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Abstract: In a recent work, Dancs and He found new formulas for ln2 andζ (2n+1), n being a positive integer, which are expressed
in terms of Euler polynomials, each containing a series thatapparently can not be evaluated in closed form, distinctly from ζ (2n),
for which the Euler’s formula allows us to write it as a rational multiple of π2n. There in that work, however, the formulas are
derived through certain series manipulations, by following Tsumura’s strategy, which makes itcurious— in the words of those authors
themselves — the appearance of the number ln2. In this note, Ishow how some known zeta-series can be used to derive the Dancs-He
series in an alternative manner.
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1 Introduction

The Riemann zeta function is defined, for real values ofs,
s> 1, by1

ζ (s) :=
∞

∑
k=1

1
ks . (1)

For these values ofs, the series converges according to
the integral test. For integer values ofs, its sum has
attracted much interest since the times of J. Bernoulli,
who proved that∑∞

k=1 1/k2 converges to a number
between 1 and 2. Further, Euler (1735) proved that this
sum evaluates toπ2/6, solving the so-calledBasel
problem. For greater integer values ofs, Euler found the
notable formula (1750)

ζ (2n) = (−1)n−1 22n−1π2n

(2n)!
B2n, (2)

1 There is also a product representation due to Euler (1749),
namely ζ (s) = ∏ p 1/(1− p−s), taken over all prime numbers
p, which is the main reason for the interest of number theorists in
this function. As noted by Euler, the divergence of the harmonic
series, i.e. lims→1+ ζ (s) = ∞, implies, according to the product
representation, that there is an infinitude of prime numbers.

where n is a positive integer andB2n are Bernoulli
numbers.2 For odd values ofs, s> 1, on the other hand,
no analogous closed-form expression is known. In fact,
not even an irrationality proof is known forζ (2n+1),
the only exception being the Apéry proof thatζ (3) is
irrational (1978) [2], which makes the things enigmatic.

On trying to find out a closed-form expression for
ζ (2n+1) similar to that in Eq. (2), Dancs and He found
a new formula containing series involving the numbers
E2n+1(1), where E2n+1(x) denotes the Euler’s
polynomial of degree 2n + 1 [3].3 Their main result
follows from some intricate series manipulations, in the
lines of those found in Tsumura’s proof of Eq. (2) [1].
However, the fortuitous appearance of the numbers ln2
andζ (2n+1) in the Dancs-He formulae, which is hard to
be explained with usual series expansions, might well
remain a mystery. By noting that the numbersE2n+1(1)
can be written in terms ofB2n+2 , and then in terms of
ζ (2n), via Eq. (2), I show here in this work how the

2 Since B2n ∈ Q and π is a transcendental number, as first
proved by Lindemann (1882), then Eq. (2) implies that ζ (2n)
is a transcendental number.

3 The Euler polynomials are given by the generating function

2
ext

et +1
= ∑∞

n=0 En(x)
tn

n!
, with E0(x) = 1.
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Dancs-He series for ln2 andζ (2n+1) can be derived
from some known zeta-series.

2 Dancs-He formula for ln2

For the positive real number ln2, Dancs and He found the
following series representation (see Eq. (2.6) of Ref. [3]).

Theorem 2.1.[Dancs-He series for ln2] LetE2m+1(x)
denote the Euler’s polynomial of degree 2m+1,mbeing a
nonnegative integer. Then

ln2=
π2

2

∞

∑
m=0

(−1)m π2m

(2m+3)!
E2m+1(1) .

Proof. Let L be the number to which the above series
converges. By noting that

E2m+1(1) =−E2m+1(0) = 2
22m+2−1

2m+2
B2m+2 ,

it follows that

L = π2
∞

∑
m=0

(−1)m π2m

(2m+3)!

(

22m+2−1
) B2m+2

2m+2

=
∞

∑
m=0

(−1)m(2π)2m+2−π2m+2

(2m+3)!
B2m+2

2m+2

=−
∞

∑
m=0

(−1)m+1 B2m+2

(2m+2)(2m+3)(2m+2)!

×
[

(2π)2m+2−π2m+2] .

By substitutingn= m+1, one finds that

L =−
∞

∑
n=1

(−1)n B2n

2n(2n+1)(2n)!

[

(2π)2n−π2n]

=−
∞

∑
n=1

(−1)n π2nB2n

(2n)!
22n−1

2n(2n+1)
.

From Euler’s formula forζ (2n) in Eq. (2), one has

L =
∞

∑
n=1

(

1−2−2n) ζ (2n)
n(2n+1)

. (3)

Now, let us reduce this latter series to a simple closed-form
expression. For this, let us make use of the following series
representation forζ (s) introduced recently by Tyagi and
Holm (see Eq. (3.5) in Ref. [4]):

ζ (s) ·
(

1−21−s
)

πs−1 sin(πs/2)
=

∞

∑
n=1

(

2−2s−2n) Γ (2n− s+1)
Γ (2n+2)

×ζ (2n− s+1) , (4)

whereΓ (x) is the gamma function.4 As the series on the
right-hand side converges when we makes = 1, all we

4 Note thatΓ (k) = (k−1)! for positive integer values ofk.

need to do is to take the limit, ass→ 1
+

, of the factors at
the left-hand side. Since

lim
s→1+

ζ (s)
(

1−21−s)

= lim
s→1+

ζ (s) (s−1)× lim
s→1+

1−21−s

s−1
= 1× ln2, (5)

then

ln2
π0 sin(π/2)

= 2
∞

∑
n=1

(

1−2−2n) (2n−1)!
(2n+1)!

ζ (2n) , (6)

which simplifies to

∞

∑
n=1

(

1−2−2n) ζ (2n)
n(2n+1)

= ln2.

From Eq. (3), one hasL = ln2.�.

3 Dancs-He formula for ζ (2m+1)

Before presenting a general proof for the Dancs-He series
for ζ (2n+1), n being a positive integer, let us tackle the
lowest case, i.e.ζ (3), a number for which several series
representations have been derived since the times of
Euler [6]. As will be shown below, the lowest odd zeta
value can be derived from some known zeta-series,
independently of the general result that will be established
in the next theorem. Forζ (3), Dancs and He found the
following series representation (see Eq. (3.1) of Ref. [3]).
Theorem 3.1.[Dancs-He series forζ (3)]

ζ (3) =
π2

9
ln4−

2π4

3

∞

∑
m=0

(−1)m π2m

(2m+5)!
E2m+1(1) .

Proof. Let S be the number for which the series at the
right-hand side of this theorem converges. By substituting
E2m+1(1) = 2 22m+2−1

2m+2 B2m+2 in this series, one has

π2S=−2
∞

∑
m=0

(−1)m+1 π2m+2

(2m+5)!

(

22m+2−1
) B2m+2

2m+2

=−2
∞

∑
m=0

(−1)m+1
[

(2π)2m+2−π2m+2
]

(2m+2)(2m+3)(2m+4)(2m+5)

×
B2m+2

(2m+2)!
. (7)

By substitutingn= m+1, one finds that

π2S=−2
∞

∑
n=1

(−1)n
[

(2π)2n−π2n
]

2n(2n+1)(2n+2)(2n+3)
B2n

(2n)!
. (8)

From Eq. (2), one has

π2

4
S=

∞

∑
n=1

ζ (2n)
2n(2n+1)(2n+2)(2n+3)

−
∞

∑
n=1

ζ (2n)
2n(2n+1)(2n+2)(2n+3) ·22n , (9)
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which is valid since the series in Eq. (8) converges
absolutely. The first series can be easily evaluated from a
known summation formula (see Eq. (713) in Ref. [5]),
namely

∞

∑
k=1

ζ (2k)
k(k+1)(2k+1)(2k+3)

t2k =
ζ (3)
2π2 t−2+

ln(2π)
3

−
11
18

+
t−3

3

[

ζ ′(−3,1+ t)− ζ ′(−3,1− t)
]

, (10)

whereζ (s,a) is the Hurwitz (or generalized) zeta function
and ζ ′(s,a) is its derivative with respect tos.5 As this
formula is valid for allt with 0 < |t| < 1, it is legitimate
to take the limit ast → 1− on both sides, which yields

∞

∑
k=1

ζ (2k)
2k(2k+1)(2k+2)(2k+3)

=
ζ (3)
8π2 +

ln(2π)
12

−
11
72

+
1
12

lim
t→1−

[

ζ ′(−3,1+ t)− ζ ′(−3,1− t)
]

. (11)

The remaining limit is null because
limt→1− ζ ′(−3,1+ t) = ζ ′(−3,2) = ζ ′(−3) =

limt→1− ζ ′(−3,1− t), which reduces Eq. (11) to

∞

∑
k=1

ζ (2k)
2k(2k+1)(2k+2)(2k+3)

=
ζ (3)
8π2 +

ln(2π)
12

−
11
72

.

(12)
For the second series in Eq. (9), let us make use of the
Wilton’s formula (Eq. (38) at p. 303, in Ref. [6]; also
Eq. (54) in Ref. [7]):

∞

∑
k=1

ζ (2k)
k(k+1)(2k+1)(2k+3) ·22k =

2ζ (3)
π2 +

lnπ
3

−
11
18

,

(13)
which can be written as

∞

∑
k=1

ζ (2k)
2k(2k+1)(2k+2)(2k+3) ·22k =

ζ (3)
2π2 +

lnπ
12

−
11
72

.

(14)
Now, by doing a member-to-member subtraction of
Eqs. (12) and (14) and putting the result in Eq. (9), one
finds

2π2

9
ln2 −

2π4

3
S= ζ (3),

which completes the proof.�.

Now, let us generalize the above result for allζ (2m+
1), mbeing a positive integer. The result below is found in
Eq. (3.1) of Ref. [3].

5 The Hurwitz zeta function is classically defined forℜ(s) >
1 as ζ (s,a) := ∑∞

k=0 1/(k+a)s (a 6= 0,−1,−2, . . .), and its
meromorphic continuation over the wholes-plane, withζ (s,1) =
ζ (s), except by a simple pole ats= 1.

Theorem 3.2.[Dancs-He series for odd zeta-values] For
any integerm, m> 0,

(

1−2−2m
)

ζ (2m+1) =
m−1

∑
j=1

(−1) j π2 j

(2 j +1)!
(22 j−2m−1)ζ (2m−2 j +1)

−
(−1)mπ2m ln2

(2m+1)!
+

(−1)mπ2m+2

2

∞

∑
k=0

(−1)k
π2k E2k+1(1)
(2k+2m+3)!

.

Proof. Let S̃ be the number for which the above infinite
series converges, i.e.

S̃:=
∞

∑
k=0

(−1)k π2kE2k+1(1)
(2k+2m+3)!

. (15)

By substitutingE2k+1(1) = 2 22k+2−1
2k+2 B2k+2 in this series,

one finds

π2 S̃=
∞

∑
k=0

(−1)k π2k+2

(2k+2m+3)!
2
(

22k+2−1
) B2k+2

2k+2
. (16)

By puttingn= k+1, one has

π2 S̃=−2
∞

∑
n=1

(−1)nπ2n

(2n+2m+1)!

(

22n−1
)

2n
B2n . (17)

From Eq. (2), one has

π2

2
S̃= 2

∞

∑
n=1

(

1−2−2n) (2n−1)!
(2n+2m+1)!

ζ (2n)

=
∞

∑
n=1

(

2−21−2n) Γ (2n)
Γ (2n+2m+2)

ζ (2n) . (18)

This latter series is just the one that appears in a formula
for odd zeta-values derived recently by Milgran (see
Eq. (13) in Ref. [8]), namely

ζ (2m+1) =
(−1)mπ2m

1−2−2m

[

−
ln2

(2m+1)!
+

π2

2
S̃

]

+
1

1−2−2m

m−1

∑
n=1

(

22n−2m−1
)

(−π2)n ζ (2m−2n+1)
(2n+1)!

. (19)

By multiplying both sides by 1−2−2m, one finds

(

1−2−2m) ζ (2m+1) = (−1)mπ2m
[

−
ln2

(2m+1)!
+

π2

2
S̃

]

+
m−1

∑
n=1

(−1)n (22n−2m−1
)

π2n ζ (2m−2n+1)
(2n+1)!

=−(−1)mπ2m ln2
(2m+1)!

+(−1)mπ2m+2

2
S̃

+
m−1

∑
n=1

(−1)n π2n

(2n+1)!

(

22n−2m−1
)

ζ (2m−2n+1),

which completes the proof.�.
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4 Conclusions

In a recent paper, Dancs and He have derived some nice
series expansions for ln2 andζ (2n+1) involving the
numbersE2n+1(1) [3]. However, the appearances of ln2
and ζ (2n+1) in their formulas is hard to be explained
with usual trigonometric or power series expansions, so
they could remain a mystery. On noting that the numbers
E2n+1(1) can be written in terms of the Bernoulli
numbers B2n+2, and then in terms ofζ (2n), via our
Eq. (2), in this note I have shown how certain known
zeta-series can be used to derive alternative proofs for the
Dancs-He formulas, thus clarifying the origin of ln2 and
ζ (2n+1) in these formulas. As the infinite series in our
theorems apparently can not be reduced to finite closed
forms, some insight was given into why the odd zeta
values are more difficult, but I hope my approach to these
series can stimulate further investigations on this subject.
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