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Abstract: We consider the Schrödinger equation for hydrogen-like atom with Coulomb potential and non-point ball nucleus. The
eigenvalues and eigenfunctions of the operator given by an arbitrary rotation-invariant boundary value problem on thespherical bound-
ary of the nucleus are found and as it is proved to be the eigenvalues are independent on selection of any such boundary value problem
and they are the same as for point nucleus.
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In this paper the emission (absorption) spectrum of a
hydrogen-like atom with nontrivial nucleus radius was
found, it is understood as the discrete spectrum of the
operator in the title. Assume that the nuclear charge is
distributed spherically symmetric. As is well known,
spherically symmetric body beyond its limits creates the
same gravitational field, as a material point of the same
mass, which is located in the center of the body.
Therefore we use the Coulomb potential, using the
analogy with gravity. Usually two restrictions are
imposed on the wave function, that is a solution of the
Schrödinger equation with the Coulomb potential, they
are a limitation at zero and the decrease at infinity [8]. In
present paper, the wave function is not defined in a
neighborhood of zero, instead it we consider a boundary
value problem for solution in the exterior of a sphere of
radiusρ0. We do not know what the boundary conditions
should be placed on the surface of the nucleus, but we
assume that they must be spherically symmetric. This
leads to the formulation of the general equivariant
boundary value problem. In this paper we consider the
general external rotation-invariant boundary value
problem for the Schrödinger equation with the Coulomb
potential. The eigenvalues and the corresponding
eigenfunctions of the problem were obtained. It is proved

to be that obtained energy values are the same as radiation
energy of the point size atom, that sounds awesome,
although, of course, the eigenfunctions are other. The
Schrödinger equation is usually studied in the whole
space, boundary value problems for the Schrödinger type
equation have been studied in some papers, for instant in
the works [1,2,10], but the setting as above has not been
considered. Remark that arbitrary rotation-invariant
boundary value problems for the PDEs have been
considered in the book [4].

Let us consider the stationary Schrödinger equation
for the wave function of an electron of massM and the
Coulomb attractive potential in the exterior of the ball
K = {x ∈ R3, |x| < ρ0} with a general boundary value
problem :

(
△x,y,z+

2M

h̄2

(
Ze2

r
+E

))
ψ(r,ϕ ,θ ) = 0, (1)

Aψ |∂K +Bψ ′
ν |∂K = 0. (2)

Here−Ze2

r – potential,e – electron charge,Ze – nucleus
charge,E – eigenvalue,̄h – Dirac constant,ψ(r,ϕ ,θ ) –
unknown wave function. We assume that the boundary
value problem (2) with normalν is invariant with respect
to ball rotations that is the operatorsA andB are invariant.
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Let’s consider the quasi-regular unitary representation
T : G → U(L2(S2)), [T(g) f ] (ξ ) = f (g−1ξ ),
f (ξ ) ∈ L2(S2), g ∈ G of the Lie groupG = SO(3). It is
well-known [7] that every linear operator inL2(S2) which
commutes with all operatorsT(g) of quasi-regular
representation is convolutional. Therefore we will
consider boundary problems of the form

ψ |∂K ∗α +ψ ′
ν |∂K ∗β = 0, α2+β 2 6= 0. (3)

Hereα andβ are arbitrary given functions on the sphere
∂K. At infinity we have set the condition of disappearance.
We want to find the eigenvalues of operator from (1) with
condition (2) and show that these eigenvalues don’t depend
on functionsα andβ .

For investigation of this problem we will use the
well-known way specified in the standard books [9,5]. It
appears that the method of separation of variables is also
suitable in this case of Schödinger equation with the
general boundary value problem. First, let’s write the
general solution of equation (1). Suppose that the solution
in polar coordinates is represented in the form

ψ(r,ϕ ,θ ) = Ĉ
∞

∑
l=0

l

∑
m=−l

Rl ,m(r)Yl ,m(ϕ ,θ ), (4)

where Yl ,m = 1√
2π eimϕ (−1)m

√
2l+1

2
(l−m)!
(l+m)! P

m
l (cosθ ) are

spherical functions that are eigenfunctions of the square
of the angular momentum with eigenvalues
l(l +1), l = 0,1,2..∞, Pm

l (cosθ ) are associated Legendre
functions,Ĉ is a constant, which is convenient for us to
enter at once but choose it later andRl ,m(r) are unknown
radial functions.

Substituting (4) into (1) we obtain the following equa-
tion for the radial parts of the wave function

R′′
l ,m+

2
r

R′
l ,m+

+Rl ,m

(
−l(l +1)

1
r2 +

2MZe2

h̄2

1
r
+

2ME

h̄2

)
= 0. (5)

Let’s find a solution of equation (5) explicitly by ma-
king the changeRl ,m(r) = R̂l ,m(ρ)ρ l e−ρ/2, ρ = 2nr.

For convenience we introduce the notation
√
−2ME/ h̄= n

considering the caseE < 0.
Then we obtain the following equation

ρR̂′′
l ,m+(2l +2−ρ)R̂′

l ,m+ R̂l ,m(
Me2

nh̄2 − l +1) = 0. (6)

The last equation is degenerate hypergeometric equation
and solutions are the Kummer functions with the first
parameter−Me2

nh̄2 + l − 1 and with the second parameter
2l + 2. Therefore, in terms of the degenerate

hypergeometric functions of the first and second kinds,
we get [3]

R̂l ,m(ρ) =C1(l ,m)ρ l e−ρ/2Φ(l − Me2

nh̄2 −1,2l +2,ρ)+

+C2(l ,m)ρ l e−ρ/2ρ−2l−1Ψ(−l − Me2

nh̄2 −2,−2l ,ρ). (7)

Note that the function̂Rl ,m also depend onn (further
on k). Let’s investigate the behavior of the radial part of
the wave function at infinity using equation (5). Let r take
large values, then some terms can be neglected in
equation (5), namely those which are multiplied by1r or
1
r2 . We obtain the equationR′′+ 2ME

h̄2 R= 0. It has a finite

solution at infinity R = e−nr. Hence, the solution of
equation (5) at infinity should decrease ase−nr. It means
that the functionΦ(−Me2

nh̄2 + l − 1,2l + 2,ρ) should not
grow at infinity too fast. However, it is well-known[3] that
generic degenerate hypergeometric functions increases as
the exponent of its argument.

In order to the degenerate hypergeometric function of
the first kind in (7) does not spoil the behavior of the radial
function at infinity, it is necessary that the first parameter
would be a negative integer.

Φ(α,β ,z) = 1+
α
β

z
1!

+
α(α +1)
β (β +1)

z2

2!
+

+
α(α +1)(α +2)
β (β +1)(β +2)

z3

3!
+ ... (8)

As it can be seen from the definition of the degenerate
hypergeometric function (8), if the first parameterα is an
integer negative then all the terms in the series will be
nulled, except for the first some terms. Thus, the function
Φ from (8) becomes a polynomial function and hence the
corresponding term in (8) disappearances at infinity.
Denote a negative integer value of the parameterα in (8)
by −Me2

nh̄2 + l − 1 = −k + l − 1. It is clearly that the
parameterk (known as the principal quantum number)
can be any positive integer,k≥ l −1, l ≥ 0. So,n= Me2

h̄2k
.

Let’s see how the functionΨ(−k − l − 2,−2l ,x)
behaves at infinity[3].

Ψ(−k− l −2,−2l ,ρ)≈

≈
N

∑
p=0

(−1)p (−l − k−2)p(l − k−1)p

p!
ρ l+k+2−p+ (9)

+O(|x|l+k+2−N−1).

From the last equation it is clear that the function at infinity
behaves as a polynomial.

Returning to (6) we can see that the energy values are

Ek =
−Me4

2h̄2k2
, k= 1..∞. (10)

Note that in this case the energy levels is the same as in
the classical case of a point nucleus.
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Return to the general boundary value problem (3):
ψ |∂K ∗ α +ψ ′

ν |∂K ∗ β = 0. Let α = ∑∞
l=0 ∑l

m=−l αm
l Yl ,m,

β = ∑∞
l=0 ∑l

m=−l β m
l Yl ,m – decompositions of functions in

Fourier series on sphereS2. The functionψ from (4)
depend onE or onk by virtue of (10). For differentk we
have different eigenfunctionsψk. For the eigenfunction
ψk also ψk|∂K = ∑∞

l=0 ∑l
m=−l a

m
k, lYl ,m,

ψ ′
kν |∂K = ∑∞

l=0 ∑l
m=−l b

m
k, lYl ,m. ∗ – convolution on∂K,

that isψk|∂K ∗α = ∑∞
l=0 ∑l

m=−l a
m
k, l α

0
l Yl ,m

Here we are in the following situation and we will use
the following results. As usual, an operatorA is called
invariant with respect to a groupG of transformations if
the operatorA commutes with transformations ofG, more
accurate, if the operatorA commutes with each operator
of quasiregular representation of the groupG in the action
space ofA. For the spaceE = L2(S2) and the group
G = SO(3,R) acting onS2 by rotations a quasiregular
representationT : G → GL(E) is given by definition by
the formula[7] T(g) f (x) = f (g−1x, f (x) ∈ E, g∈ G. This
representation is unitary and has the decomposition in the
direct sum of irreducible representationsT = ∑∞

l=0T l ,

where irreducible componentT l acts on the spaceγ(H l ),
γ is the operator of contraction of functions fromR3 onto
sphereS2, H l is the space of homogeneous harmonic
polynomials of degreel on R3 and the spherical functions
{Ym, l}l

m=−l constitute a basis inH l . We will consider any
function on sphereS2 as a function on the groupG that is
a constant on each left coset inG/SO(2,R). The
following statements[6] hold:

1). For any linear operatorA in the spaceE which
commutes with each operatorT(g) of quasiregular
representation there exists a functionψA ∈ L2(Sn−1) such
that [A ϕ ] (g) =

∫

g1∈G
ϕ(g1)ψA (g−1

1 g)dg1 = [ϕ ∗ψA ] (g)

for each ϕ ∈ L2(Sn−1). Vise verse any convolution
operator commutes with eachT(g).

2). Let us havef1 ∗ f2(g) = ∑∞
l=0 ∑h(l)

m=1 γm
l t l

m1(g) is
decomposition of convolution of functionsf1(g) f2(g)
that are constants on left cosets in Fourier expansion.
Here t l

m1(g) =
(
T l (g)e1,em

)
are matrix entries of

irreducible representationT l , e1 is an invariant with
respect toH vector in the spaceT l , h(l) = dimT l . Then
γm
l = λ m

l · µ1
l , whereλ m

l and µm
l are Fourier coefficients

of functions f1(g) and f2(g) respectively. For our case we
have the basist l

m1 corresponds toYl ,m, the index 1 inµ1
l

means zonal harmonicYl ,0.
Boundary value problem (3) in terms of the Fourier

coefficients for eachk can be written as

am
k, l α

0
l +bm

k, lβ
0
l = 0. (11)

am
k, l = R̂k, l ,m|ρ=ρ0 is given by (4),(7) and

bm
k, l =

1
ρ0

∂ R̂k,l ,m(ρ)
∂ρ

∣∣∣∣
ρ=ρ0

. Note that tesseral harmonics in

α andβ can be omit.
Thus, the boundary value problem can be written as

{C1(k, l ,m)ρ2l+3
0 Φ(l − k−1,2l +2,ρ0)+

+C2(k, l ,m)ρ2
0Ψ(−k− l −2,−2l ,ρ0)}α0

l +

+{C1(k, l ,m)ρ2l+1
0 (lΦ(l − k−1,2l +2,ρ0)−

−1/2ρ0Φ(l − k−1,2l +2,ρ0)+ (12)

+ρ0
l − k−1
2l +2

Φ(l − k,2l +3,ρ0))+

+C2(k, l ,m)((−l −1)Ψ(−k− l −2,−2l ,ρ0)−
−1/2ρ0Ψ(−k− l −2,−2l ,ρ0)+

+ρ0(l + k+2)Ψ(−k− l −1,−2l +1,ρ0))}β 0
l = 0.

We can assume thatC2(k, l ,m)≡ 1, since both sides of
(12) can be divided into an arbitrary constant. The equality
(12) allows us to find unknown constantC1(k, l ,m).

Normalization condition allows us to find the last
unknown constantĈ from (4):

∫ ∞
r0
|ψk(r,ϕ ,θ )|2dr = 1.

Eigenvalues and the corresponding eigenfunctions of the
problem (1), (2), in the above notation, are

Ek =
−Me4

2h̄2k2
, k= 1..∞,

ψk(r,ϕ ,θ ) = Ĉ
k

∑
l=0

l

∑
m=−l

(C1(k, l ,m)(2nr)l e−nr

×Φ(l − k−1,2l +2,2nr)+

+(2nr)−l−1e−nrΨ (−l − k−2,−2l ,2nr))Yl ,m(ϕ ,θ ).
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