J. Stat. Appl. Pro5, No. 2, 213-220 (2016) %N =) 213

Journal of Statistics Applications & Probability
An International Journal

http://dx.doi.org/10.18576/jsap/050202

Limit Distributions of Maximal Random Chord Length
Zoran Vidovic*
Teacher Education Faculty, University of Belgrade, BedgreSerbia 11000

Received: 7 Mar. 2016, Revised: 4 Apr. 2016, Accepted: 10 2(t6
Published online: 1 Jul. 2016

Abstract: Taking in consideration several methods of choosing thecchbrandom, we have described the asymptotic distribution
the maximum length of the chord on the unit circle. The appab@ normalizing constants are presented and the ratewéogence is
established, for each case.
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1 Introduction

The famous Bertrand paradox, besides alerting us to be \agfud when choosing geometrical objects "at random”,
also gave rise to many different methods for the choice ofainelom chord. Bertrand himself considered three ways of
choosing the chord "at random”, and some papers that folopmposed more. Some of them can be found in
[4,5, 1, 6]. Similar problems with other geometrical objects weresidared in e.g., 8]. With this paradox as a guide,
for every way of choosing a chord in a circle, we have diffédistribution functions for random chord length. The goal
of this paper is to analyze the limit distribution of the nraal length of the chord depending of the way it is chosen "at
random”.

Let the random variableX be the length of the random chord in a unit circle, and itsrithistion function
F(x) =P{X<x},xeR.

We shall consider(X,) sequence of ii.d. random variables, € N, with the distribution functionF. Let

Mn = max{ Xy, Xz, ..., Xn} for n € N. The distribution function foM; is Fu,(Xx) = P{Mn < x} = F"(x), for x € R and
neN.

This paper is organized as follows. In section Prelimirsaxie present different methods for generating a chord "at
random” on unit circle and distribution functions for then¢ggh of a random chord which differs respectively for each
case. The section 3 is devoted to obtain the normalizingtaatssand the rate of convergence for the i.i.d. sequence of
random variables with distribution functions obtainedectson 2.

2 Preliminaries

Here we shall present several cases of methods of choosihgrd tat random” on unit circle and five distribution
functions to which they correspond. Sdéflor more details.
Case 1: This appears when choosing two random points uniformly addpendently on the circumference of the circle,

from which a random chord is formed.

0 X <0,
F(x) =< Zarcsin 0<x<2, 1)
1 X> 2.

Case 2: This case is fulfilled when the chord center is randomly detémnside the circle.
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0 x<0,
FO) =4 £ 0<x<2, @)
1 x>2

Case 3: This case appears when the chord center is uniformly digethon a reference radius.

0 X< 0,
F)=q1-¥*X 0<x<2, €)
1 X> 2.

Case 4: This case appears within three different methods of chgoaiohord "at random”. First method is described
by defining a random chord as one that separates the circléwoat parts, with the smaller area, being equally likely in
(0,0.5m). The second method appears by selecting a random Ramside the circle, with spinning a random angleRat
relative to reference lin®R. And the last method appears by choosing one random poirtteoaitcumference and one
inside the circle which determines the random chord.

0 X <0,
Fix)=1 2 <arcsin§ — X i"z) 0<x<2, (4)
1 X> 2.

Case 5: Select two random points inside the circle. Connect andnelxtieose random points in order to form a random
chord.

0 X< 0,
F(X) = { Zarccos¥ 42”‘2 — X<6+Xi)2nv 42 0<x<2, (5)
1 X> 2.

In order to find the limit distribution we shall use the Thaorg.6.1 from P]. Distribution functionF from all five cases
satisfies necessary conditions of this theorem, with theagpiate finite limit

o = fim XE=XFX)

ATTORR ©

wherexg = sup{x: F(x) < 1} = 2 < o andF’ denotes nonzero derivation 6f We easily infer that the appropriate
extreme value distribution belongs to the Weibull-typerilisitions. Therefore, by fundamental theorem of extrealae
theory (see e.qZ 3]), there exist some constargs > 0 andb, € R, n € N, such that

Mn_bn w e_(_x)a )(<07
P{ian gx}—>{1 sz,n_No’

wherew denotes convergence in distribution. The normalizing tamisa, andby, n € N, meets the limig,x+ b, —
Xg =2 asn — oo, forx € R.
The next two well-known theorems in extreme value theory halve a significant part in this paper (sequefXg) is
proposed to be arbitrary):
Theorem 1. ([9], Th. 1.5.1) Let (X,) be a sequence of independent and identically distributedbra variables with joint
distribution functiorF. Let 0< 1 < 40 and(u,) be a sequence of real numbers. Then

lim n(1—F(up)) =T,

n—oo
if and only if limp_e P{My < up} =€7".
Theorem 2. ([9], Th. 2.4.2) Let {X,} be i.i.d. sequence, puf = n(1— F(un)), and writed, = (1— )" —e ™ A =

e m—e T sothat
P{Mn S Un} - e_r - An"—An.
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Then -
e’ 1 1
< 03—
2 n-1-— 0 3n -1
where the first bound is asymptotically sharp, in the senaeith, — t thenA, ~ —(12e77/2)/2. Furthermore, for
T—1,<log2,

0<—-4n<

Ap=e{(T—Tn) +6(T— )2},

with0< 8 < 1.
So, itis easy to conclude that as— 17 we have
e 12 ,
AnN_ 2n 5 AnNe T(T_Tn)
asn — o,
3 Main result

This paper contains one dominant theorem which provideaspmptotic values of normalizing constants of the extreme
value theory, provided for i.i.d. sequenf¥,'}, n € N, with distribution functiorF;, i = 1,5, with the appropriate rate of
convergence for each case.

Theorem 3. Let X;, X3, ... be independent and with the same distribution fund&emwhich coincides with the distribution
function for the length of a random chord on unit circle fosesi, i = 1,5. LetM!, = max{Xl,Xz, Xt neN, be the
maximal Iength of random chords in unit circle, chosen by different methode Gonstants}, > 0 andb, € R,ne N,

such thaP{ ah Mh—bn < x} converges in distribution to Weibull distribution with serahape parameter, are asymptotically

equal toa} = %22, a2=1/na3=1/n at = %2 andad = 2%’; , with b, = 2 for eachi = 1,5 andn € N. The rate of

convergence iﬁ’(%), for each case.
Proof of Theorem 3. To proof this theorem well known limit approximations wikthelpful:

INX~x—1,x—1, (7
IN(1—x) ~ —x,x— 0, (8)
and
m
arccox ~ 5 TXX= 0. 9

Let us denotel, = a,x+ by, forx € R andn e N.
Case 1: Distribution functionFy, with the argumenti, can be easily described in the following manner:

Fu, (Un) = Earcsinﬁ i =exps nin Earcsinﬁ (10)
A\ 2) — %P m 2) "
With the limit (7), we can deduce
nin 2 arcsin2 | ~ an arcsin.! — n,n— oo. (11)
T 2 T 2

The parametesr of Weibull distribution is equal to 12, considered byg).
Hence, for eack < 0,

2n .
Darcsin? —ne —(—x)Y2,n - o, (12)
T 2

Clearly next approximation holds

. Un . anX+bn 7T(—X)1/2
arcsin— = arcsin ~— —.,n 13
"2 " on 2T (13)
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and additionally, usingl(2),

_\\1/2
anx+bnNCOSn( X) N1+ﬁ’
2 2n 8n?2

n— oo (14)

)

instructs us that the asymptotic normalizing constantsteedéorm ofa, = %22 andb,=2,neN.

With Theoren? as a guide, the limitn(1— F (up)) ~ (—x)%/2,n — o, is established and accordingly the next limit follows

. 2 (—X) m (—x)1/2
arcsm(l— a2 ) ~ 5 1- — ,N— oo, (15)
We note by 15), using identical notation as in Theorénthat
- 2 U 2 [ XTP?
Tn_n(l—i—_[arcsm?) _n<1—7—_[arcsm(w+1>) ,N— oo, (16)

andt = (—x)¥/2. Therefore, the following limit relation holds

e (0% (_x)

An+A;~—T,

n— co.
Case 2: The beginning is similar like in case 1, using distributiamdtion Ry, with argumentu,, and with further
reasoning that

Fum, (@nX—+bn) = exp{n(2In(anx+bn) — In4)}. a7

The adequate parameter of Weibull distribution is obtaimg@), and found to be 1. Then, for eagh< 0, the next limit
relation holds

N(2In(anx+bn) —IN4) ~ x,n — oo. (18)

and consequently
21n(@pX + by) ~ ’—; +In4, (19)

which is equivalent to

anX+ bn X
X, (20)

After considering limit 7), approximation

In

n8Xtbn g XD 1)
2 2

holds, and the normalizing constants follow the approxiomat

anx+bn~2+)—r:,n—>oo, (22)
and, therefore, they are asymptotically equate= 1/n, b, = 2, n € N. Introducingrt, as

X/N+ 2)? X2

Tn:n(l—F(un)):n<1—7( / 7 ) ):—%—x, (23)

with
x? X2
LT =-X— - x| =2 24

TT”X<4nX)4n’ (24)
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so the following estimation holds
e et e

Aot~ S EX . EX
nt S 2n  an 4an”’

n— oo,

Case 3: With similar form as before,

Fut, (Un) = exp{nln (1— v 42_ “%> } , (25)

and with the appropriate Weibull distribuiton parameterhich is equal to 1/2 byg), for eachx < 0, the sequencin)
satisfies the limit relation

In (1— 42_ U%) o (26)

e

Reformulating 26) with some help of§),

_ 12 Y
In(l—v42 “">~—V4 U o, 27)

2 3

enables us to reason that

2 _\\1/2
,/1_%N7<Xn> N w. (28)

Furthermore, from result2{) and 8),

Un X X
2\t 29

we can conclude that the asymptotic normalizing constamtthe form ofa, = 1/n? andb, = 2, n € N. Considering the
asymptotic estimation af, as

n / X X
a2 = = 2= Z
= 5 4—uz=+—Xx/1+ e x(1+ 8n2) ,N— oo, (30)

with T = (—x)/2, the following estimation holds

e,(,x)l/Z(_X) N e7(7X>1/2(—X)3/2

AntBn~ = 2n 8n2

,N— 0.

Case 4: Like in previous cases, with one step ahead and with Weiisttibution parameter = 1/2 (6), for eachx < 0
and(un) defined previously, following limit is

Un\/4—U%>_ (—x)Y/2 (31)

NN e,

In E arcsinﬁ —
T 2 2

With (7) as a limit guide, estimating the left side &1 as

(2 , VAi—2)\ ] 2 . VA2
In 7—T<arcsmﬁ—u> ~—1+7—T<arcsm%—u>,n—>oo, (32)

2 2 2

and after some easy notable limits

/A 02
w - %,/(Z—Un)(%—un) ~ Uny/2— Un ~ 21/2— Un, N — o, (33)
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which are supported by the assumption that+ 2,n — o, the following expression holds

2 _Un  Upy/4—U2 4
—1+E<arcsm—”—g> ~ V2t o (34)

2 2

Therefore, for eack < 0,

4 _y\1/2
Ry
m n

,N— oo, (35)

and after simple algebra, we get the limit
 (—X)
2—anx+bnN 1—6?,n—>00, (36)

which is helpful in realizing that the asymptotic values loé hormalizing constants aeg = Tgnzz andb, =2,ne N.
Asymptotically

112 —
Tn:n<1_%<arcsin@_w7wl%>> 2N A— Ty

2 2 T 2 N

2 m mw 12X X
S w2 Jir BN o (1 X
T X4nn<16n2X+ ) ez X( +128ﬂ2>’n—>°°’

and witht = (—x)1/2, enable us to deduce the limit relation

pop o E ) e (x
ooy 1287 ’

Case 5: By a well-known method of finding the Weibull-distributiommmeter, we conclude that=1/2, and in the
same way of reasoning and going several steps ahead, néxelation is, for eackx < 0,

2 2\ A2
n|n<2 \/42 Un_Un(6+Un) 4 un>N_(_X)l/2’n_>oo7 (37)

—arccos
m 12

n— oo,

which is equivalent to

n (2 VA un<6+uﬁ>¢4——u%> O i (38)

— arccos n— co.
T 2 12m n '’

Similarly like before, by 1), (37) and @8), and with identical reasoning, the following estimatiaids

VA-Ug un(6+uﬁ)\/4—uﬁ> N

2
In | —arccos
m

2 12m
JA— 2 2\ A2 _\\1/2

and with the help of9) for the last medium term estimation, we obtain

2 VA—12  un(6+ud)\/4— 12
— arccos - ~
m 2 12t
VA—12  un(6+Uu2)\/4—u2 16
1— n_ n N L1-—=2- :
T 121 gV et e

Thereby, for eack < 0,

16 —x)%/2

3—7T./2_unw( ) ,N— oo (39)
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and with some help of simple algebra we conclude that

2— (anx+bp) ~ o

W(—X),n—> 0, (40)

9

so the normalizing constants are easily noted tape -

T, we see that

andb, = 2, n € N. Discussing the asymptotic behavior of

Nz N Un(6+ uﬁ)\/4—uﬁ>
2

Th=n 1—Ear000°
ne m ” 12m

n\/47: u2 <1+ Un(6+ uﬁ)) N

12

X712 X2
(_X)l/z\/ 1 Tooae ™ (X2 <1+ 204&2> e

and witht = (—x)/2, the following asymptotic estimation holds

, ey e (0 Pgr2(x)3/2
Aot~ = 2n + 20487

,N— 00,

This completes the proof of this theoreim.

4 Conclusion

The main theorem in this paper gives the asymptotic noriinglizonstants and the rate of convergence for the apprepriat
extreme value theory problem. Since there are more diffavagys, than presented in this paper, of choosing a random
chord on unit circle, it will be interesting to find distritoihs functions of random chord length based on new methods of
choosing a chord "at random”. This is a open problem.
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