
 

*Corresponding author e-mail: krehman@math.qau.edu.pk 
© 2016 NSP 

Natural Sciences Publishing Cor. 

 

 

 Inf. Sci. Lett. 5, No. 2, 35-45 (2016) 35 

 
               http://dx.doi.org/10.18576/isl/050201 

                                                                                                                                                         
 

Effects of Second Order Chemical Reaction on MHD Free Convection Dissipative Fluid Flow past 

an Inclined Porous Surface by way of Heat Generation: A Lie Group Analysis 

M. Y. Malik and Khalil-ur-Rehman* 

Department of Mathematics, Quaid-i-Azam University Islamabad 44000, Pakistan. 

Received: 21 Feb. 2016, Revised: 20 Apr. 2016, Accepted: 24 Apr. 2016. 

Published online: 1 May 2016. 

 

Abstract: In this paper, an analysis has been made to explore the characteristics of second order chemical reaction on steady 

two-dimensional MHD flow of electrically conducting, viscous incompressible fluid in a porous media with heat and mass 

transfer. A role of free convection is explored by considering viscous dissipation term in energy equation. The symmetry 

groups admitted by governing boundary value problem are obtained via Lie algebra. The corresponding Lie's scaling group 

of transformations are used to convert coupled non-linear partial differential equations into non-linear ordinary differential 

equations. Consequently, numerical solution of these equations are investigated by using fifth order R-K (Runge-Kutta) 

algorithm with shooting technique. The present study revealed that the dimensionless temperature variation is on a serious 

node against heat generation parameter. Furthermore, effect logs of velocity, temperature and concentration distribution 

aimed at different physical parameters are discussed graphically. Numerical values of skin friction, Nusselt and Sherwood 

numbers against various embedded parameters are validated by favourable comparison with previously published results. 

Keywords: Lie group analysis, MHD flow, Porous medium, Natural convection, Viscous dissipation, Heat generation, 

Chemical reaction.

1 Introduction 

Integration theory for differential equations was proposed by 

Norwegian mathematician Sophus Lie in early nineteenth 

century and has played a central role regarding mathematical 

traits of solution system governed by continuous differential 

equations. Lie group analysis generally called as Lie 

symmetry analysis was established to find out continuous 

point transformations which map a concerning differential 

equation to itself. By using symmetry analysis we can clip 

all symmetries of given differential equations without prior 

knowledge of equations and ad hoc assumptions. Whereas, 

Lie's scaling transformation is used to obtain invariants, 

similarity solutions, solution integrals, to mention just a few 

[1]-[4]. Mostly the non-linear character of differential 

equations made task hard to trace out the solution of physical 

problems. So, many researchers in this frame of interest are 

still busy to search out the similarity solutions especially in 

the field of fluid mechanics. As far as scaling point group of 

transformations are concern, the group invariant solutions 

are nothing but the well familiar similarity solutions [5]. 

Since the Prandtl's boundary layer equations admits number 

of distinct symmetry groups therefore, several attempts has 

been made to study physical phenomena’s like Yurusoy and 

Pakdemirli [6] identified symmetry reductions for three 

dimensional unsteady non-Newtonian fluids flow. 

Kalpakides and Balassas [7] studied the boundary layer fluid 

flow over an elastic surface by utilizing group theoretic 

approach. Hassan et al. [8] deliberated the variable viscosity 

effects of MHD boundary layer fluid flow due to stretching 

sheet by way of Lie group. Sivansankaran et al. [9] 

investigated the heat and mass diffusion of natural 

convection fluid flow over an inclined surface by using Lie 

group approach. 

Plasma theory, nuclear reactors, MHD electrolysis designs, 

MHD generators, glass manufacturing and paper 

productions are the practical works corresponds to magneto-

hydrodynamic flow of an electrically conducting fluid. The 

purification process of melted metals from non-metallic 

inclusions demands different hydro-magnetic techniques and 

careful use of magnetic field. Further, MHD free convection 

fluid flows claims several noteworthy applications in the 

area of aeronautical plasma, electronics, planetary magneto-

spheres and chemical engineering cite. Thus such type of 

viscous flow problems with which we are dealing, is much 

more useful. Petroleum engineering, industrial filtration, 

water purification, storage of vegetables and fruits, solid 

matrix heat exchangers and nuclear waste give rise to the 

study of heat transfer  by convection through surfaces which 

are embedded in a porous media. Whereas, the combined 

diffusion of mass and heat against involved geometries 

embedded in a porous media has vast geophysical and 

engineering applications like cooling of nuclear reactor, 
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drying of porous solids, enhanced oil recovery and 

underground energy transportation etc. Beithou et al. [10] 

considered the free convection flow with porosity effect 

adjacent to vertical plate surrounded by porous medium. The 

natural convection flow past over a porous inclined surface 

was taken by Chen [11]. Devi and Ganga [12] explored the 

viscous dissipation effect on nonlinear MHD flow along a 

stretching porous surface. The concept of simultaneous heat 

and mass diffusion have received significant intensions 

regarding practical interest in engineering areas like polymer 

solution, wet-bulb thermometer and food processing etc. 

Several solutions of viscoelastic fluid by considering MHD 

slip flow along a stretching sheet was proposed by 

Turkyilmazoglu [13]. Subhashini et al. [14] explored the 

simultaneous influence of heat and mass diffusions with 

mixed convection boundary layer flow past a porous surface 

along convective surface endpoint conditions. Heat analysis 

of Eyring-Powell fluid flow over a continuously moving 

surface with convective endpoint conditions was identified 

by Hayat et al. [15]. Reddy et al. [16] considered heat and 

mass diffusion effects on free convection dissipative, steady 

MHD fluid flow past over an inclined porous surface. Heat 

analysis regarding viscous dissipative fluid flow along a 

vertical plate by means of induced magnetic field was taken 

by Raju et al. [17]. 

There are different types of reactions namely, endothermic, 

exothermic, homogeneous and heterogeneous. They may be 

first or higher order. Solar collectors, nuclear reactor safety 

and combustion system to mention just a few includes the 

transporting process, which are directed by coupled action of 

buoyancy forces due to both heat and mass transfer under 

high order chemical reaction effects. A species molecular 

diffusion with chemical reaction in or at the boundary 

involves number of concrete diffusive operations and still a 

topic of great interest. The effect logs of thermal 

stratification, chemical reaction by way of heat source along 

a stretching sheet was studied by Kandasamy et al. [18]. 

Mingchun et al. [19] considered the influence of strong 

endothermic chemical reaction under non-thermal 

equilibrium flow model of porous medium. Thermally 

stratified flow along a stretching surface with chemical 

reaction and heat source was taken by Kishan and Amrutha 

[20]. Kandasamy et al. [21] identified the free convective 

heat and mass transfer fluid flow past a stretching surface 

with chemical reaction and thermophoresis effect by using 

group theory. The first order homogeneous chemical 

reaction effects on two dimensional boundary layer flow 

over a vertical stretching surface was numerically examined 

by Makinde and Sibanda [22]. Tripathy et al. [23] considered 

chemical reaction impacts on free convection MHD fluid 

flow past a moving vertical permeable plate. The effect logs 

of chemical reaction on a boundary layer flow through a 

linearly stretching sheet with heat mass transfer effect was 

studied by Ferdows et al. [24].  

The above literature survey shows that most of the 

investigations are made against lower order chemical 

reactions and reveals that as yet, no study has been testified 

on MHD two dimensional incompressible dissipative 

boundary layer fluid flow with heat and mass transfer over a 

porous media under high order chemical reaction by means 

of heat generation effect. Therefore, the aim of our analysis 

is to extend the work of Reddy et al. [25] by considering high 

order chemical reaction with heat generation effect 

Application of Lie algebra reduced the system of coupled 

non-linear partial differential equations into a system of 

coupled non-linear ordinary differential equations by 

dropping independents. This system remains invariant under 

defined relation among the parameters of transformations. 

Furthermore, these transformed equations are solved with 

the aid of fifth order Runge-Kutta algorithm with shooting 

technique and results so obtained are in good agreement with 

previously published results of Reddy et al. [25]. 

2 Flow analysis 

Consider steady two-dimensional hydro-magnetic 

incompressible electrically conducting laminar flow of a 

viscous dissipating fluid past over a semi-infinite acutely 

inclined plate embedded in a porous media with 

manifestation of chemically reactive species (undergoing a 

second order chemical reaction). It is made-up that the fluid 

flow is along axisx  and axisy  is normal to it. 

Influence of an induced magnetic field is ignored due to 

assumption taken into account that the magnetic Reynolds 

number is considerably less than unity. 

 

 Fig. 1(a). Schematic diagram of the flow model. 

The fluid properties are considered to be constant except the 

effects of density variation under temperature and 

concentration. Temperature difference is developed by 

maintaining surface at temperature wT , which is higher than 

the T ( constant temperature ) of the surrounding fluid and 

concentration wC  is greater than the C (constant 

concentration) . In the present analysis, Soret and Dufour 

effects are unimportant because foreign mass concentration 
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level is supposed to be low. The governing mass, 

momentum, energy and mass concentration equations of this 

flow model under the usual boundary layer and Boussinesq's 

approximations are given by: 

0,
u v

x y

 
 
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                          (1)                                                                                                 
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where ( , )u v  denotes components of the velocity in the 

( , )x y  directions, 



  , g , T , T , T ,  C , C , 

C ,  ,  , 0B , pK , k , pc ,  , 0Q , D , rK , and m  

is the kinematic viscosity, gravitational acceleration, thermal 

expansion coefficient, temperature in the boundary layer, 

fluid temperature far away from the surface, concentration 

expansion coefficient, species concentration in the boundary 

layer, species concentration in the fluid far away from the 

surface, fluid density, fluid electrical conductivity, applied 

magnetic field strength, permeability of the porous medium, 

thermal conductivity of the fluid, specific heat at constant 

pressure, viscosity coefficient, heat generation constant, 

mass diffusivity, chemical reaction rate constant and order 

of chemical reaction respectively. The boundary conditions 

at the plate and far away from surface are prescribed as: 
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Proceeding with analysis, we introduce a non-dimensional 

quantities 
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Incorporating Eq. (6) into Eqs. (1)-(4), we get 
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the resultant boundary conditions are 
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By using velocity components in terms of stream function 

 as:  
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the reduced boundary conditions takes the form                  
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  (15)                                                           

To find out the solution of Eqs. (12) (14)  is same as to 

determine the invariant solutions under a particular 

continuous one parameter group. We are looking for 

transformations group from a elementary set of one 

parameter scaling transformations. So, Lie-group 

transformations ( Reddy et al. [25] ) are given by: 

3 5 6 71 2 4: , , , , , , ,x xe y ye e u ue v ve e e
                          

(16)              
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Here 1 , 2 3 4 5 6, , , ,     and 7  denotes 

transformation parameters and   is a small parameter. The 

point-transformations Eq. (16)  reduces the coordinates 

( , , , , , , )x y u v    into new coordinates 

( , , , , , , )x y u v         . Now substituting Eq. (16) in 

Eqs. (12)-(14), we find that 
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the boundary conditions are transformed as follows: 
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The scaling group of transformations , make system 

invariant if following parameters relation will hold  

1 2 3 2 3 6 7 2 32 2 3 ,                 
 

1 2 3 6 2 6 2 3 62 4 2 ,                  

1 2 3 7 2 7 72 ,m              

by using elementary algebra, we get  

2 1 3 4 1 5 1 6 7

1 1 1 1
, , , 0, 0,

4 3 2 4
                

thus resultant one-parameter group of transformations is 

given as: 

31 1 1 1
1 4 4 2 4: , , , , , , ,x xe y ye e u ue v ve

   
       

               

now expanding by Taylor's method up to   2o  , we have  

     

   

2 2 21 1
1

2 21 1

3
, , ,

4 4

, , 0, 0,
2 4

x x x o y y y o o

u u u o v v v o

 
     

 
       

  

   

          

          

 

the associated characteristic equations are :             
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by solving Eq. (21), we get concerning similarity 

transformations: 
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using these values in Eqs. (17) (19) under boundary 

conditions Eq. (20), ultimately we attain system of ordinary 

differential equations given as:  
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the transformed boundary conditions are given as: 
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3 Numerical Scheme 

The system of governing coupled non-linear ordinary 

differential Eqs. (23) (25) subjected to endpoint 

conditions Eq. (26) have been solved by take on shooting 

method with fifth order R-K (Runge-Kutta) algorithm. The 

above mentioned highly non-linear ordinary differential 

equations with endpoints Eq. (26) are transformed into a 

first order system of equations. Let us suppose 
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by introducing these new variables in Eqs. (23)-(25), we get 

   

21

32

2 31 1
2 1 3 4 6 23 2 4

54

23
1 5 3 45 4

76

3
6 1 77 4

'

'

'

' ,

Pr[ ]'

'

[ ( ) ]'

K

m

ll

ll

l l l Grl Gml Cos M ll

ll

l l Ecl Qll

ll

Sc Cr l l ll



  
  
  
       
  

   
     
  
  
      

  (27) 

we have seven new variables i.e 
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In order to integrate Eq. (27) as a IVP we require a values 

for  3 0l i.e.  0f  ,  5 0l i.e.  0 and  7 0l

implies  0 . Note that the initial conditions  3 0 ,l  

   5 70 , 0l l  are not given but we have additional 

endpoint conditions  

 

 

 

 

2

4

6

0,

0,

0.

l

l

l

 

 

 

                     (29)                                                                                              

Choose favourable guess values for    '' 0 , 0f   and

 0 so that the integration of system of first order 

differential equation carried out in such way the endpoint 

conditions in Eq. (29) hold absolutely. Step size  

0.09    is used to find the numerical solution by four 

decimal accuracy as convergence criteria. 

4 Results and Discussion 

In this endorsement, investigations for the absolute insights 

of the physical model of the viscous incompressible, 

electrically conducting fluid embedded in a porous medium 

with high order chemical reaction effect has been carried out 

by using numerical approach. Tables 1-6 and Figs. 1-10 are 

provided to demonstrate the typical effects of physical 

parameters i.e magnetic parameter M, heat generation 

parameter Q, Prandtl number Pr, permeability parameter K, 

Eckert number Ec, Schmidt number Sc, temperature Grashof 

number Gr, species Grashof number Gm, chemical reaction 

parameter Cr, order of reaction m. The default parameter 

values for current computational analysis are given as K = 

1.0, Q = 0.1, M = 1.0, Ec = 0.01, Cr = 0.5, α  = 30⁰, Gr = 2.0, 

Gm = 2.0, Pr = 0.71 and Sc = 0.6, all graphic results 

corresponds to these values unless directed on the 

appropriate graphs.  

 

 

Table 1. Numerical computations of  '' 0f ,  ' 0  and  ' 0  over Gr, Gm, M and K for Ec = 0.01, Pr = 0.71, Cr 

= 0.5, Sc = 0.6, Q = 0. 

 

Gr 

 

Gm 

 

M 

 

K 

Reddy et al. [25] 

 𝐟′′(𝟎)     −𝛉′(𝟎)      −𝛟′(𝟎) 

Present results 

 𝐟′′(𝟎)   −𝛉′(𝟎)  −𝛟′(𝟎) 

2.0 2.0 1.0 1.0 1.67872 0.37536 0.632846 1.6761 0.3766 0.6304 

3.0 2.0 1.0 1.0 2.06767 0.404755 0.648809 2.0278 0.4000 0.6418 

4.0 2.0 1.0 1.0 2.44141 0.429506 0.66312 2.4066 0.4232 0.6602 

2.0 3.0 1.0 1.0 2.03459 0.399334 0.646135 2.0585 0.3986 0.6408 

2.0 4.0 1.0 1.0 2.38237 0.420826 0.658602 2.3959 0.4207 0.6501 

2.0 2.0 2.0 1.0 1.49761 0.348147 0.619813 1.4838 0.3454 0.6137 

2.0 2.0 3.0 1.0 1.36399 0.327933 0.610413 1.3087 0.3279 0.6184 

2.0 2.0 1.0 2.0 1.49761 0.348174 0.619813 1.4833 0.3454 0.6137 

2.0 2.0 1.0 3.0 1.36399 0.327933 0.610413 1.3083 0.3279 0.6114 
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Table 2. Numerical computations of  '' 0f ,  ' 0  and  ' 0  over Pr, Ec and α for K = 1.0, Gr = 2.0, M = 1.0, 

Gm = 2.0, Sc = 0.6, Q = 0. 

 

Pr 

 

Ec 

 

α 

Reddy et al. [25] 

 𝐟′′(𝟎)  −𝛉′(𝟎)    −𝛟′(𝟎) 

Present results 

𝐟′′(𝟎)    −𝛉′(𝟎)      −𝛟′(𝟎) 

0.71 0.01 300 1.67872 0.37536 0.632846 1.6761 0.3766 0.6304 

1.0 0.01 300 1.64902 0.429375 0.629509 1.6405 0.3297 0.6294 

2.0 0.01 300 1.57721 0.570278 0.622038 1.5740 0.5748 0.6264 

0.71 0.1 300 1.68425 0.337882 0.633256 1.6809 0.3327 0.6306 

0.71 0.2 300 1.69051 0.29549 0.633719 1.6930 0.2906 0.6367 

0.71 0.01 450 1.39653 0.352877 0.621139 1.3992 0.3540 0.6214 

0.71 0.01 600 1.01526 0.318826 0.60434 1.0984 0.3161 0.6091 

Table.3 Numerical computations of      '' 0 , ' 0 and ' 0f     over Sc and Cr for Ec= 0.01, Pr= 0.71, K= 1.0,    

Gr = Gm = 2.0, M= 1.0, α= 300 , Q= 0. 

 

Sc 

 

Cr 

Reddy et al. [25] 

𝐟′′(𝟎)       −𝛉′(𝟎)       −𝛟′(𝟎) 

Present results 

   𝐟′′(𝟎)  − 𝛉′(𝟎)  −𝛟′(𝟎) 

0.5 0.5 _ _ _ 1.6972 0.3801 0.5968 

0.6 0.5 1.76872 0.37536 0.632846 1.6893 0.3777 0.6089 

0.78 0.5 1.65106 0.369773 0.716312 1.6761 0.3763 0.6304 

1.0 0.5 1.62341 0.364526 0.805778 1.6545 0.3647 0.7406 

0.6 1.0 1.6253 0.36603 0.828406 1.6211 0.3628 0.8096 

0.6 2.0 1.55591 0.355191 1.12767 1.6209 0.3620 0.8252 

Table 4. Zeroth order missing slope for various values of Q and Sc. 

 Sc 

Q     

−𝐟 ′′ (𝟎) −𝛉′(𝟎) −𝛟′(𝟎) 

0.22 0.62 0.78 0.22 0.62 0.78 0.22 0.62 0.78 

0.0 1.1408 1.0846 1.0637 0.4204 0.4135 0.4109 0.4268 0.5885 0.6504 

0.1 1.1562 1.1003 1.0794 0.3576 0.3500 0.3471 0.4274 0.5900 0.6522 

0.2 1.1732 1.1175 1.0968 0.2902 0.2816 0.2784 0.4280 0.5916 0.6542 

0.3 1.1920 1.1366 1.1160 0.2172 0.2076 0.2041 0.4286 0.5935 0.6565 
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Table 5. First order missing slope for various values of  Q and Sc. 

 Sc 

Q 

− 𝐟 ′′(𝟎) −𝛉′(𝟎) −𝛟′(𝟎) 

0.22 0.62 0.78 0.22 0.62 0.78 0.22 0.62 0.78 

0.0 1.1510 1.1159 1.1040 0.4217 0.4175 0.4161 0.4028 0.5134 0.5531 

0.1 1.1663 1.1313 1.1193 0.3591 0.3544 0.3528 0.4033 0.5148 0.5547 

0.2 1.1832 1.1482 1.1363 0.2918 0.2865 0.2848 0.4039 0.5162 0.5565 

0.3 1.2018 1.1669 1.1550 0.2190 0.2132 0.2112 0.4045 0.5178 0.5584 

Table 6. Second order missing slope for various values of  Q and Sc. 

     Sc 

Q 

− 𝐟 ′′(𝟎) −𝛉′(𝟎) −𝛟′(𝟎) 

0.22 0.62 0.78 0.22 0.62 0.78 0.22 0.62 0.78 

0.0 1.1549 1.1257 1.1156 0.4222 0.4187 0.4175 0.3921 0.4854 0.5190 

0.1 1.1702 1.1409 1.1308 0.3596 0.3557 0.3543 0.3927 0.4868 0.5206 

0.2 1.1870 1.1577 1.1475 0.2924 0.2879 0.2864 0.3932 0.4882 0.5223 

0.3 1.2056 1.1762 1.1661 0.2197 0.2147 0.2130 0.3939 0.4899 0.5243 

The effects of physical parameters over skin friction 

coefficient, wall temperature and wall concentration gradient 

are numerically obtained and presented through Tables 1-3. 

It has found from Table 1 that the skin friction coefficient, 

wall temperature gradient i.e. heat transfer rate and wall 

concentration gradient i.e. mass transfer rate increases for 

higher values of thermal and solutal Grashof number. 

Whereas the skin friction coefficient, Nusselt and Sherwood 

number shows opposite comportment against increasing 

values of M (magnetic parameter ) and K (permeability 

parameter).  Table 2 shows that the heat transfer rate 

decreases for higher values of Eckert number Ec and 

inclination α, while it shows increasing behavior for 

increasing values of Prandtl number Pr. Table 3 indicates 

that the mass transfer rate increasing as chemical reaction 

parameter Cr and Schmidt number Sc increases. Progressive 

values of the buoyancy parameters that is thermal Grashof 

number (Gr > 0) and solutal Grashof number (Gm > 0) are 

reported. Gr > 0 relates to cooling of plate, whereas Gm > 0 

implies that the concentration  of chemical species in the free 

stream regime is less then the concentration at the endpoint 

surface. Fig. 1 paints the influence of permeability parameter 

K on both velocity and temperature distribution. It has been 

observed that throughout the boundary layer regime by 

increasing permeability parameter K velocity profile 

decreases and the presence of porous media creates huge 

resistance to fluid flow due to which trifling changes occurs 

in momentum boundary layer and hence inciting of fluid 

temperature appeared. The response of temperature and 

velocity profiles for various values of heat generation 

parameter Q is depicted in Fig. 2. Temperature profile is 

effected significantly and increases against larger values of 

heat generation parameter Q > 0. Higher values of the Q 

(heat generation parameter) generates energy which results 

enhancement of velocity. Infect, this change (increase) in the 

average kinetic energy produces an increment in the flow 

field velocity due to buoyancy effect. Influence of applied 

magnetic field on flow field is reported in Fig. 3. It is found 

that magnetic field has a prominent reducing effect on the 

velocity profile. This fact is due to retarding-type force i.e 

Lorentz force because application of transverse magnetic 

field perpendicular to the x -axis along which fluid flow is 

assumed give rise to Lorentz force, which has tendency to 

deaccelerate fluid particles and hence velocity profile 

decreases. Fig. 3 also shows that temperature profile 

increases for magnetic parameter M. For higher values of 

magnetic parameter M , magnitude of Lorentzian retardation 

increases so work has been done by fluid to overcome this 

resistive force and this supplementary work is then 

dissipated as a thermal energy which is the source so that the 

fluid to be heated in a boundary layer and hence temperature 

increases. From figure it is also perceived that the counter-

productive effect of heating the viscous fluid is on a serious 

node therefore, to achieve flow regulation, to avoid 

excessive temperatures and growth of the thermal boundary 

and to explore the desired fluid characteristics, intelligent 

use of magnetic field is required. The viscous dissipation 

parameter i.e. Ec (Eckert number ) the addition of heat due 

to viscous dissipation and is equal to 0.01 for incompressible 

fluids i.e ∇⋅V=0. Influence of Eckert number Ec over 

temperature and velocity profiles is sketched in Fig. 4 and it 
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is evident that in the presence of heat source parameter the 

viscous dissipation leads to increase in temperature profile. 

The positive values of Ec indicates cooling of plate that is, 

loss of heat from the surface to the fluid so that the greater 

values of viscous dissipative heat cause enhancement of 

temperature and velocity profile as well. In addition, it has 

been seen that magnitude of the thermal boundary layer is 

significantly large under viscous dissipation effect. The 

effects of chemical reaction parameter Cr on the temperature 

and velocity profile are analyzed in Fig. 5. It shows that the 

temperature profile increases throughout the boundary layer 

regime, due to increasing values of chemical reaction 

parameter Cr. Since chemical energy is converted into 

thermal energy which results fluid warmness. Whereas, the 

velocity profile decreases across the boundary layer by 

increasing Cr.  

Fig. 6 is plotted to examine the influence of acute angle α on 

velocity distribution. Vertical surface produce inciting 

attitude in velocity as compare to inclined surface. This is 

due to buoyancy effect because the plate is inclined and have 

gravity component cosα. So that higher values of  

inclination,  the productive involvement of buoyancy force 

falls by a factor of cosα. Ultimately the driven force for the 

fluid reduces which yields decrease in velocity profile. 

Physical interpretation of thermal Grashof number Gr is 

assinged via Fig. 7. The comparative influence of the 

thermal buoyancy force towards viscous hydro- dynamic 

force signifies by thermal Grashof number Gr. So increase 

in Gr means increment in thermal buoyancy force in a flow 

regime which results increase in velocity profile. It has been 

observed from Fig. 7 there is a sharp evolution in the velocity 

near the porous surface. The velocities shoots towards 

extreme and then decays properly to zero far from the plate. 

We observed that the monotonically decrease of velocities 

from peak values to the free stream zero satisfying the far 

field endpoint conditions. The effect of solutal Grashof 

number Gm over velocity profile is given by Fig. 8. It is seen 

that larger values of solutal Grashof number Gm brings 

increase in velocity profile within a boundary layer.  

Fig. 9 is used to examine the impact of Prandtl number Pr 

over temperature distribution. Prandtl number Pr has inverse 

relation with thermal conductivity so from physical point of 

view it is clear that the lager Prandtl number reflects weaker 

thermal diffusivity and hence thinner thermal boundary 

layer. Whereas, it is also observed that the temperature 

profile increases for high order chemical reaction m. Fig. 10 

is sketched to explore the behavior of Schmidt number Sc 

and high order chemical reaction m. It is evident that the 

concentration profile decreases for higher values of Schmidt 

number Sc. For higher values of Schmidt number Sc 

concentration buoyancy effects reduces which yields 

decrease in the flow velocity. Further, Schmidt number Sc is 

the  ratio of the momentum to the mass diffusivity so the 

relative influence of momentum diffusion to species 

diffusion is signifies by Schmidt number. When Sc is unity 

it mean both momentum and species will diffuse at equal rate 

in the flow regime. Under this case both momentum and 

concentration boundary layer will be of same order of 

magnitude. Note that for Sc > 1 diffusion of momentum will 

be faster than that of species diffusion and for Sc < 1 

diffusion of species overcome momentum diffusivity. The 

influence of order of chemical reaction over concentration 

profile is depicted in Fig. 10 as well.  

The concentration profile increases as order of chemical 

reaction increases i.e m = 0, m = 1, m = 2. Tables 4-6 

recapitulated the numerical computations of skin friction 

coefficient, heat and mass transfer rate for zeroth, first and 

second order chemical reaction over 0.22 ≤  Sc  ≤  0.78. It is 

concluded that the skin friction coefficient increases whereas 

heat transfer rate decreases for increasing values of heat 

generation parameter Q. Whereas, there is a trifling increase 

in mass transfer rate against heat generation parameter Q. It 

is also observed that the skin friction coefficient and heat 

transfer rate exhibit greater values in case of hydrogen i.e Sc 

= 0.22 than that of water vapour (Sc = 0.62) and NH₃ i.e Sc 

= 0.78. Whereas, mass transfer rate show greater values for 

NH₃ as compare to hydrogen and water vapour, for K = 1.0, 

Gr = 2.0, M = 1.0, Gm = 2.0, Pr = 0.71, α = 30⁰ , Ec = 0.01, 

Cr  = 0.5. 

 

Fig. 1. Influence of curvature parameter K on velocity and 

temperature distribution. 

 

Fig. 2. Influence of heat generation parameter Q on velocity 

and temperature distribution. 
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Fig. 3. Influence of magentic parameter M on velocity and 

temperature distribution. 

 

Fig. 4. Influence of Eckert number Ec on velocity and 

temperature distribution. 

 

Fig. 5. Influence of chemical reaction parameter Cr on 

velocity and temperature distribution. 

 

Fig. 6. Influence of inclination   on velocity distribution. 

 

Fig. 7. Influence of thermal Grashof number Gr on velocity 

distribution. 

 

Fig. 8. Influence of solutal Grashof number Gm on velocity 

distribution. 

 

Fig. 9. Influence of Prandtl number Pr and order of chemical 

raeaction m on temperature distribution. 

 

Fig. 10. Influence of Schmidt number Sc and order of 

chemical raeaction m on concentration distribution. 
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5 Concluding Remarks 

The present computational analysis helps us to understand 

physically the natural convection two dimensional steady 

incompressible, chemically reacting viscous fluid flow past 

over a porous plate in the presence of heat generation and 

viscous dissipation. Due to non-linearity factor, it is not a 

easy task to solve governing equations of motion to get 

complete physical description. Method of Lie group analysis 

has been adopted to tackle the difficulties appears in solving 

partial differential equations of motion. We determined the 

Lie group transformations under which the governing partial 

differential equations and associated endpoints conditions 

remain invariant and similarity variables are obtained 

through relative symmetries for current flow model which 

has extreme applications regarding practical engineering 

disciplines especially in the field of fluid mechanics. 

Ultimately reduction of independent variable generates 

system of ordinary differential equations and this system is 

solved by using fifth order R-K (Runge-Kutta) algorithm 

with shooting technique. The main finding results regarding 

physical interest of this investigation on velocity, 

temperature and concentration profiles are itemized as 

follows: 

1) The effect of permeability parameter K  on fluid flow 

is to suppress the velocity of fluid, which in turn to 

yields significant enhancement of temperature profile. 

2) Temperature and velocity profile effected considerably 

towards buoyancy effect and both increases when heat 

generation parameter Q  increases. 

3) Application of transverse magnetic field has substantial 

effect over the flow field. An increase in magnetic 

parameter M brings retardation in flow field velocity at 

all points while opposite attitude is observed in case of 

temperature distribution. 

4) Higher values of viscous dissipation parameter Ec  

leads to significant increase in temperature and velocity 

profiles. 

5) The velocity profile decreases across the boundary layer 

while temperature profile increasing throughout the 

flow regime against higher values of chemical reaction 

parameter Cr . 

6) The impact of increasing values of thermal Grashof 

number Gr and solutal Grashof number Gm is 

manifested as an increase in fluid velocity. Whereas, 

fluid velocity decreases by increasing inclination 


of 

the plate. 

7) As expected, temperature flow profile decreases for 

higher values of Prandtl number Pr while it is found that 

the temperature profile increases for high order 

chemical reaction m.  

8) The concentration flow profile decreases gradually as 

the Schmidt number Sc  increases. Whereas, it shows 

increasing behaviour for high order chemical reaction 

m. 

9) It is perceived that the skin friction coefficient and heat 

transfer rate shows inciting attitude in the case of 

hydrogen than that of water vapour and 3NH . 

Interestingly, mass transfer rate exhibit greater values 

for 3NH as compare to hydrogen and water vapour. 

10) Skin friction coefficient, heat and mass transfer rate are 

compared with that of Reddy et al. [25]. This aids to 

stability and conformity of the present analysis. 
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