J. Stat. Appl. Pro. Lett. 3, No. 3, 109-118 (2016) %u;b 109

Journal of Statistics Applications & Probability Letters
An International Journal

http://dx.doi.org/10.18576/jsapl/030302

Bayesian Analysis of Topp-Leone Distribution under Different
Loss Functions and Different Priors

Hummara Sultan™ and S. P. Ahmad
Department of Statistics, University of Kashmir, India.

Received: 20 Mar. 2016, Revised: 2 May 2016, Accepted: 5 May 2016.
Published online: 1 Sep. 2016.

Abstract: Topp-Leone distribution is a continuous unimodal distribution with wide range of applications in reliability
fields and is used for modeling lifetime phenomena. Topp-Leone distribution has a J-shaped density function with a hazard
function of bathtub-shaped. This distribution has attracted recent attention for the statistician but has not been discussed in
detail in Bayesian approach. The present study focus on the Bayesian estimation of shape parameter of Topp-Leone
Distribution under various simple and mixture priors along with different loss functions. The prior predictive and posterior
predictive distribution has also been derived. The simulation study has been conducted to compare the different Baye’s
estimators under different loss functions. A real life example has also been discussed to compare the performance of these
estimates.

Keywords:Bayesian Estimation, K-LF, generalized entropy LF, EI-Sayyad LF, Relative quadratic LF.

1 Introduction

Topp-Leone distribution was introduced and discussed by Topp and Leone [1] and used it as a model for failure data and
defined its probability density function as

2 A-1
f(x)—%(l—%j(%—%] ;0<Xx<f@<0;A>0 @)
The cumulative distribution function of (1.1) is
2
[%—%] fo<x<@ <o
F(x)=<40 ;if x<O
1 if X > 6

On implementing the restriction0 < A <1, the pdf of Topp-Leone distribution becomes a convex and decreasing J-
shaped function. For @ =1, the distribution reduces to standard Topp-Leone distribution. The cumulative distribution

function when elevated to a power of A > Qin left triangular distribution gives rise to new distribution known as Topp-
Leone distribution. Nadarajah and Kotz [2, 3] discussed its different structural properties. The reliability measures and
asymptotic distribution of order statistics of the distribution were discussed by Ghitany et al. [4, 5]. The two-sided
generalized version of the distribution was studied by Vicari et al. [6] along with its structural properties, and estimation
procedures.

Genc [7] studied the moments of order statistics from Topp—Leone distribution and obtained its single moments and a
moment relation. Al-Zahrani [8] discussed a class of goodness-of-fit tests for the Topp-Leone distribution with estimated
parameters.The researchers are greatly interested in studying the different characteristics of the distribution. Feroze et al.
[9] studied Bayesian analysis of failure rate (shape parameter) for Topp-Leone distribution under different loss functions
and a couple of non informative priors using singly type Il censored samples doubly type 1l censored samples. El-Sayed
et al. [10] discussed bayesian and non-bayesian estimation of Topp-Leone distribution based on lower record values. Mir
Mostafaee [11] presented recurrence relations for the moments of order statistics from Topp-Leone distribution without
any restrictionfor the shape parameter. Sultan et al. [12] obtained the Baye’s estimates under different informative and

*Correspondingauthore-mail:shkhumair6 @gmail.com
© 2016 NSP
Natural Sciences Publishing Cor.


http://dx.doi.org/10.18576/jsapl/030302

110 %&.‘;b H. Sultan and S. Ahmad: Bayesian analysis of Topp-Leone ...

non-informative priors of shape parameter of Topp-Leone Distribution using Bayesian approximation techniques.

2 Loss function

In decision theory the problem to estimate parameters can be formulated by using different possible actions. The
appropriate decisions need to be judged carefully. The loss which occurs with the action triggered by erroneous estimation,

i.e., by replacing parameter & with decision element v (say) is determined by loss function. The number of loss functions
has been suggested by different authors. Sultan et al. [13] studied the classical estimates and Bayesian estimates of the
parameters of lognormal distribution by using different prior distributions and loss functions.

In our presented study, the loss functions used are defined below:

K-LF:Wasan [14] proposed K-loss function and defined it as 14, 1) = 4 - ) The Baye’s estimate and posterior risk
AA

under K-LF is given by

A=JEQAINIEQX) & p(A)=2{EMA|)EA ) -3
The K-LF is well defined for measuring inaccuracy for an estimator of a scale parameter of a distribution defined on

R*(0,0)

A 2
RQLF: Zellner [15] defined RQLF of the form |(;AL, A) = (MJ and obtained Baye’s estimate and posterior risk as
A

BP0 o o o [EGPI0T

ARG &FPW E(A2]%)

GELF: The generalized entropy loss function proposed by Calabria and Pulcini [16] is the generalization of the entropy

loss function which is given as | (] — 1) o [i} —cln [i} —1 and the Baye’s estimate and posterior risk under the
A A

generalized entropy loss function is given by

A={E@A %) }‘1’“ & p(A) =IN{E(1% | X)}+¢,E (In (1] x)) provided E (1) exists and is finite.

El-sayyad LF: El-sayyad [17] proposed a loss function of the form I()AL, A) =A% (iﬂ —A”)? where «,p are constants
and the Baye’s estimate under this loss function is obtained as

a+ v
i { E@"" [x) }
E(A” | x)
3 Posterior Distribution of TL-Distribution under Extension of Jeffrey’s prior

The likelihood function of (1) is given as
n ,-1S n 2x X2
L(x|A) o A" e ** where S =->"" In o

m
The extension of Jeffrey’s prior is defined as g (4) oc | | (/1)|ml ,meR"; g(1) = (%j , meR”

m
Thus the posterior distribution is P(1]X) oc A" e s (%j
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Sn—ml+l
= PA|X)=——0 A" M @)
I'(h—m+1)

3.1 Baye’s estimators and risk functions under extension of Jeffrey’s prior using KL-LF, RQLF,
GELF, EL-Sayyad LF

In this section the Baye’s estimates and posterior risks under different loss functions are discussed.

Under KL-LF: 2= \JE(A| )/ E(A %) & p(d) = 2{E(A| ) E(A|X) -5

EQ0=""M e oS
n—-m
. Jin—m +1)(n—m,) . 2
A = S & p(Ayr) = ——
n—-m
2
s BN - [E@TI]
Under RQLF: J=—""""2 & p(A)=1--—1— "=
noerRe e L e
i s?
FA = Ty mm D
A n-m —1 R -m -1
iRQLF:w&p(ﬂ’RQLF):l_n i 2
S (n—m,)

Under GELF: 1={ E(A % [x)} & p(A) =IN{E(A"* [ )} +G,E (In(A]X))

E(17%|X) = (”‘?En‘_clr;lrﬂ)—snjé—cﬂ . E(INA|X)=¢(n-m +1)—InS

Where ¢(n—m, +1) is a digamma function.

4 _f=m-c)rn-m-c) e
T TeRE r(n—m,+1)S™

(n_ml_cl)r(n_ml_cl)
r(n—m+1)S™

PUeerr) = In{ }+c1(¢(n—ml+1)—ln8)

a+ vE
El-sayyad LF: ] — M
E(27 %)

E(/laﬁﬂlx): (n_ml_;a+ﬂ)r(n_:11ﬂ+a+ﬂ) &E(/lalx): (n_m1+a)r(n_nll+a)
(n-m +1)S r'(n-m +1)S

R _{(n—ml+a+ﬁ)1"(n—ml+a+ﬁ)}w&

A =
FLoLF (n-m +a)T(n—m, +a)S”

The risk function in case of El-Sayyad loss function is obtained as

(1) =T,1a(iﬂ — A7) P(A|X)dA
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1
r(n—m +1)S*%

= p(j’EL_SLF) =

] ] [(-msat Hro-mras PI
{(n m +a+2B)I(n—m +a+2p) (n-m +a)T(n-m +a)

4 Posterior Distribution of TL-Distribution under Erlang Prior

The Erlang prior is defined as g(A) oc 1% e*'* ;where a,,b, > Oare hyper parameters

Thus the posterior distribution is as P(A | X) oc A" g #(5*/2)

n+b -1
= P(1|x)= Mﬂnm& oA (S +1/a) @)
I'(n+b)

4.1 Baye’s estimators and risk functions under Erlang prior using KL-LF, RQLF, GELF, EL-Sayyad
LF

Under KL-LF: 4, - N +B+D(M+b) o (he)=—2

KFTTTT (5 11/a) P 1
. I _2 1
Under RQLF: 1~ :%/5‘1)& (/’LRQLF)_ b1

g
I'(n+b —-c
Under GELF: ﬂ«GELF = {F(n + él)_gsb:— :I./l;)Cl }

I'(n+b —c) (S+1/a)*
I'(n+b)

p(iGELF):In{ }+Cl(¢(n+bl)_ln (S+1/4q))

El-sayyad LF: } _ F(n+b+a+p) v
W Aaar = T(n+b +a)(S+1/a)”

The risk function in case of EI-Sayyad loss function is obtained as

1
C(n+b)(S+1/a)**

P (/iEL—SLF )=

{F(n+b1+a+2ﬂ)—[r(n+bl+a+ﬁ)] }

I'(h+b +a)
5 Posterior Distribution of TL-Distribution under Mixture of Gamma and Jeffrey’s prior

The mixture of gamma and Jeffrey’s prior is defined as

(l)ocul Ate (- u)— O<wv<1 and I, r > 0are hyper parameters.

Thus the posterior distribution is as p(4 | x) oc v — I’ AT et L1 p)Ate
I'r

- P(/”X) { | /1n+r—1 —A(S+l) +(l U)/In_l —ﬂs} (4)
a|ITr

r
o I'T'(n+r)

whereg =p—> 7
(S+H™'Ir

n
+(@1-0)— .
( )Sn
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5.1 Baye’s estimators and risk functions under mixture of gamma and Jeffrey’s prior using KL-LF,
RQLF, GELF, EL-Sayyad LF

I't(n+r+21)
(S+D™rr
I'T(n+r —1)
(S+D"rr

I'(n+1)
I'(n—-21

Under KL-LF: +@—0v) &

ALe =

+@A—v)

(S +|)n+r711—wr Sn—l (S +|)n+r+1rr Sn+1

p(/iKLF) =2 2
w

[urr(m r—1) fv) F(n—l)}[ul'l"(n+r+l) fv) r(n +1)}
1

ol'T(n+r-1) r'(n-1)
Under RQLF: ey AT g &
R I'T(n+r-2) r'(n—2)
Sn—Z

{U I'T(-r =1 , )T _11)}2
(S+D)™'rr S"
o lrr(nj:r; 2) L d-v) r(n —22)}
(S+ND)™2rr s"

+(1—v)

p(/:i’RQLF):l_ {

Under GELF:
A = 1 UI'F(n+r—c1)+(l_U) I'(n—c) e
F e | (S+D)™Terr she

(A )—Ini uIT(n+r—cl)+(1—u)1“(n—cl) . uI'F(n+r)[¢(n+r)—|n(S+I)]+(1—u)1“(n)[¢(n)—InS]
plGELF - @ (S+I)n+r7ql—~r Snfc1 Cl w(S+|)n+rl—~r w_sn

oIT+r+a+p) A-o)f(n+a+p))”
El-sayyad LF: . (S +1)" ATy + gnas
BLosE oIT(+r+a)  (L-v)[(n+a)
(S+I)n+l’+arr SI‘I+[Z

The risk function in case of El-Sayyad loss function is obtained as

oI'T(n+r+a+pf) A-v)[(n+a+p) :
A 1{lolI'Th+r+a+28) @A-v)I(n+a+2/0) (S+ D)y gnrats
= p(Ae1se) =— 2 + 2 - r
@ (S + D)2l gnrares vl F(n+r+a)+(1fu)l“(n+a)

(S + I)I‘I+r+al—~r Sn+a
6 Prior Predictive Distribution under Extension of Jeffrey’s prior

The prior predictive distribution is defined as

g(y)=[ f(y[2) g(A)da

0

Under extension of Jeffrey’s prior predictive distribution is

A-1
T 22 v\ 2y y? 1
o= (1) 2] s

(o]
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2(1-%)1"(2-:711)

L5555

7 Prior Predictive Distribution under Erlang Prior

a(y) =

Under Erlang prior, prior predictive distribution is as

A-1 b -1
_[ 24y 2y ¥y 1 (A) .
o[ 5 {1 j(e 92] airbl(aij e
_y
i)
(i)
a g 0

8 Prior Predictive Distribution under Mixture of Gamma and Jeffrey’s prior

a(y) =

Under mixture of gamma and Jeffrey’s prior, prior predictive distribution is obtained as
A-1
T 24 y y? ol" oy 1, (@A-v)
1- —= = —ATe +—=1dA
o) = ! ( j[ 0 6 rr A
uZ(l—Xer' (1—0)2(1—¥j
- % [
g(y) - 1 2 2
o[ 2% x2 _in[ 2y y? o 2X_X |In[2y_y"
v )] e & 0o ) o 0

9 Posterior Predictive Distribution under Extension Of Jeffrey’s Prior

The posterior predictive distribution for future observations Y = X_ _, is defined as
R(YIX=[f(y[2) P(A[x)d2
0

Under extension of Jeffrey’s prior, posterior predictive distribution is

0 2/1 y 2y yz -1 Sn—mlu .
Pl(y|><)=j—(1——j = - ———2A""e"dA
Lo\ o)l 6) T(n-m+l)

2(1—;)(n—m1+1)8”"‘1*1

P P n—m +2
o Q_Lz S—In ﬂ—y—z
e 0 0 0

10 Posterior Predictive Distribution under ErlangPrior

RYIx) =

Under Erlang prior, posterior predictive distribution is as

241 n-+b, -1
R(y|x) = I 24 (1 y] ﬂ_y_z (S+1/4a) Al g=A(S A g 4
oL ON0 0 r(n+b)

0
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2(1—2’) (S +1/a)"™*(n+b,)

2 2 n+b +1
o| 2 Y syt g2y Y
o 0 a, o o

11 Posterior Predictive Distribution under Mixture of Gamma and Jeffrey’s prior

g(y) =

Under mixture of gamma and Jeffrey’s prior, posterior predictive distribution is obtained as

B 2 \41 v
g(y) =] 2(1—¥j[ﬂ—y—] L {iz"”‘l et 4 (1-p)a"t e‘“} dAi

Yo\ o)\e o) w|Ir
2[1_%j 1'T(n +r +1) A-0)I(n+1)
a(y)= 2% X2 = B ner+l + > > n+1
9[7—?]5 [S+I—In[ﬂ—y—2ﬂ I'r [S—In(ﬂ—y—zﬂ
6 o 6 o

12 Simulation Study

In our simulation study we have generated a sample of sizes n=25, 50, 100 to observe the effect of small, medium, and
large samples on the estimators. The results are replicated 1000 times and the average of the results has been presented in
the tables. To examine the performance of Bayesian estimates for shape parameter of Topp-Leone distribution under
different loss functions the risks for each estimates are presented in parenthesis in the below tables.

Tablel: Baye’s estimators and posterior risk under Jeffrey’s prior

n m1=0.5 m:=1.0 mi=1.5
- 0.9581 0.9388 0.9388
Axir (0.08511) (0.08333) (0.08163)
3 0.9007 0.8815 0.8815
RQLF (0.96084) (0.96006) (0.95925)
’5 ot 0.9391 0.9199 0.9582
1 (0.02112) (0.02068) (0.02026)
GELF oot 0.9774 0.9582 0.9007
1= (0.02054) (0.02013) (0.01973)
7 1.0252 1.0061 0.9869
EL-SLF (0.08984) (0.08484) (0.08003)
- 0.7821 0.7743 0.7664
Air (0.04123) (0.04081) (0.04040)
3 0.7587 0.7508 0.7431
RQLF (0.98020) (0.98001) (0.97981)
0.7743 0.7665 0.7587
50 Ci=1
5 (0.01027) (0.01016) (0.01006)
GELF oot 0.7899 0.7821 0.7743
1= (0.01013) (0.01003) (0.00993)
7 0.8095 0.8017 0.7938
EL-SLF (0.01835) (0.01782) (0.01730)
- 0.8909 0.8865 0.8821
Air (0.02030) (0.02020) (0.02010)
3 0.8776 0.8731 0.8687
RQLF (0.99005) (0.99000) (0.98995)
0.8865 0.8821 0.8776
100 5 Cr=1 (0.00502) (0.00501) (0.00500)
GELF oot 0.8954 0.8910 0.8865
1= (0.00503) (0.00503) (0.00498)
7 0.9065 0.9021 0.8976
EL-SLF (0.041316) (0.04027) (0.03925)
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Table2: Baye’s estimate and posterior risk under erlang prior

n ai=1;b1=1.5 a1=2;b1=2.5 a1=3;b1=3.5
/?A, 0.9965 1.0529 1.0973
KLF (0.07843) (0.07547) (0.07272)
/,]’: 0.9044 0.9590 1.0029
RQLF (0.03921) (0.03773) (0.03636)
o5 Ci=1 0.9413 0.9966 1.0407
3 L (0.01947) (0.01874) (0.01764)
GELF Ci=1 0.9782 1.0342 1.0786
= (0.01898) (0.01829) (0.01807)
2’: 1.0243 1.0812 1.1258
EL-SLF (0.03245) (0.03227) (0.03220)
3 0.8008 0.8226 0.84032
KLF (0.03960) (0.03883) (0.03809)
/,1': 0.7624 0.7838 0.80145
RQLF (0.01980) (0.01941) (0.01904)
50 Ci=1 0.7778 0.7993 0.81701
;3 (0.00986) (0.00967) (0.00949)
GELF Ci=1 0.7932 0.8149 0.8325
1= (0.00974) (0.00955) (0.00937)
i 0.8124 0.8342 0.8520
EL-SLF (0.04092) (0.04084) (0.04081)
3 0.9007 0.9136 0.9238
KLF (0.01990) (0.01970) (0.01951)
2 0.8787 0.8914 0.9016
RQLF (0.00995) (0.00985) (0.00975)
100 ci=1 0.8875 0.9003 0.9105
3 1 (0.00496) (0.00491) (0.00487)
GELF Ci=-1 0.8963 0.9092 0.9194
1= (0.00493) (0.00488) (0.00483)
/{ 0.9074 0.9203 0.9305
EL-SLF (0.06825) (0.06765) (0.06523)
Table3: Baye’s estimators and posterior risk under mixture of gamma and Jeffrey’s prior
n v=0.3 v=0.9
I=1;r=1.5 1=2;r=2.5 1=3;r=3.5 I=1;r=1.5 1=2;r=2.5 1=3;r=3.5
j, 0.9566 0.8827 0.5336 1.0462 0.7489 0.3105
KLF (0.95109) | (0.18490) | (0.15390) | (0.90103) | (0.07805) | (0.05129)
ﬂ’: 0.8841 0.8889 0.9034 0.8982 0.9049 0.9105
RQLF (1) (1) (1) (1) (1) (1)
25 Ci=1 0.9224 0.9266 0.9389 0.9356 0.9409 0.9449
3 (0.04925) | (0.02516) | (0.01988) | (0.05159) | (0.01938) | (0.01582)
GELF Ci=1 0.9606 0.9642 0.9744 0.9729 0.9768 0.9794
7 1(0.02133) | (0.02117) | (0.02079) | (0.02057) | (0.02029) | (0.02006)
j: 1.0082 1.0112 1.0186 1.0196 1.0216 1.0224
EL-SLF (0.08510) | (0.08450) | (0.08149) | (0.08613) | (0.07994) | (0.07659)
ﬂt 0.7868 0.7314 0.4564 0.2580 0.6176 0.2580
KLF (0.19077) | (0.10669) | (0.03105) | (0.04020) | (0.03952) | (0.03238)
ﬂ’: 0.7520 0.7547 0.7642 0.7691 0.7641 0.7691
RQLF (1) (1) (1) (1) (1) (1)
50 Ci=1 0.7677 0.7703 0.7794 0.7841 0.7794 0.7841
i ! (0.00313) | (0.00307) | (0.00263) | (0.01085) | (0.01061) | (0.00964)
GELF Ci=-1 0.7833 0.7859 0.7946 0.7991 0.7947 0.7991
V1 1(0.01792) | (0.01427) | (0.01702) | (0.01645) | (0.00988) | (0.00972)
i 0.7911 0.7937 0.8022 0.8065 0.8023 0.8065
EL-SLF (0.01810) | (0.01797) | (0.01778) | (0.01963) | (0.01854) | (0.01840)
ﬂ’: 0.8866 0.8869 0.6902 0.8873 0.8881 0.4711
KLF (0.02017) | (0.02012) | (0.02006) | (0.02994) | (0.00287) | (0.02003)
ﬂ’: 0.8733 0.8735 0.8749 0.8740 0.8750 0.8763
RQLF @) @) @) @) @) (1)
100 Ci=1 0.8822 0.8824 0.8837 0.8828 0.8838 0.8850
i (0.00203) | (0.00201) | (0.00197) | (0.00500) | (0.00496) | (0.00491)
GELF Ci=-1 0.8911 0.8913 0.8925 0.8917 0.8925 0.8937
=% 1 (0.00201) | (0.00200) | (0.00413) | (0.00497) | (0.00492) | (0.00489)
j: 0.8978 0.8980 0.8990 0.8983 0.8991 0.9002
EL-SLF (0.01527) | (0.01525) | (0.01513) | (0.01521) | (0.01512) | (0.01501)
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Real life example: To examine the applicability of the results real life data sets are analyzed. The data reported by Butler

[18] has been used to show the use of above findings.

Survival time of 30 light bulbs in months

0.020

0.025 | 0.059

0.062

0.145

0.186

0.196 | 0.197

0.205 | 0.210

0.262

0.314

0.511 | 0.604

0.678

0.695

0.740 | 0.760

0.846

0.860

0.914

0.992 | 1.181

1.194 | 0.309

1.995

20255

2.509 | 2.910

5.543

The Bayes estimates and posterior risk (given in parenthesis) under KLF, RQLF, GELF, EL-SLF based on non-

informative and informative priors have been presented in the below tables.

Table4: Baye’s estimators and posterior risk under Jeffrey’s prior

m1=0.5 m1=1.0 mi=1.5

. 0.7140 0.7021 0.6902
AL (0.0707) (0.0689) (0.0502)

A 0.7260 0.7141 0.7022
AraL (0.9672) (0.9567) (0.9461)
0.00078 0.00079 0.00081
. =t (0.0178) (0.0171) (0.0164)
AoeLr 0.0008 0.00082 0.00083
=t 0ia (0.0167) (0.0160)

- 0.7557 0.7438 0.7319
AeL-sir (0.0224) (0.0214) (0.0204)

Table5: Baye’s estimators and posterior risk under Erlang prior

a1=1;b1=1.5 a1=2;b1=2.5 a1=3;h1=3.5
- 0.7439 0.7762 0.8029
A (0. 0655) (0.0634) (0.0615)
A 0.6859 0.7175 0.7439
/1RQLF
(0.0327) (0.03174) (0.0307)
0.7091 0.7410 0.7675
. = (0.0163) (0.0157) (0.0153)
AceLr 0.7324 0.7645 0.7911
Gt (0.0159) (0.0154) (0.0149)
R 0.7614 0.7939 0.8206
AeLsiF (0.0369) (0.0358) (0.0348)

Table6: Baye’s estimators and posterior risk under mixture of gamma and Jeffrey’s prior

v=0.3 v=0.9
I=1;r=1.5 | 1=2;r=2.5 | 1=3;r=3.5 | I=1;r=1.5 | 1=2;r=2.5 | 1=3;r=3.5
A 0.7137 0.6683 0.4311 0.7808 0.5697 0.2406
Ak (0.1623) | (0.1581) | (0.1263) | (1.7646) | (0.6207) | (0.5774)
/i 0.6683 0.6726 0.6892 0.6798 0 .6894 0.6991
RQLF 1) 1) 1) 1) 1) 1)
Cmt 0.6921 0.6964 0.7122 0.7034 0.7124 0.7214
ﬂt (0.0181) | (0.0174) | (0.0020) | (0.1058) | (0.1039) | (0.0615)
GELF Ci=-1 0.7159 0.7201 0.7352 0.7269 0.7353 0.7437
= (0.0256) | (0.0209) | (0.0138) | (0.0787) | (0.0736) | (0.0299)
/{ 0.7456 0.7496 0.7639 0.7562 0.7640 0.7715
EL-SLF (0.0223) | (0.0215) | (0.0203) | (0.0222) | (0.0215) | (0.0204)
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13 Conclusion

From the above tables we conclude that the posterior risks based on loss functions and priors decrease with the increased
sample size. It implies that the estimators obtained are consistent. The interesting fact to note is that in real life data as well
as in simulation study the posterior risks under GELF based on Erlang prior are less, and decreases with increase in sample
size. Furthermore, the performance of estimates obtained under El-sayyad loss function is also efficient as the posterior
risks under GELF and El-sayyad loss function are close for different values of hyper-parameters. The other important point
to note is that under mixture prior the posterior risks under RQLF remains constant in both the cases, on increasing the
sample size it remains constant as well. It can also be observed that the Bayes estimates perform better under informative
priors than non-informative prior.
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