖

is called ann−normon Xn, and the pair(Xn,‖., ..., .‖) is
called ann−normed space[21].

A trivial example of n−normed space isXn = Rn

equipped with the following Euclideann−norm:

‖x1,x2, ...,xn‖E = abs





∣

∣

∣

∣

∣

∣

x11...x1n
...

xn1...xnn

∣

∣

∣

∣

∣

∣





wherexi = (xi1, ...,xin) ∈ Rn for eachi = 1,2, ...,n.

Lemma 1.6.Every n-normed space is an(n− r)−normed
space for all r = 1,2, ...,n − 1. In particular every
n-normed space is a normed space.

Lemma 1.7.A standardn−normed space is complete if
and only if it is complete with respect to usual norm‖.‖=√
<,>.

Lemma 1.8. On a standard n-normed spaceX, the
derived from (n − 1)−norm ‖.., ., ...‖∞ defined with
respect to the orthogonal set{e1,e2,...,en} is equivalent to
the standard(n− 1)−norm ‖.., ., ...‖S. To be precise, for
all z1,z2, ...,zn−1 ∈ X, we have

‖z1,z2, ...,zn−1‖∞ ≤ ‖z1,z2, ...,zn−1‖S

≤
√

n‖z1,z2, ...,zn−1‖∞ ,

where
‖z1,z2, ...,zn−1‖∞ = max1≤i≤n{‖z1,z2, ...,zn−1,ei‖S} .

Some counter examples for n-normed spaces can be
found in Dutta et.al [29].

2 Some New Sequence Spaces

The following well-known inequality will be used
throughout the article. Letp = (pk) be any sequence of
positive real numbers with 0≤ pk ≤ supk pk = G,
D = max{1,2G−1} then

|ak+bk|pk ≤ D(|ak|pk + |bk|pk)

for all k∈ N andak,bk ∈C. Also |ak|pk ≤ max
{

1, |ak|G
}

for all ak ∈C.
The main aim of this article is to introduce the

following sequence spaces and examine topological and
algebraic properties of the resulting sequence spaces.

In paper [22], Mursaleen and Noman introduced the
notion of λ -convergent andλ -bounded sequences as
follows: Letλ = (λk)

∞
k=0 be a strictly increasing sequence

of positive real numbers tending to infinity, that is

0< λo < λ1 < ... andλk → ∞ ask→ ∞

and let

Λk (x) =
1
λk

k

∑
m=1

(λm−λm−1)xm.

Let I be an admissible ideal ofN and letp= (pk) be a
bounded sequence of positive real numbers for allk ∈ N.
Let M = (Mk) be a sequence of Orlicz functions and
(X,‖., ..., .‖) be ann−normed space. Furtherw(n−X)
denotes X−valued sequence space, we define the
following sequence spaces as follows:
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cI (M ,Λ ,p,‖...,...‖)∆

=
{

(xk) ∈w(n−X) :
{

k∈N :
[

Mk

(∥

∥

∥

∥

Λk (∆x)−L
ρ

,z1,z2, ...,zn−1

∥

∥

∥

∥

)]pk

≥ε
}

∈I ,

for someρ > 0 andL and for everyz1,z2, ...,zn−1∈X
}

,

cI
o(M ,Λ ,p,‖...,...‖)∆

=
{

(xk) ∈w(n−X) :
{

k∈N :
[

Mk

(∥

∥

∥

∥

Λk (∆x)
ρ

,z1,z2, ...,zn−1

∥

∥

∥

∥

)]pk

≥ ε
}

∈ I ,

for someρ > 0 and for everyz1,z2, ...,zn−1 ∈ X
}

,

ℓI
∞(M ,Λ ,p,‖...,...‖)∆

=
{

(xk) ∈w(n−X) : ∃K > 0 such that
{

k∈N :
[

Mk

(∥

∥

∥

∥

Λk (∆x)
ρ

,z1,z2, ...,zn−1

∥

∥

∥

∥

)]pk

≥ K

}

∈ I ,

for someρ > 0 and for everyz1,z2, ...,zn−1 ∈ X
}

and

ℓ∞(M ,Λ , p,‖...,...‖)∆

=
{

(xk) ∈ w(n−X) : ∃K > 0 such that

sup
k

[

Mk

(∥

∥

∥

∥

Λk (∆x)
ρ

,z1,z2, ...,zn−1

∥

∥

∥

∥

)]pk

≤ K,

for someρ > 0 and for everyz1,z2, ...,zn−1 ∈ X
}

.

3 Main Results

In this section we examine the basic topological and
algebraic properties of these spaces and obtain the
inclusion relation between these spaces.
Theorem 3.1. If {Λk(∆x),z1,z2, ...,zn−1} is a linearly
dependent set in(X,‖...,...‖) for all but finite k, where
x= (xk) ∈ w(n−X) and infk pk > 0, then

(a) I−limk→∞

[

Mk

(∥

∥

∥

Λk(∆x)
ρ ,z1,z2, ...,zn−1

∥

∥

∥

)]pk
= 0,

for someρ > 0,

(b) supk
[

Mk

(∥

∥

∥

Λk(∆x)
ρ ,z1,z2, ...,zn−1

∥

∥

∥

)]pk
< ∞, for

someρ > 0.
Proof. (a) Suppose that{Λk(∆x) ,z1,z2, ...,zn−1} is a
linearly dependent set in(X,‖...,...‖) for all but finite k.
Then we have

‖Λk (∆x) ,z1,z2, ...,zn−1‖→ 0 ask→ ∞.

SinceMk is continuous for allk and 0≤ pk ≤ supk pk =
G< ∞ for eachk, then we have

I − lim
k→∞

[

Mk

(∥

∥

∥

∥

Λk (∆x)
ρ

,z1,z2, ...,zn−1

∥

∥

∥

∥

)]pk

= 0,

for someρ > 0.
(b) The proof of this part is similar to part (a).

Theorem 3.2.cI
o(M ,Λ ,p,‖...,...‖)∆ , cI (M ,Λ ,p,‖...,...‖)∆

and ℓI
∞(M ,Λ ,p,‖...,...‖)∆ are linear spaces.

Proof. We will proved the result for the space
cI

o(M ,Λ , p,‖...,...‖)∆ only, and the others can be proved
in similar way. Letx= (xk) andy= (yk) be two elements
in cI

o(M ,Λ , p,‖...,...‖)∆ . Then for every
z1,z2, ...,zn−1 ∈ X there existρ1 > 0 andρ2 > 0 such that

Aε
2
=
{

k∈N:
[

Mk

(∥

∥

∥

Λk(∆x)
ρ ,z1,z2, ...,zn−1

∥

∥

∥

)]pk ≥ ε
2

}

∈ I

and

Bε
2
=
{

k∈N:
[

Mk

(∥

∥

∥

Λk(∆y)
ρ ,z1,z2, ...,zn−1

∥

∥

∥

)]pk ≥ ε
2

}

∈ I .

Let α,β be two scalars. SinceM = (Mk) is a sequence
of continuous functions, the following inequality holds:
[

Mk

(∥

∥

∥

∥

Λk (∆ (αx+βy))
|α|ρ1+ |β |ρ2

,z1,z2, ...,zn−1

∥

∥

∥

∥

)]pk

≤D
|α|ρ1

|α|ρ1+ |β |ρ2

[

Mk

(∥

∥

∥

∥

Λk (∆ (x))
ρ1

,z1,z2, ...,zn−1

∥

∥

∥

∥

)]pk

+D
|β |ρ2

|α|ρ1+ |β |ρ2

[

Mk

(∥

∥

∥

∥

Λk (∆ (y))
ρ2

,z1,z2, ...,zn−1

∥

∥

∥

∥

)]pk

≤DK

[

Mk

(∥

∥

∥

∥

Λk (∆ (x))
ρ1

,z1,z2, ...,zn−1

∥

∥

∥

∥

)]pk

+DK

[

Mk

(∥

∥

∥

∥

Λk (∆ (y))
ρ2

,z1,z2, ...,zn−1

∥

∥

∥

∥

)]pk

,

whereK = max

{

1,
(

|α |ρ1
|α |ρ1+|β |ρ2

)G
,
(

|β |ρ2
|α |ρ1+|β |ρ2

)G
}

.

From the above relation we obtain the following:
{

k∈ N :
[

Mk

(∥

∥

∥

Λk(∆ (αx+β y))
|α |ρ1+|β |ρ2

,z1,z2, ...,zn−1

∥

∥

∥

)]pk ≥ ε
}

⊆
{

k∈ N : DK
[

Mk

(∥

∥

∥

Λk(∆ (x))
ρ1

,z1,z2, ...,zn−1

∥

∥

∥

)]pk ≥ ε
2

}

∪
{

k∈ N : DK
[

Mk

(∥

∥

∥

Λk(∆ (y))
ρ2

,z1,z2, ...,zn−1

∥

∥

∥

)]pk ≥ ε
2

}

∈ I .

This completes the proof.

Remark 3.3. It is easy to verify that the space
ℓ∞(M ,Λ , p,‖...,...‖)∆ is a linear space.

The proof of the following theorem is similar to [23,
Theorem 2.2], therefore we omit it.
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Theorem 3.4. The spaceℓ∞(M ,Λ , p,‖...,...‖)∆ is a
paranormed space (not totally paranormed) with the
paranormg defined by

g(x)= inf

{

ρ
pk
G :sup

k

[

Mk

(∥

∥

∥

Λk(∆x)
ρ ,z1,z2, ...,zn−1

∥

∥

∥

)]pk ≤1,

for someρ > 0 and for everyz1,z2, ...,zn−1 ∈ X
}

,

whereG= max{1,suppk}.

Theorem 3.5.Let M = (Mk) andS= (Sk) be sequences of
Orlicz functions. Then the following hold:

(i) cI
o(S,Λ , p,‖...,...‖)∆ ⊆ cI

o(M ◦ S,Λ , p,‖...,...‖)∆ ,
providedp= (pk) be such thatG0 = inf pk > 0.

(ii) cI
o(M ,Λ , p,‖...,...‖)∆ ∩ cI

o(S,Λ , p,‖...,...‖)∆ ⊆
cI

o(M +S,Λ , p,‖...,...‖)∆ .

Proof. (i) Let ε > 0 be given. Chooseε1 > 0 such that

max
{

εG
1 ,ε

G0
1

}

< ε. Choose 0< δ < 1 such that 0< t < δ
implies thatMk(t)< ε1 for eachk∈N. Letx= (xk) be any
element incI

o(S,Λ , p,‖...,...‖)∆ . For everyz1,z2, ...,zn−1 ∈
X, put

Aδ =

{

k∈ N :

[

Sk

(∥

∥

∥

∥

Λk (∆x)
ρ

,z1,z2, ...,zn−1

∥

∥

∥

∥

)]pk

≥ δ G
}

.

Then by the definition of ideal we haveAδ ∈ I . If k /∈ Aδ
we have
[

Sk

(∥

∥

∥

∥

Λk (∆x)
ρ

,z1,z2, ...,zn−1

∥

∥

∥

∥

)]pk

<δ G, for k= 1,2, ...,n

⇒ Sk

(∥

∥

∥

∥

Λk (∆x)
ρ

,z1,z2, ...,zn−1

∥

∥

∥

∥

)

< δ , (3.1)

SinceM = (Mk) is a sequence of continuous functions,
from the relation (3.1) we have

Mk

(

Sk

(∥

∥

∥

∥

Λk (∆x)
ρ

,z1,z2, ...,zn−1

∥

∥

∥

∥

))

< ε1,

for k= 1,2,3, ...,n. Consequently we get

[

Mk

(

Sk

(∥

∥

∥

Λk(∆x)
ρ ,z1,z2, ...,zn−1

∥

∥

∥

))]pk
<max

{

εG
1 ,ε

G0
1

}

<ε

⇒
[

Mk

(

Sk

(∥

∥

∥

Λk(∆x)
ρ ,z1,z2, ...,zn−1

∥

∥

∥

))]pk
< ε.

This implies that

{

k∈N :
[

Mk

(

Sk

(∥

∥

∥

Λk(∆x)
ρ ,z1,z2, ...,zn−1

∥

∥

∥

))]pk ≥ε
}

⊆Aδ ∈ I .

This completes the proof.
(ii) Let x = (xk) ∈ cI

o(M ,Λ , p,‖...,...‖)∆ ∩
cI

o(S,Λ , p,‖...,...‖)∆ . Then by the following inequality

the result follows:
[

(Mk+Sk)

(∥

∥

∥

∥

Λk (∆x)
ρ

,z1,z2, ...,zn−1

∥

∥

∥

∥

)]pk

≤D

[

Mk

(∥

∥

∥

∥

Λk (∆x)
ρ

,z1,z2, ...,zn−1

∥

∥

∥

∥

)]pk

+D

[

Sk

(∥

∥

∥

∥

Λk (∆x)
ρ

,z1,z2, ...,zn−1

∥

∥

∥

∥

)]pk

.

The proof of the following theorems are easy and so
omitted.

Theorem 3.6.Let 0< pk ≤ qk and
(

qk
pk

)

is bounded, then

cI
o(M ,Λ ,q,‖...,...‖)∆ ⊆ cI

o(M ,Λ , p,‖...,...‖)∆ .

Theorem 3.7.For any two sequencesp = (pk) andq =
(qk) of positive real numbers, then the following holds:

Z(M ,Λ , p,‖...,...‖)∆ ∩Z(M ,Λ ,q,‖...,...‖)∆ 6= φ ,

for Z = cI ,cI
o, ℓ

I
∞ andℓ∞.

Proposition 3.8. The sequence spaces
Z(M ,Λ , p,‖...,...‖)∆ are normal as well as monotone for
Z = cI

0 andℓI
∞.

Proof. We shall give the prove of the proposition for
cI

o(M ,Λ , p,‖...,...‖)∆ only. Let x = (xk) ∈ cI
o(M ,Λ , p,

‖...,...‖)∆ and y = (yk) be such that|yk| ≤ |xk| for all
k∈ N. Then for givenε > 0 we have

B=
{

k∈ N :
[

Mk

(∥

∥

∥

Λk(∆x)
ρ ,z1,z2, ...,zn−1

∥

∥

∥

)]pk ≥ ε
}

∈ I .

Again the set

E=
{

k∈ N :
[

Mk

(∥

∥

∥

Λk(∆y)
ρ ,z1,z2, ...,zn−1

∥

∥

∥

)]pk ≥ ε
}

⊆B.

Hence E ∈ I and soy = (yk) ∈ cI
o(M ,Λ , p,‖...,...‖)∆ .

Thus the spacecI
o(M ,Λ , p,‖...,...‖)∆ is normal. Also

from the Lemma 1.5., it follows that
cI

o(M ,Λ , p,‖...,...‖)∆ is monotone.
In view of Lemma 1.8., we state the following theorem.

Theorem 3.9.Let X be a standardn−normed space and
{e1,e2,...,en} be an orthonormal set inX. Then the
following holds:

(a)cI (M,Λ , p,‖...,...‖∞)∆ = cI (M,Λ , p,‖...,...‖n−1)∆ ,
(b) cI

o(M,Λ , p,‖...,...‖∞)∆ =cI
o(M,Λ , p,‖...,...‖n−1)∆ ,

(c) ℓI
∞(M,Λ , p,‖...,...‖∞)∆ =ℓI

∞(M,Λ , p,‖...,...‖n−1)∆ ,
(d) ℓ∞(M,Λ , p,‖...,...‖∞)∆=ℓ∞(M,Λ , p,‖...,...‖n−1)∆ ,

where ‖...,...‖∞ is derived (n− 1)−norm defined with
respect to the set{e1,e2,...,en} and ‖...,...‖n−1 is the
standard(n−1)−norm onX.
Theorem 3.10. The spacescI (M ,Λ , p,‖...,...‖)∆ and
cI (M , p,‖...,...‖∞)∆ are equivalent as topological spaces.

Proof. Consider the mappingT : cI (M ,Λ , p,‖...,...‖)∆ →
cI (M , p,‖...,...‖∞)∆ defined byT(x) = (Λk (∆x)) for each
x= (xk)∈ cI (M ,Λ , p,‖...,...‖)∆ . Then clearlyT is a linear
homeomorphism and the proof follows.
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4 Conclusion:

In this paper defined some new difference sequence
spaces combining the concepts of Orlicz function ad
I-convergence. Further, we proved some topological and
algebraic properties of resulting spaces. This notion can
be used for further generalization of such spaces.
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