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Abstract: In a recent work, Dancs and He found new formulas for In2 &(@h+ 1), n being a positive integer, which are expressed
in terms of Euler polynomials, each containing a series déipgiarently can not be evaluated in closed form, distinetynf{(2n),

for which the Euler's formula allows us to write it as a rabmultiple of m™". There in that work, however, the formulas are
derived through certain series manipulations, by follylisumura’s strategy, which makegitrious— in the words of those authors
themselves — the appearance of the number In2. In this nskew how some known zeta-series can be used to derive thes{binc
series in an alternative manner.
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1 Introduction where n is a positive integer andB,, are Bernoulli
numbers? For odd values o§, s > 1, on the other hand,

) o ] no analogous closed-form expression is known. In fact,
The Riemann zeta function is defined, for real values,of ot even an irrationality proof is known fof (2n+ 1),

s>1, byt the only exception being the Apéry proof thd(3) is
® 1 irrational (1978) 2], which makes the things enigmatic.
¢(s) = k;@' (1) On trying to find out a closed-form expression for

{(2n-+1) similar to that in Eq. 2), Dancs and He found
For these values d, the series converges according to & new formula containing series involving the numbers
the integral test. For integer values sf its sum has Ezn:a1(1), where Ezn.1(x) denotes the Euler's
attracted much interest since the times of J. Bernoulli,polynomial of degree @+ 1 [3].° Their main result
who proved thatyp ; 1/k? converges to a number follows from some intricate series manipulations, in the
between 1 and 2. Further, Euler (1735) proved that thidines of those found in Tsumura’s proof of E®) ([1].
sum evaluates tor?/6, solving the so-calledBasel — However, the fortuitous appearance of the numbers In2
problem For greater integer values ef Euler found the ~and{(2n+1) in the Dancs-He formulae, which is hard to

notable formula (1750) be explained with usual series expansions, might well
remain a mystery. By noting that the numbéts,1(1)
22n—1 ;p2n can be written in terms 0By, 2, and then in terms of
{(2n) = (—1)“‘1WBZH, (2)  ¢(2n), via Eqg. @), | show here in this work how the

1 There is also a producESrepresentation due to Euler (1749), 2 ginceB,, € Q and 1T is a transcendental number, as first
namely {(s) = [1p 1/(1—p®), taken over all prime numbers roved by Lindemann (1882), then EQ) (mplies thatZ(2n)
p, which is the main reason for the interest of number theoiist g 5 transcendental number.
this function. As noted by Euler, the divergence of the haiimo 3 The Eyler polynomials are given by the generating function
series, i.e. lim_1+ {(s) = «, implies, according to the product ext . o
representation, that there is an infinitude of prime numbers Ze‘—-i-l = Yn-0En(x) o With Eo(x) = 1.
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Dancs-He series for In2 and(2n+1) can be derived

from some known zeta-series.

2 Dancs-He formula for In2

need to do is to take the limit, a&s— 1+, of the factors at
the left-hand side. Since

|in11+ {(s) (1-29)

For the positive real number In2, Dancs and He found thethen

following series representation (see Eq. (2.6) of Raj). [

Theorem 2.1.[Dancs-He series for In2] LeEyn, 1(X)

denote the Euler’s polynomial of degrem2 1, mbeing a

nonnegative integer. Then

n2m

|n2: 7 HZO(—].) m E2m+l(1) .

__2l-s
:SILT {(s) (s—l)xsll@ — =1x1In2, (5)
In2 - _omy (2n—1)!
0 sin(11/2) _Zn;(l_z “) (2n+1)! ¢@n), (6
which simplifies to
- 2-2n) {(2n) _
2072 fng 2

Proof. Let L be the number to which the above series From Eq. 8), one had. =In2..

converges. By noting that
22m+2 -1
Eomi1(1) = —Eomt1(0) = Zm Bomi2,

it follows that

o < m n2m 2mH-2 BZm+2
L= Y Y G @ Vam s
00 (2 n)2m+2 n2m+2 BZm+2
mz (2m+3)! 2m+2

- i (_ )m+1 BZI‘TH—Z
L (2m+2) (2m+3) (2m+ 2)!

x [(2m)2™t2 — P
By substitutingh = m+ 1, one finds that

- Bon n n

L= 2 Y sngn i (207
o n2” By 2"-1

Z (2n)! 2n(2n+1) "

From Euler’s formula fo (2n) in Eq. ), one has

3 Dancs-He formula for {(2m—+1)

Before presenting a general proof for the Dancs-He series
for {(2n+ 1), n being a positive integer, let us tackle the
lowest case, i.e{(3), a number for which several series
representations have been derived since the times of
Euler [6]. As will be shown below, the lowest odd zeta
value can be derived from some known zeta-series,
independently of the general result that will be estabtishe
in the next theorem. Fof (3), Dancs and He found the
following series representation (see Eq. (3.1) of R&). [

Theorem 3.1.[Dancs-He series fof (3)]

?o o2t 2 2
5(3):_| 4_— z mEZmﬂ(l)-

Proof. Let S be the number for which the series at the

right-hand side of this theorem converges. By substituting
Eomi1(1) =2 zzzmnﬁgl Bomy2 in this series, one has

co n2m+2 B
—_2 -1 m+1 22m+2 -1 2mH-2
S =1 (2m+5)' ( ) mr2

m=0
00 2m+2 _ 2mH2
—n; NNt 1) o (2m+2)( 2m+3) (2m+4) (2m+5)
» Bomi2 7)
Now, let us reduce this latter series to a simple closed-form (2m+2)!°

expression. For this, let us make use of the following serie
representation fof (s) introduced recently by Tyagi and

Holm (see Eg. (3.5) in Ref4]):

{(s)-(1-2v%) & s-2n) r(2n—s+1)
m-1sin ns/2 nZl (2-2 r(2n+2)

x{(2n—s+1), 4)

whererl (x) is the gamma functiof As the series on the
right-hand side converges when we make 1, all we

4 Note thatl” (k) = (k— 1)! for positive integer values d.

SBy substitutingn = m+- 1, one finds that

(D" [@m*" -1 By

Tl'2 Z 2n Zn—l—l) (2n+2) (2n+3) ( ) (8)
From Eqg. @), one has
L Z(2n)
757 Z 2n(2n+1)(2n+2) (2n+3)
- Z(2n)
- nzl 2n(2n+1)(2n+2)(2n+3)-220° ©)
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which is valid since the series in Eq8)(converges Theorem 3.2.[Dancs-He series for odd zeta-values] For
absolutely. The first series can be easily evaluated from any integem, m> 0,
known summation formula (see Eq. (713) in Red])[

m=1/_ 1\ 2] )
namely <1_2*2m) {(2m+1) = Z ((2j1)+7112)l (22172M_1)Z(2m—2j +1)
= '
- ¢(2k) x_ €@3)., o In(2m) 2 @ K
kS92, (—)M@Mn2 (1M k TEzkra(1)
2RI Dk (k) o 3 ~ D] 2 2V e
11 t3
-4 — —31+t)—-7'(-3,1—t 10 ~
187L 3 (=314 -2'(-3, )], (10) Proof. Let Sbe the number for which the above infinite

. . . . series converges, i.e.
where{(s,a) is the Hurwitz (or generalized) zeta function g

and {'(s,a) is its derivative with respect te> As this

formula is valid for allt with 0 < [t| < 1, it is legitimate X 1k P Eaca(D).

(15)

to take the limit a$ — 1~ on both sides, which yields (2k+2m+3)1
i ¢(2k) _ < n In(2m) 11 By substitutingEgy,1(1) = 2 zzklﬁz Bk 2 in this series,
2 KK+ 1)(2k+2)(2k+3) 8@ 12 72  onefinds

L m [3 1 -(-31-0]. A1) pE zo 1)K ekt )2(22k+2_1) Baz 1)

121" (2k+2m+ 3)! 2k+2°
The remaining limit is null because By puttingn = k+ 1, one has
lim, - {'(=3,1+t) = ({'(-3,2) = {'(-3) =
lim,_ .- {'(—3,1—t), which reduces Eql(l) to . o _1)p2n (2201
¢ : Pé=-2y L7, a7
& (2n+2m+1)! 2n
{(2) _ 4@  In2m 11
Z 2k(2k+1) (2k+2) (2k+3) 82 12 72" From Eq. @), one has
a2 o, |
For the second series in E)( let us make use of the T 5_ 5§ (1 5-2) (2n—-1)! Z(2n)
Wilton’s formula (Eqg. (38) at p. 303, in Refg]; also 2 & (2n+2m+1)!
Eq. (54) in Ref. ]): ®
=5 (22 ey . ()
- Z(24) 23 I 11 = (2n+2m+2)
Z K(k+1)(2k+1)(2k+3)-2% 12 3 18’  This latter series is just the one that appears in a formula
(13) for odd zeta-values derived recently by Milgran (see
which can be written as Eqg. (13) in Ref. §]), namely
—1)mg2m In2 7 4
5 (29 4@, 11 caminy= I 2
2k(2k+ 1) (2k+2)(2k+3)- 2% 2w ' 12 72 1-2 (2m+1)t 2
(14) 1 Lo {(2m—2n+1
Now, by doing a member-to-member subtraction of +7—5=am > (22n2m—1) (- )nw- (19)
Eqs. (L2) and (4) and putting the result in Eq9), one n=1 '
finds By multiplying both sides by & 272" one finds
21 2
5 IN2-—5-5=409), ) 2
(-2 damiy) = (ammen |- 02 T
which completes the proadfl. 1 Jme2n 1
. + Z( 1) (22[1 2m 1) HZHZ( m-—zn+ )
Now, let us generalize the above result for &2m+ =1 (2n+1)!
1), mbeing a positive integer. The result below is found in 2 n2 2
— _(_ m m___ "= _ m
Eq. (3.1) of Ref. §]. =—(-1) Zmr 1) +(-1)
5 The Hurwitz zeta function is classically defined far(s) > = (=1)" " 2n-2m _ _
1 as{(sa) = ypol/(k+a)° (a# 0,-1,-2,..), and its + Zl 2n+1)! (2 1) {(2m—2n+1),
meromorphic continuation over the whalane, with{(s,1) =
{(s), except by a simple pole at= 1. which completes the proadfl.
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In a recent paper, Dancs and He have derived some nic
series expansions for In2 anfl(2n+ 1) involving the
numbersEzn.1(1) [3]. However, the appearances of In2
and {(2n+1) in their formulas is hard to be explained |
with usual trigonometric or power series expansions, so | /
they could remain a mystery. On noting that the numbers ; ﬂ related functions. He has
Ezni1(1) can be written in terms of the Bernoulli MG published research articles in
numbers By,.2, and then in terms of{(2n), via our reputed international journals
Eq. (@), in this note | have shown how certain known of both physical and mathematical sciences. He is referee
zeta-series can be used to derive alternative proofs for thef some physics and mathematics journals.

Dancs-He formulas, thus clarifying the origin of In2 and

{(2n+1) in these formulas. As the infinite series in our

theorems apparently can not be reduced to finite closed

forms, some insight was given into why the odd zeta

values are more difficult, but | hope my approach to these

series can stimulate further investigations on this subjec
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