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Abstract: In this paper, we propose a fractional order model for th@agation behavior of computer virus under human intereanti
to study the spread of computer virus across the interneté¥ical simulations are used to show the behavior of thetisolsi of the
proposed fractional order system.
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1 Introduction

Computer viruses and network worms, are defined as maliciodss that can replicate themselves and spread among
computers I]. The spread of computer viruses still causes enormousdiaklosses that large organizations suffer for
computer security problemg&][ The most devastating computer virus to date is "My Doomhjak caused over $38
billion in damages3]. So, individuals and organizations are troubled by corapuiruses 4]. Throughout the past two
decades, computer viruses were inherently limited by tbetfat human mediation was required for them to propagate
[5]. But, in modern life, human intervention plays a significemle in preventing the breakout of computer virus@ls [
Myriad of different computer viruses have been made andldped by human programmers to damage the computer
systems, erasing data or stealing information. Such vérosgy attack computers through many ways like downloading
files via internet, running an infected program, openingdtéd e-mail attachments, and using infected USB devides |
Mathematical modeling of the spread process of computesvg an effective approach to understand the behavior of
computer viruses and how to prevent infectih [t helps decision makers to put their strategies to cdmitr®spread of
computer viruses. In this paper, we present a fractionaro®dR (Susceptible-Infected-Removed) model to discuss th
effects of human intervention in spread of viruses over netwr his model is borrowed from epidemiological SIR model
which is used to study the dynamics of infectious disea8es [

The rest of the paper is organized as follows. A brief revidvihe fractional calculus theory is given in Section 2.
In Section 3, fractional order epidemic models are disalisseSection 4, we present the equilibrium points and their
stability, while in Section 5, the existence of the solui®discussed. Section 6 is devoted to the numerical resiittslly,

this paper is summarized by a conclusion.

2 Fractional Calculus
Recently, many mathematicians and applied researcheesthiedl to model real processes using the fractional casculu

[10,11]. Fractional calculus and fractional-order differenggluations date back to near the foundations of calculus, and
they have been used in engineering fields for several de¢agdsS, 14] Many applications of fractional calculus amount
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to replacing the time derivative in a given evolution eqoiatby a derivative of fractional orded$]. The concept of
fractional calculus has tremendous potential to changatyewe see the model, and control the nature around us. The
major reason of using is that fractional differential eduiad are naturally related to systems with memory whichtesxis
most biological and system&6, 17, 18] Also, they are closely related to fractals, which are atauméh biological systems
[19,20,21,25]. Moreover, factional order differential equations artdeast, as stable as their integer order counteréyt [
22,23,24,25,26]. In other words, the fractional order derivative can capthe history of the variable that is. It is difficult
to be done by means of the integer order derivatives. Theigddyaeaning of the fractional order is considered4|[to
be the index of memory. In the models with memory, a memorgese usually consists of two stag2s]|

e Short stage with permanent retention.

e The other is governed by a simple model of fractional ordeivegve.
We use Caputo derivative as it is attractive when physicatlets are presented because of clarity the physical
interpretation of the prescribed data9]. Also Caputo derivative is useful because the initial dbods for the
fractional-order models with the Caputo derivatives cathizesame as for the integer-order differential equati@ofs [
Definition 1. The fractional integral of ordex of a functionf : R" — Ris given by

1 "X
J9f(x :—/ x—t)9 " 1f(t)dt, a >0,x> 0,
() = g7 Jy KOO
I (x) = f(x)
which is an integral with memory. Hence we have
ry+1)
JItV = ——" 9 a>0,y>-1,t>0.
F(a+y+1) Y

Definition 2. The Caputo fractional derivative and Riemann—Liouvilleiegive of ordera wherea € (m—1,m) of a
continuous functiorf : R™ — Ris given respectively by

DYf (x) =DM (I™f (x)),

DIf (x) = I™° (D™f (x)),

where
m—1l<a<m meN.

The definition of fractional derivative involves an intetioa which is non-local operator (as it is defined on an
interval) so fractional derivative is a non-local operatior other words, calculating time-fractional derivativé a
function f(t) at some time = t; requires all the previous history, i.e. dlft) fromt =0 tot =t;.

Definition 3. Fora > 0, the Grunwald-Letnikowth order fractional derivative of functiof(t) with respect to t and the
terminal value a is giver{]

n
CLpAf(t) = limh o § (—1)] (“) f(t— jh)
a ™t h—0 J; J
wherenh=t —a

Some problems appeared when discrete time fractional deterative is used as follows§5):

e Fractionalizing the discrete-time systems using classitsthave resulted in finite dimension integer-order system
that are difficult to manipulate.

e Integer order discrete-time systems that is used to apmiabei continuous-time fractional systems which have long
memory, are known for their short memory.

3 Model Derivation

We propose the following fractional order models which assddl on the integer order models given &h [n this
model, all internal computers are further categorizedthtee populations: susceptible computg(ty, that is, virus-free
computers having no immunity; infected computk(is; recovered computeiR(t), that is, virus-free computers having
immunity [6]. So, the e-epidemic fractional order model is given aofed
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DS(t)=w — 1S — wS+ yl — I + LR
DI (t) =BI — yol — wl — nl, 1)
DIR(t) = il — 1S — wR— 2R,

where 0< a < 1, is the index of memoryw is defined as the probability that at any time an internal oaterpis
disconnected from the Internet whifgSl is responsible of increasing the percentage of infectedpecens.y; is the
probability of an infected computer becomes recovered gttiame or becomes susceptible with probabiljgy The
parameten, is the probability of a recovered computer becomes suddepdi any time .l is the probability of a
susceptible computer becomes recovered. The initial tiondiare:

S(0) > 0,1(0) > 0andR(0) > O.

The basic reproductioRg is defined as the average number of susceptible computéerthiafected by a single infected
computer during its life span. From the above model, bagicoduction number has been driven @ &s

B
= 2
Fo itye+w @
Based onf] and sinceS+ 1 + R= 1, system (1) can be simplified to the following SIS (susd®etinfected) fractional
model:

DIS(t) =w — S — wS+ yl — B + pa(1-S—1), 3)
DY (1) =BY — yl — wl — yl,

with initial conditionsS(0) > 0,1 (0) > 0.

A sufficient condition for the local asymptotic stability tife equilibrium pointE (S, leg) is that the eigenvaluey of
the Jacobian matrix df satisfy the conditiodargA; | > aJ : (largAy | > aJ ,|argAz | > aT) [19]-[36]. This confirms
that fractional-order differential equations are, atigas stable as their integer order counterpart.

4 The Virus-Free Equilibrium Point and Its Stability

To evaluate the equilibrium points, let
DIS(t) = 0,

DY (t) =0.

System (3) always has a virus-free equilibri&%(1,0).

Theorem 1 The equilibrium point EC is globally asymptotically stable with respect to feasiblegion
Q={(S1):S>0,1 >0,S+I1 <1} if Ry <1

The proof: in [6].

WhenRp > 1, the system (3) has a unique viral-equilibriE@n(S", 1 *), where

nt+y+ow 1
St= 1= £ = _ -
B Ro’
1= (2 +w) (Ro—1) (4)
H1+ (w+yi+ H2) Ry

5 Existence of Uniformly Stable Solution

Let
x(t) =S{t) x(t) =1(t)

fi(xa (), %2 (1) = w— pa (X1 (1) , X2 (1)) — O (X1 (1)) + Vo (X2 (1)) — B (X (t) X2 (1)) — M2 (1 —xa (1) —%2(1)),
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fa(xa (1), X2 (1)) = B((xa (1) X2(t)) — Va( X2 (1) — w(X2(t)) — V(X2 (1)). (5)

LetD={x1, 2 e R: |x(t)| <o, t€[0,T],i=1,2}.
Then on D we have

7] 7]

i < i <
’dxl f1 (X1, X2) | < ki, ‘dxz f1 (X1, X2) | < ko,
if (X1, X2) | < k if (X1, X2) | < ka
Iy, 20 %) | < ke, I, 20w %) | < e,

where ki, ko, k3, kg are positive constants.

This implies that each of the two functiofs, f, satisfies the Lipschitz condition with respect to the twouangntsx;
andx, then each of the two functiorfg, f, is absolutely continuous with respect to the two argumenéndx,.
Consider the following initial value problem which repretethe fractional-order SIR model (6) and (7)

DaX]_ (t) =f; (X]_, Xz), t>0,x (0) = Xot, (6)

D%, (t) = f2 (X1, X2), t >0 ,%2(0) = Xge. (7

Definition 5.1. By a solution of the fractional-order SIR model (6) and (7§ mean a column vectoq (t) X (1)), xg
andxz € C[0, T, T < o where GO, T] is the class of continuous functions defined on the intel®al] and s denotes
the transpose of the matrix.

Theorem 5.1
The fractional-order SIR model (6) and (7)has a unique unifp Lyapunov stable solution.
Proof. Write the model (6) and (7) in the matrix form

DIX(t) =F(x(t)), t>0 andx(0)=Xo,
where

X(t) = (xa (1) X2 (1)"
and

F(x(0)=(fa(x, (1), % (1)) f2(x, (1) %2(1)))".

6 Numerical results

In this section, the predictor corrector method is appleeglt the numerical solutions of system (3) [36]. We will ppep
two cases for the model (3) with various of values of paramsdje). In the first casefl =0.3,w=0.1, 3 = 0.2, =
0.4,y1 = 0.1, y» = 0.2 and with initial conditionsS(0) = 0.5, | (0) = 0.4. In this caselRy = 0.75 < 1, then the virus-free
equilibrium is globally stable and the virus is eliminatéuthe second cas@ = 0.3,0 = 0.1, u; = 0.2, U, = 0.4,\4 =
0.1, y» = 0.05 with initial conditions:S(0) = 0.5,1(0)=0.4, thenRy = 1.2 > 1 which implies that the virus still persists
and the viral equilibrium is globally stable.

7 Conclusion

In this paper, we introduced a study of propagation of comptitus under the impact of human intervention. We modified
the ODE model proposed iB] into a system of fractional-order (SIR) model. The podgibthat an infected computer
becomes susceptible as well as the possibility that a stisteepomputer becomes recovered is considered here in the
proposed model. The results show that the solution contisiyaepends on the time-fractional derivative. Winen> 1

the solution of the fractional models reduce to the standahation of the integer order models. According to the rssul

of the simulation experiments figures (1-6) it is observed |y is increasing with3, and it is decreasing with, y» and

w respectively Figures 1 and 4.. This implies that prevengamore important than cure, and higher disconnecting rate
from the Internet contributes to the suppression of virtfsisiion.
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Fig. 1: Evolutions ofS(t); | (t), and for the system (3) far = 1 for case (1) with value o, = 0.2.
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Fig. 2: The density of susceptible computer for= 1 (solid line),a = 0.98 (dashed line), anm = 0.95 (Dashed-dotted).
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Fig. 5: The density of susceptible computer for= 1 (solid line),a =0.98 (dashed line), anal = 0.95 (Dashed-dotted).
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Fig. 6: The density of infected computer far= 1 (solid line),a =0.98 (dashed line), anal = 0.95 (Dashed-dotted).
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