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Abstract: Taking in consideration several methods of choosing the chord at random, we have described the asymptotic distributionof
the maximum length of the chord on the unit circle. The appropriate normalizing constants are presented and the rate of convergence is
established, for each case.
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1 Introduction

The famous Bertrand paradox, besides alerting us to be very careful when choosing geometrical objects ”at random”,
also gave rise to many different methods for the choice of therandom chord. Bertrand himself considered three ways of
choosing the chord ”at random”, and some papers that followed proposed more. Some of them can be found in
[4, 5, 1, 6]. Similar problems with other geometrical objects were considered in e.g. [7, 8]. With this paradox as a guide,
for every way of choosing a chord in a circle, we have different distribution functions for random chord length. The goal
of this paper is to analyze the limit distribution of the maximal length of the chord depending of the way it is chosen ”at
random”.
Let the random variableX be the length of the random chord in a unit circle, and its distribution function
F(x) = P{X ≤ x}, x ∈ R.
We shall consider(Xn) sequence of i.i.d. random variables,n ∈ N, with the distribution functionF . Let
Mn = max{X1,X2, ...,Xn} for n ∈ N. The distribution function forMn is FMn(x) = P{Mn ≤ x} = Fn(x), for x ∈ R and
n ∈ N.
This paper is organized as follows. In section Preliminaries we present different methods for generating a chord ”at
random” on unit circle and distribution functions for the length of a random chord which differs respectively for each
case. The section 3 is devoted to obtain the normalizing constants and the rate of convergence for the i.i.d. sequence of
random variables with distribution functions obtained in section 2.

2 Preliminaries

Here we shall present several cases of methods of choosing a chord ”at random” on unit circle and five distribution
functions to which they correspond. See [1] for more details.
Case 1: This appears when choosing two random points uniformly and independently on the circumference of the circle,

from which a random chord is formed.

F(x) =







0 x < 0,
2
π arcsinx

2 0≤ x < 2,
1 x ≥ 2.

(1)

Case 2: This case is fulfilled when the chord center is randomly selected inside the circle.
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F(x) =







0 x < 0,
x2

4 0≤ x < 2,
1 x ≥ 2.

(2)

Case 3: This case appears when the chord center is uniformly distributed on a reference radius.

F(x) =







0 x < 0,

1−
√

4−x2

2 0≤ x < 2,
1 x ≥ 2.

(3)

Case 4: This case appears within three different methods of choosing a chord ”at random”. First method is described
by defining a random chord as one that separates the circle into two parts, with the smaller area, being equally likely in
(0,0.5π). The second method appears by selecting a random pointR inside the circle, with spinning a random angle atR
relative to reference lineOR. And the last method appears by choosing one random point on the circumference and one
inside the circle which determines the random chord.

F(x) =











0 x < 0,
2
π

(

arcsinx
2 −

x
√

4−x2

4

)

0≤ x < 2,

1 x ≥ 2.

(4)

Case 5: Select two random points inside the circle. Connect and extend those random points in order to form a random

chord.

F(x) =







0 x < 0,
2
π arccos

√
4−x2

2 − x(6+x2)
√

4−x2

12π 0≤ x < 2,
1 x ≥ 2.

(5)

In order to find the limit distribution we shall use the Theorem 1.6.1 from [9]. Distribution functionF from all five cases
satisfies necessary conditions of this theorem, with the appropriate finite limit

α = lim
x→xF

(xF − x)F ′(x)
1−F(x)

, (6)

wherexF = sup{x : F(x) < 1} = 2 < ∞ andF ′ denotes nonzero derivation ofF . We easily infer that the appropriate
extreme value distribution belongs to the Weibull-type distributions. Therefore, by fundamental theorem of extreme value
theory (see e.q. [2, 3]), there exist some constantsan > 0 andbn ∈ R, n ∈ N, such that

P

{

Mn − bn

an
≤ x

}

ω→
{

e−(−x)α
x < 0,

1 x ≥ 0,
n → ∞,

whereω denotes convergence in distribution. The normalizing constantsan andbn, n ∈ N, meets the limitanx+ bn →
xF = 2 asn → ∞, for x ∈ R.
The next two well-known theorems in extreme value theory will have a significant part in this paper (sequence(Xn) is
proposed to be arbitrary):
Theorem 1. ([9], Th. 1.5.1) Let (Xn) be a sequence of independent and identically distributed random variables with joint

distribution functionF . Let 0≤ τ ≤+∞ and(un) be a sequence of real numbers. Then

lim
n→∞

n(1−F(un)) = τ,

if and only if limn→∞ P{Mn ≤ un}= e−τ .

Theorem 2. ([9], Th. 2.4.2) Let {Xn} be i.i.d. sequence, putτn = n(1−F(un)), and write∆n =
(

1− τn
n

)n − e−τn , ∆ ′
n =

e−τn − e−τ , so that
P{Mn ≤ un}− e−τ = ∆n +∆

′
n.
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Then

0≤−∆n ≤
τ2

n e−τn

2
1

n−1
≤ 0.3

1
n−1

,

where the first bound is asymptotically sharp, in the sense that if τn → τ then∆n ∼ −(τ2e−τ/2)/2. Furthermore, for
τ − τn ≤ log2,

∆
′
n = e−τ{(τ − τn)+θ (τ − τn)

2},
with 0< θ < 1.
So, it is easy to conclude that asτn → τ we have

∆n ∼−e−τ τ2

2n
, ∆

′
n ∼ e−τ(τ − τn),

asn → ∞.

3 Main result

This paper contains one dominant theorem which provides theasymptotic values of normalizing constants of the extreme
value theory, provided for i.i.d. sequence{Xn

i}, n ∈ N, with distribution functionFi, i = 1,5, with the appropriate rate of
convergence for each case.
Theorem 3. Let X i

1,X
i
2, ... be independent and with the same distribution functionFi, which coincides with the distribution

function for the length of a random chord on unit circle for casesi, i = 1,5. LetMi
n = max{X i

1,X
i
2, ...,X

i
n}, n ∈ N, be the

maximal length ofn random chords in unit circle, chosen by different methods. The constantsai
n > 0 andbi

n ∈ R, n ∈ N,

such thatP
{

Mi
n−bi

n
ai

n
≤ x
}

converges in distribution to Weibull distribution with some shape parameter, are asymptotically

equal toa1
n =

π2

4n2 , a2
n = 1/n, a3

n = 1/n2, a4
n =

π2

16n2 anda5
n =

9π2

256n2 , with bi
n = 2 for eachi = 1,5 andn ∈ N. The rate of

convergence isO(1
n ), for each case.

Proof of Theorem 3. To proof this theorem well known limit approximations will be helpful:

lnx ∼ x−1,x → 1, (7)

ln(1− x)∼−x,x → 0, (8)

and

arccosx ∼ π
2
− x,x → 0. (9)

Let us denoteun = anx+ bn, for x ∈ R andn ∈ N.
Case 1: Distribution functionFMn with the argumentun can be easily described in the following manner:

FMn(un) =

(

2
π

arcsin
un

2

)n

= exp

{

n ln

(

2
π

arcsin
un

2

)}

. (10)

With the limit (7), we can deduce

n ln

(

2
π

arcsin
un

2

)

∼ 2n
π

arcsin
un

2
− n,n → ∞. (11)

The parameterα of Weibull distribution is equal to 1/2, considered by (6).
Hence, for eachx < 0,

2n
π

arcsin
un

2
− n ∼−(−x)1/2,n → ∞. (12)

Clearly next approximation holds

arcsin
un

2
= arcsin

anx+ bn

2
∼−π(−x)1/2

2n
+

π
2
,n → ∞, (13)
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and additionally, using (12),

anx+ bn

2
∼ cos

π(−x)1/2

2n
∼ 1+

xπ2

8n2 ,n → ∞, (14)

instructs us that the asymptotic normalizing constants arethe form ofan =
π2

4n2 andbn = 2, n ∈ N.

With Theorem2 as a guide, the limit ,n(1−F(un))∼ (−x)1/2,n→∞, is established and accordingly the next limit follows

arcsin

(

1− π2(−x)
8n2

)

∼ π
2

(

1− (−x)1/2

n

)

,n → ∞. (15)

We note by (15), using identical notation as in Theorem2, that

τn = n

(

1− 2
π

arcsin
un

2

)

= n

(

1− 2
π

arcsin

(

xπ2

8n2 +1

))

,n → ∞, (16)

andτ = (−x)1/2. Therefore, the following limit relation holds

∆n +∆
′
n ∼−e−(−x)1/2

(−x)
2n

,n → ∞.

Case 2: The beginning is similar like in case 1, using distribution function FMn with argumentun, and with further

reasoning that

FMn(anx+ bn) = exp{n(2ln(anx+ bn)− ln4)}. (17)

The adequate parameter of Weibull distribution is obtainedby (6), and found to be 1. Then, for eachx < 0, the next limit
relation holds

n(2ln(anx+ bn)− ln4)∼ x,n → ∞. (18)

and consequently

2 ln(anx+ bn)∼
x
n
+ ln4, (19)

which is equivalent to

ln
anx+ bn

2
∼ x

2n
,n → ∞. (20)

After considering limit (7), approximation

ln
anx+ bn

2
∼−1+

anx+ bn

2
,n → ∞, (21)

holds, and the normalizing constants follow the approximation

anx+ bn ∼ 2+
x
n
,n → ∞, (22)

and, therefore, they are asymptotically equal toan = 1/n, bn = 2, n ∈ N. Introducingτn as

τn = n(1−F(un)) = n

(

1− (x/n+2)2

4

)

=− x2

4n
− x, (23)

with

τ − τn =−x−
(

− x2

4n
− x

)

=
x2

4n
, (24)
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so the following estimation holds

∆n +∆
′
n ∼−exx2

2n
+

exx2

4n
=−exx2

4n
,n → ∞.

Case 3: With similar form as before,

FMn(un) = exp

{

n ln

(

1−
√

4− u2
n

2

)}

, (25)

and with the appropriate Weibull distribuiton parameterα, which is equal to 1/2 by (6), for eachx < 0, the sequence(un)
satisfies the limit relation

ln

(

1−
√

4− u2
n

2

)

∼ −(−x)1/2

n
,n → ∞. (26)

Reformulating (26) with some help of (8),

ln

(

1−
√

4− u2
n

2

)

∼−
√

4− u2
n

2
,n → ∞, (27)

enables us to reason that
√

1− u2
n

4
∼ (−x)1/2

n
,n → ∞. (28)

Furthermore, from results (27) and (28),

un

2
∼
√

1+
x
n2 ∼ 1+

x
2n2 ,n → ∞, (29)

we can conclude that the asymptotic normalizing constants are the form ofan = 1/n2 andbn = 2, n ∈ N. Considering the
asymptotic estimation ofτn as

τn =
n
2

√

4− u2
n =

√
−x

√

1+
x

4n2 ∼
√
−x
(

1+
x

8n2

)

,n → ∞, (30)

with τ = (−x)1/2, the following estimation holds

∆n +∆
′
n ∼−e−(−x)1/2

(−x)
2n

+
e−(−x)1/2

(−x)3/2

8n2 ,n → ∞.

Case 4: Like in previous cases, with one step ahead and with Weibull-distribution parameterα = 1/2 (6), for eachx < 0

and(un) defined previously, following limit is

ln

[

2
π

(

arcsin
un

2
− un

√

4− u2
n

2

)]

∼− (−x)1/2

n
,n → ∞. (31)

With (7) as a limit guide, estimating the left side of (31) as

ln

[

2
π

(

arcsin
un

2
− un

√

4− u2
n

2

)]

∼−1+
2
π

(

arcsin
un

2
− un

√

4− u2
n

2

)

,n → ∞, (32)

and after some easy notable limits

un
√

4− u2
n

2
=

un

2

√

(2− un)(2+ un) ∼ un

√

2− un ∼ 2
√

2− un,n → ∞, (33)
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which are supported by the assumption thatun → 2,n → ∞, the following expression holds

−1+
2
π

(

arcsin
un

2
− un

√

4− u2
n

2

)

∼− 4
π
√

2− un,n → ∞. (34)

Therefore, for eachx < 0,

− 4
π
√

2− un ∼− (−x)1/2

n
,n → ∞, (35)

and after simple algebra, we get the limit

2− anx+ bn ∼
π2

16
(−x)

n2 ,n → ∞, (36)

which is helpful in realizing that the asymptotic values of the normalizing constants arean = π2

16n2 andbn = 2, n ∈ N.
Asymptotically

τn = n

(

1− 2
π

(

arcsin
un

2
− un

√

4− u2
n

2

))

∼ 2
π

nun
√

4− un

2
=

2
π
√
−x

π
4n

n

(

π2

16n2 x+2

)

√

1+
π2x
64n2 ∼

√
−x

(

1+
π2x

128n2

)

,n → ∞,

and withτ = (−x)1/2, enable us to deduce the limit relation

∆n +∆
′
n ∼−e−(−x)1/2

(−x)
2n

+
e−(−x)1/2

(−x)3/2π2

128n2 ,n → ∞.

Case 5: By a well-known method of finding the Weibull-distribution parameter, we conclude thatα = 1/2, and in the
same way of reasoning and going several steps ahead, next limit relation is, for eachx < 0,

n ln

(

2
π

arccos

√

4− u2
n

2
− un(6+ u2

n)
√

4− u2
n

12π

)

∼−(−x)1/2,n → ∞, (37)

which is equivalent to

ln

(

2
π

arccos

√

4− u2
n

2
− un(6+ u2

n)
√

4− u2
n

12π

)

∼− (−x)1/2

n
,n → ∞. (38)

Similarly like before, by (7), (37) and (38), and with identical reasoning, the following estimation holds

ln

(

2
π

arccos

√

4− u2
n

2
− un(6+ u2

n)
√

4− u2
n

12π

)

∼

−1+
2
π

arccos

√

4− u2
n

2
− un(6+ u2

n)
√

4− u2
n

12π
∼− (−x)1/2

n
,n → ∞,

and with the help of (9) for the last medium term estimation, we obtain

2
π

arccos

√

4− u2
n

2
− un(6+ u2

n)
√

4− u2
n

12π
∼

1−
√

4− u2
n

π
− un(6+ u2

n)
√

4− u2
n

12π
∼ 1− 16

3π
√

2− un,n → ∞.

Thereby, for eachx < 0,

16
3π
√

2− un ∼
(−x)1/2

n
,n → ∞, (39)
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and with some help of simple algebra we conclude that

2− (anx+ bn)∼
9π2

256n2(−x),n → ∞, (40)

so the normalizing constants are easily noted to bean =
9π2

256n2 andbn = 2, n ∈ N. Discussing the asymptotic behavior of
τn we see that

τn = n

(

1− 2
π

arccos

√

4− u2
n

2
+

un(6+ u2
n)
√

4− u2
n

12π

)

∼

n

√

4− u2
n

π

(

1+
un(6+ u2

n)

12

)

∼

(−x)1/2

√

1+
9xπ2

1024n2 ∼ (−x)1/2
(

1+
9xπ2

2048n2

)

,n → ∞,

and withτ = (−x)1/2, the following asymptotic estimation holds

∆n +∆
′
n ∼−e−(−x)1/2

(−x)
2n

+
e−(−x)1/2

9π2(−x)3/2

2048n2 ,n → ∞.

This completes the proof of this theorem.�

4 Conclusion

The main theorem in this paper gives the asymptotic normalizing constants and the rate of convergence for the appropriate
extreme value theory problem. Since there are more different ways, than presented in this paper, of choosing a random
chord on unit circle, it will be interesting to find distributions functions of random chord length based on new methods of
choosing a chord ”at random”. This is a open problem.

Acknowledgement

I am grateful to the referee for the critical reading of the manuscript which lead to its improvement.

References

[1] S. Chi and R. Larson. Bertrand’s paradox revisited: Morelessons about that ambiguous word, random.JISE, 3(1):1–
26, Spring 2009.

[2] A. Ferreira and L. de Hann. Extreme value theory: An introduction. 2006.
[3] B. V. Gnedenko. Sur la distibution du terme maximum d’unesérie alétoire.Ann. of Math., 44(3):423–453, Jul 1943.
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