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Abstract: In this paper, we propose a fractional order model for the propagation behavior of computer virus under human intervention
to study the spread of computer virus across the internet. Numerical simulations are used to show the behavior of the solutions of the
proposed fractional order system.
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1 Introduction

Computer viruses and network worms, are defined as maliciouscodes that can replicate themselves and spread among
computers [1]. The spread of computer viruses still causes enormous financial losses that large organizations suffer for
computer security problems [2]. The most devastating computer virus to date is ”My Doom”, which caused over $38
billion in damages [3]. So, individuals and organizations are troubled by computer viruses [4]. Throughout the past two
decades, computer viruses were inherently limited by the fact that human mediation was required for them to propagate
[5]. But, in modern life, human intervention plays a significant role in preventing the breakout of computer viruses [6].
Myriad of different computer viruses have been made and developed by human programmers to damage the computer
systems, erasing data or stealing information. Such viruses may attack computers through many ways like downloading
files via internet, running an infected program, opening infected e-mail attachments, and using infected USB devices [7].
Mathematical modeling of the spread process of computer virus is an effective approach to understand the behavior of
computer viruses and how to prevent infection [8]. It helps decision makers to put their strategies to control the spread of
computer viruses. In this paper, we present a fractional order SIR (Susceptible-Infected-Removed) model to discuss the
effects of human intervention in spread of viruses over network. This model is borrowed from epidemiological SIR model
which is used to study the dynamics of infectious diseases [9].
The rest of the paper is organized as follows. A brief review of the fractional calculus theory is given in Section 2.
In Section 3, fractional order epidemic models are discussed. In Section 4, we present the equilibrium points and their
stability, while in Section 5, the existence of the solutionis discussed. Section 6 is devoted to the numerical results.Finally,
this paper is summarized by a conclusion.

2 Fractional Calculus

Recently, many mathematicians and applied researchers have tried to model real processes using the fractional calculus
[10,11]. Fractional calculus and fractional-order differentialequations date back to near the foundations of calculus, and
they have been used in engineering fields for several decades[12,13,14] Many applications of fractional calculus amount
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to replacing the time derivative in a given evolution equation by a derivative of fractional order [15]. The concept of
fractional calculus has tremendous potential to change theway we see the model, and control the nature around us. The
major reason of using is that fractional differential equations are naturally related to systems with memory which exists in
most biological and systems [16,17,18] Also, they are closely related to fractals, which are abundant in biological systems
[19,20,21,25]. Moreover, factional order differential equations are, at least, as stable as their integer order counterpart [21,
22,23,24,25,26]. In other words, the fractional order derivative can capture the history of the variable that is. It is difficult
to be done by means of the integer order derivatives. The physical meaning of the fractional order is considered in [27] to
be the index of memory. In the models with memory, a memory process usually consists of two stages [28]:

• Short stage with permanent retention.
• The other is governed by a simple model of fractional order derivative.

We use Caputo derivative as it is attractive when physical models are presented because of clarity the physical
interpretation of the prescribed data [29]. Also Caputo derivative is useful because the initial conditions for the
fractional-order models with the Caputo derivatives can bethe same as for the integer-order differential equations [30].
Definition 1. The fractional integral of orderα of a function f : R+ → R is given by

Jα f (x) =
1

Γ (α)

∫ x

0
(x− t)α−1 f (t)dt, α > 0,x > 0,

J0 f (x) = f (x)

which is an integral with memory. Hence we have

Jα tγ =
Γ (γ +1)

Γ (α + γ +1)
tα+γ

, α > 0, γ >−1, t > 0.

Definition 2. The Caputo fractional derivative and Riemann–Liouville derivative of orderα whereα ∈ (m−1,m) of a
continuous functionf : R+ → R is given respectively by

Dα f (x) = Dm (

Jm−α f (x)
)

,

Dα
∗ f (x) = Jm−α (Dm f (x)) ,

where
m−1< α ≤ m, m ∈ N.

The definition of fractional derivative involves an integration which is non-local operator (as it is defined on an
interval) so fractional derivative is a non-local operator. In other words, calculating time-fractional derivative of a
function f (t) at some timet = t1 requires all the previous history, i.e. allf (t) from t = 0 to t = t1.

Definition 3. For α > 0, the Grunwald-Letnikovαth order fractional derivative of functionf (t) with respect to t and the
terminal value a is given [34]

GL
a Dα

t f (t) = lim
h→0

h−α
n

∑
j=0

(−1) j
(

α
j

)

f (t − jh)

,
wherenh = t − a

Some problems appeared when discrete time fractional orderderivative is used as follows [35]:
• Fractionalizing the discrete-time systems using classic tools have resulted in finite dimension integer-order systems

that are difficult to manipulate.
• Integer order discrete-time systems that is used to approximate continuous-time fractional systems which have long

memory, are known for their short memory.

3 Model Derivation

We propose the following fractional order models which are based on the integer order models given in [6]. In this
model, all internal computers are further categorized intothree populations: susceptible computersS(t), that is, virus-free
computers having no immunity; infected computersI(t); recovered computersR(t), that is, virus-free computers having
immunity [6]. So, the e-epidemic fractional order model is given as follows
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Dα S (t) = ω − µ1SI − ωS+ γ2I − β SI+ µ2R,
Dα I (t) = β SI − γ2I − ωI− γ1I,
Dα R(t) = γ1I− µ1SI −ωR− µ2R,

(1)

where 0< α ≤ 1, is the index of memory,ω is defined as the probability that at any time an internal computer is
disconnected from the Internet whileβ SI is responsible of increasing the percentage of infected computers.γ1 is the
probability of an infected computer becomes recovered at any time or becomes susceptible with probabilityγ2. The
parameterµ2 is the probability of a recovered computer becomes susceptible at any time.µ1I is the probability of a
susceptible computer becomes recovered. The initial conditions are:

S (0) ≥ 0, I (0) ≥ 0 andR(0) ≥ 0.

The basic reproductionR0 is defined as the average number of susceptible computers that are infected by a single infected
computer during its life span. From the above model, basic reproduction number has been driven in [6] as

R0 =
β

γ1+ γ2+ω
. (2)

Based on [6] and sinceS+ I+R ≡ 1, system (1) can be simplified to the following SIS (susceptible-Infected) fractional
model:

Dα S (t) = ω − µ1SI − ωS+ γ2I − β SI + µ2(1− S− I),
Dα I (t) = β SI − γ2I − ωI − γ1I, (3)

with initial conditionsS (0) ≥ 0, I (0) ≥ 0.
A sufficient condition for the local asymptotic stability ofthe equilibrium pointE (Seq, Ieq) is that the eigenvaluesλi of
the Jacobian matrix ofE satisfy the condition|argλi | > α π

2 : (|argλ1 | > α π
2 , |argλ2 | > α π

2 ) [19]-[36]. This confirms
that fractional-order differential equations are, at least, as stable as their integer order counterpart.

4 The Virus-Free Equilibrium Point and Its Stability

To evaluate the equilibrium points, let
Dα S (t) = 0,

Dα I (t) = 0.

System (3) always has a virus-free equilibriumE0(1,0).
Theorem 1. The equilibrium point E0 is globally asymptotically stable with respect to feasibleregion
Ω = {(S, I) : S ≥ 0, I ≥ 0,S+ I ≤ 1} if R0 ≤ 1.
The proof: in [6].
WhenR0 > 1, the system (3) has a unique viral-equilibriumE∗(S∗, I∗), where

S∗ =
γ1+ γ2+ω

β
=

1
R0

,

I∗ =
(µ2+ω)(R0−1)

µ1+(ω + γ1+ µ2)R0
> 0. (4)

5 Existence of Uniformly Stable Solution

Let
x1 (t) = S(t) x2 (t) = I(t)

,

f1(x1 (t) ,x2 (t)) = ω − µ1(x1 (t) ,x2 (t))− δ (x1 (t))+ γ2 (x2 (t))−β (x1 (t)x2 (t))− µ2(1− x1(t)− x2(t)) ,
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f2 (x1 (t) , x2 (t)) = β ((x1 (t) x2 (t)) − γ2( x2 (t)) − ω( x2 (t))− γ1( x2 (t)). (5)

Let D= {x1, x2 ∈ R : |xi(t)| ≤ α, t ∈ [0,T ] , i = 1,2} .
Then on D we have

∣

∣

∣

∣

∂
∂x1
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where k1,k2,k3,k4 are positive constants.
This implies that each of the two functionsf 1, f2 satisfies the Lipschitz condition with respect to the two argumentsx1
andx2 then each of the two functionsf1, f2 is absolutely continuous with respect to the two argumentsx1 andx2.
Consider the following initial value problem which represents the fractional-order SIR model (6) and (7)

Dαx1 (t) = f1 (x1, x2) , t > 0 ,x1 (0) = x01, (6)

Dαx2 (t) = f2 (x1, x2) , t > 0 ,x2 (0) = x02. (7)

Definition 5.1. By a solution of the fractional-order SIR model (6) and (7), we mean a column vector(x1 (t) x2 (t))
τ , x1

andx2 ∈ C[0, T ] , T < ∞ where C[0, T ] is the class of continuous functions defined on the interval [0, T] and s denotes
the transpose of the matrix.

Theorem 5.1
The fractional-order SIR model (6) and (7)has a unique uniformly Lyapunov stable solution.
Proof. Write the model (6) and (7) in the matrix form

Dα X(t) = F(x(t)), t > 0 and x(0) = x0,
where

x(t) = (x1 (t) x2 (t))
τ

and
F (x(t))=( f1(x1 (t) , x2 (t)) f2(x1 (t) x2 (t)))

τ
.

6 Numerical results

In this section, the predictor corrector method is applied to get the numerical solutions of system (3) [36]. We will propose
two cases for the model (3) with various of values of parameters (γ2). In the first case,β = 0.3,ω = 0.1,µ1 = 0.2,µ2 =
0.4,γ1 = 0.1,γ2 = 0.2 and with initial conditions:S(0) = 0.5, I(0) = 0.4. In this case,R0 = 0.75< 1, then the virus-free
equilibrium is globally stable and the virus is eliminated.In the second case,β = 0.3,δ = 0.1,µ1 = 0.2,µ2 = 0.4,γ1 =
0.1,γ2 = 0.05 with initial conditions:S(0) = 0.5, I(0)=0.4, thenR0 = 1.2> 1 which implies that the virus still persists
and the viral equilibrium is globally stable.

7 Conclusion

In this paper, we introduced a study of propagation of computer virus under the impact of human intervention. We modified
the ODE model proposed in [6] into a system of fractional-order (SIR) model. The possibility that an infected computer
becomes susceptible as well as the possibility that a susceptible computer becomes recovered is considered here in the
proposed model. The results show that the solution continuously depends on the time-fractional derivative. Whenα → 1
the solution of the fractional models reduce to the standardsolution of the integer order models. According to the results
of the simulation experiments figures (1-6) it is observed that R0 is increasing withβ , and it is decreasing withγ1,γ2 and
ω respectively Figures 1 and 4.. This implies that preventionis more important than cure, and higher disconnecting rate
from the Internet contributes to the suppression of virus diffusion.
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Fig. 1: Evolutions ofS (t); I (t), and for the system (3) forα = 1 for case (1) with value ofγ2 = 0.2.

Fig. 2: The density of susceptible computer forα = 1 (solid line),α = 0.98 (dashed line), andα = 0.95 (Dashed-dotted).
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Fig. 3: The density of infected computer forα = 1 (solid line),α = 0.98 (dashed line), andα = 0.95 (Dashed-dotted).

Fig. 4: Evolutions ofS (t) (solid line); I (t) (dashed dotted line), for case (2) atα = 1 and value ofγ2 = 0.05
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Fig. 5: The density of susceptible computer forα = 1 (solid line),α =0.98 (dashed line), andα = 0.95 (Dashed-dotted).

Fig. 6: The density of infected computer forα = 1 (solid line),α =0.98 (dashed line), andα = 0.95 (Dashed-dotted).
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