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Abstract: We consider the Schrodinger equation for hydrogen-likematvith Coulomb potential and non-point ball nucleus. The
eigenvalues and eigenfunctions of the operator given bylatrary rotation-invariant boundary value problem on spherical bound-
ary of the nucleus are found and as it is proved to be the eidiges are independent on selection of any such boundarg padilem
and they are the same as for point nucleus.
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In this paper the emission (absorption) spectrum of ato be that obtained energy values are the same as radiation
hydrogen-like atom with nontrivial nucleus radius was energy of the point size atom, that sounds awesome,
found, it is understood as the discrete spectrum of thealthough, of course, the eigenfunctions are other. The
operator in the title. Assume that the nuclear charge isSchrodinger equation is usually studied in the whole
distributed spherically symmetric. As is well known, space, boundary value problems for the Schrodinger type
spherically symmetric body beyond its limits creates theequation have been studied in some papers, for instant in
same gravitational field, as a material point of the samethe works [L,2,10], but the setting as above has not been
mass, which is located in the center of the body.considered. Remark that arbitrary rotation-invariant
Therefore we use the Coulomb potential, using theboundary value problems for the PDEs have been
analogy with gravity. Usually two restrictions are considered in the bool].
imposed on the wave function, that is a solution of the  Let us consider the stationary Schrodinger equation
Schradinger equation with the Coulomb potential, theyfor the wave function of an electron of makk and the
are a limitation at zero and the decrease at infirSy In Coulomb attractive potential in the exterior of the ball
present paper, the wave function is not defined in aK = {x € R |x| < po} with a general boundary value
neighborhood of zero, instead it we consider a boundaryroblem :
value problem for solution in the exterior of a sphere of oM /7&2
radiuspg. We do not know what the boundary conditions vl fze _
should be placed on the surface of the nucleus, but we <Ax’y’z+ R2 ( r +E)) Y(r.¢,6)=0, (1)
assume that they must be spherically symmetric. This
leads to the formulation of _the general equ?variant AY|k + By, gk = 0. (2)
boundary value problem. In this paper we consider the
general external rotation-invariant boundary valueHere —Z€ — potential,e — electron chargeZe — nucleus
problem for the Schrodinger equation with the Coulombcharge,E — eigenvalueh — Dirac constanty(r, ¢,0) —
potential. The eigenvalues and the Correspondingmknown wave function. We assume that the boundary
eigenfunctions of the problem were obtained. It is provedvalue problemZ2) with normalv is invariant with respect

to ball rotations that is the operatgksandB are invariant.
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Let's consider the quasi-regular unitary representationhypergeometric functions of the first and second kinds,
T © G = UL, [T = f(g '), wegetp

f(&) € Ly(S), g € G of the Lie groupG = 8%3). It is M

well-known [7] that every linear operator iby(S*) which Ri.m(p) =Cai(l,m)p'e P 2e( — — —12+2,p)+

commutes with all operatorsT (g) of quasi-regular ' n';

representation is convolutional. Therefore we will | /20 —2—1 M

consider boundary problems of the form +C(l,mpTe ™ p W=l - 2 2-2,p). ()
Yok *a + Wl * B =0, a1 B2+0. ©) Note that the functiorﬁhm also depend on (further

on k). Let’s investigate the behavior of the radial part of

Herea andp are arbitrary given functions on the sphere the wave function at infinity using equatioB)(Letr take .
dK. Atinfinity we have set the condition of disappearance.large values, then some terms can be neglected in
We want to find the eigenvalues of operator frap\gitn ~ €duation §), namely those which are multiplied by or
condition @) and show that these eigenvalues don’tdependr%. We obtain the equatioR”’ + 2}';_"—2ER = 0. It has a finite

on functionsar andps. _ . solution at infinity R = e ™. Hence, the solution of
For investigation of this problem we will use the equation ) at infinity should decrease &™. It means

well-known way specified in the standard booRs5]. It that the functionq,(_MeZ +1-1,21 +2,p) should not

appears that the method of separation of variables is alsg oo nnZ o
sSiFt)able in this case of Sch(')pdinger equation with thedrow at infinity too fast. However, it is well-know8] that

general boundary value problem. First, let's write the generic degenerate hypergeometric functions increases as

general solution of equation (1). Suppose that the szolutior‘he exponent of its argument. . .
in polar coordinates is represented in the form In order to the degenerate hypergeometric function of

the first kind in {7) does not spoil the behavior of the radial
w | function at infinity, it is necessary that the first parameter

wr,$,0)=C % S Rim(NYim(®,6), (4  wouldbeanegative integer.

I=0m=-1 az ala+1)?

(D(G,B,Z) :1+EF + B(B+1)§+

where Yy = \/%Teim"’(—l)m,/2'7”('_“")!3”‘(0036) are

(I+m)!
spherical functions that are eigenfunctions of the square ala+1)(a+2) 1)(a+2)§| . (8
of the angular momentum with eigenvalues B(B+1)(B+2) 3!

I(1+1),1 =0,1,2..0, FM(cosH) are associated Legendre As it can be seen from the definition of the degenerate
functions,C is a constant, which is convenient for us to hypergeometric functiorg], if the first parametea is an
enter at once but choose it later aRdm(r) are unknown integer negative then all the terms in the series will be

radial functions. nulled, except for the first some terms. Thus, the function
Substituting 4) into (1) we obtain the following equa- @ from (8) becomes a polynomial function and hence the
tion for the radial parts of the wave function corresponding term in 8 disappearances at infinity.
5 Denote a negative integer value of the parametér (8)
R'm+ FR{YmﬂL by _'\:_;22 +1—-1=—k+1-1. It is clearly that the
1 2MZE1 2ME parameterk (known as the principal qguantum number)
+Rm (_l(l+1)r_2+TF+F> =0. (5)  can be any positive integde> | — 1,1 > 0. So,n= %
Let's see how the functiotV(—k — | — 2,-2I,X)

Let's find a solution of equation (5) explicitly by ma- pehaves at infinity].

king the chang® m(r) = R m(p)p' e ?/2, p=2nr. I N
For convenience we introduce the notation W(-k-1-2,-2,p)~
—I—k—=2)p(l —k—1)

N
(
V=2ME/R=n ~ ) (P ol
p:

0

pp|+k+2—p+ (9)

considering the cage < 0. +O(|x|HeF2N-1y

Then we obtain the following equation From the last equation it is clear that the function at inyinit

behaves as a polynomial.

pﬁ'll (2 42— p)p?l mt R m(M_eZZ —14+1)=0. (6) Returning to 6) we can see that the energy values are
' ’ T nk
. . , —Me? —
The last equation is degenerate hypergeometric equation Ex = e k=1..00. (20)

and solutionsezare the Kummer functions with the first
parameter- Y& 41 — 1 and with the second parameter Note that in this case the energy levels is the same as in
2l + 2. Therefore, in terms of the degeneratethe classical case of a point nucleus.
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Return to the general boundary valtlje problesi (
Ylok *a +I%|aK *B=0 Leta =33 " Yim {Ci(k,],m)p3 21 —k—1,21 +2,p0) +
B=3"05m_1 B™ m— decompositions of functions in Wik 1o 0
Fourier series on spher®. The functiony from (4) +Co(k 1, m)po ¥ (—k—1-2,~2!, po) o+

depend orE or onk by virtue of (L0). For differentk we +HCu(k I, m)pd (1 d( —k—1,21+ 2, p9) —
have different eigenfunctiongy. For the eigenfunction —1/2p0®(1 —k—1,21+2,po) + (12)
Wk also ok = I0¥me ay Yi.m, l-k-1
Wy lok = 370 Sme1 b Yim. * — convolution ondK, o5 Pl k2 +3.00) +
that isPilgk * o = o Sh | " a’im +Co(k, I, m)((=1 = 1)W(—k—1-2,-2I, pg) —
Here we are in the following situation and we will use —1/2p¥(—k—1-2,-2l,po) +

the following results. As usual, an operaté@ris called 0_

invariant with respect to a group of transformations if ool +k+2)W(=k—1-1,-21+1, Po)-)}ﬁ =0 .

the operatoA commutes with transformations & more We can assume th@(k,I,m) = 1, since both sides of
accurate, if the operatgk commutes with each operator (12) can be divided into an arbitrary constant. The equality
of quasiregular representation of the grasin the action (12 allows us to find unknown consta@ k.1, m).

space ofA. For the spaceE = Lo(S?) and the group Normalization condition alloo\ivs us to find the last
G = SO3,R) acting onS? by rotations a quasiregular Unknown constanC from (4): f[¢i(r,¢,6)|*dr = 1.
representatio : G — GL(E) is given by definition by ~ Eigenvalues and the corresponding eigenfunctions of the
the formulaff] T(g)f(x) = f(g~2x, f(x) €E, g€ G. This  problem (1), (2), in the above notation, are

representation is unitary and has the decomposition in the

direct sum of irreducible representatiofis= y7° ,T', E— —Me* —Too

where irreducible componeitt acts on the spacgH'), 2Rk’ ’

y is the operator of contraction of functions frdR¥ onto ko1

sphereS?, H' is the space of homogeneous harmonic ‘I—’k(r,(b,@):é% Z (Ca(k,I,m)(2nr) e
polynomials of degrekon R® and the spherical functions I=om——1I

{Ym,}L,_ | constitute a basis iR'. We will consider any x®(l —k—1,21+2 2nr) +

function on spher&’ as a function on the group that is A=Wl ko
a constant on each left coset iG/SQ2,R). The H@nnTe (Al =k =2, =20, 200)Yim(9, 8).
following statement#]] hold:
1). For any linear operatat in the spaceE which  References
commutes with each operatof(g) of quasiregular
representation there exists afunct'lp_g c Lz(gfl) such [1] P.N. Bibikov , V.O. TarasovA boundary value problem for

_ -1 _ the nonlinear differential Schrodinger equati¢hheor. and
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