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Abstract: A graph polynomial based on the detour distance, called detour polynomial, is obtained for a compound graphH∗
m(C2n),

which consists of a ring ofm copies of an even cycleC2n,m,n ≥ 2. The detour diameter and the minimum detour distance are also
determined in this paper.
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1 Introduction

For the definitions of graph concepts and notations, see
the books [4] and [8]. For the definitions of detour
distance concepts, see [3], [5], [6] and [7]. The detour
distanceD(u,v) between two distinct verticesu andv in a
connected graphG is the maximum of the lengths ofu− v
paths inG. A u− v path of lengthD(u,v) is calledu− v
detour. Thedetour diameter of G, denoted byDiam(G)
(or diamD(G), is defined by

Diam(G) = max{D(u,v) : u,v ∈V (G)}.
The detour index dd(G) of a connected graphG is

defined by:
dd(G) = ∑

u,v
D(u,v), (1)

where the summation is taken over all unordered pairs of
verticesu andv of G.

Thedetour distance of a vertexu, denoted bydD(u)
(or D(u)) is defined by

dD(u) = ∑
v∈V (G)

D(u,v). (2)

It is clear that

dd(G) =
1
2 ∑

u∈V (G)

dD(u). (3)

detour index has recently received some attention in the
chemical literature [9] and [10], becausedd(G) certainly
carries interesting information for cyclic compounds.

The detour polynomial of a connected graphG [1]
denoted byD(G;x), is defined by

D(G;x) = ∑
u,v∈V (G)

xD(u,v)
, (4)

where the summation is taken over all unordered pairs of
distinct verticesu andv of G. It is clear that

dd(G) =
d
dx

D(G;x)|x=1. (5)

Moreover, one can easily see that

D(G;x) =
δD

∑
k=1

CD(G,k), (6)

where δD = Diam(G) and CD(G,k) is the number of
unordered pairs of distinct verticesu and v such that
D(u,v) = k.

Thedetour polynomial of a vertex v of G is defined
as

D(v,G;x) = ∑
u∈V (G)
u 6=v

xD(v,u)
. (7)

It is clear that

D(G;x) =
1
2 ∑

v∈V (G)

D(v,G;x). (8)
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Definition 1: Let G be a connected graph of order≥ 3,
and letu andv be two distinct vertices ofG. For m ≥ 2,
we define a compound graphH∗

m(G) as follows: LetG(1),
G(2), , G(m) be m disjoint copies ofG, and denote the
vertices u and v in the ith copy G(i) by u(i) and v(i),
respectively. The graphH∗

m(G) is constructed from the
union of G(1), G(2), , G(m) with the edgesv(m)u(1) and
v(i)u(i+1), i = 1,2, ...,m−1.

In this paper, we takeG as an even cycleC2n,n ≥ 2,
and verticesv and u as diametrical vertices inC2n, that
is dC2n(u,v) = n. The graphH∗

m(C2n) is anm-ring of 2n-
cycles. Form = 3, H∗

3(C2n), is shown in Fig.1.

Fig. 1: The graphH∗
3(C2n), n ≥ 2.

For n = 3, H∗
m(C6) is the graph of polyhex armchair

nanotube with exactly one row andm hexagons; and for
n = 2, H∗

m(C4) is the graph ofTUC4C8(R) nanotube with
one row [2]. The detour polynomial forH∗

m(C2n) is
obtained, in this paper, from which the detour index
dd(H∗

m(C2n)) can be computed. The detour diameter and
the minimum detour forH∗

m(C2n) are also determined in
this paper.

2 The Detour Diameter ofH∗
m(C2n)

Let Wj be the vertex set of thejth copy of C2n, for j =
1,2, ...,m. The setWj is partitioned into:

U j =
{

u( j)
1 ,u( j)

2 , ...,u( j)
n−1,

}

, Vj =
{

v( j)
1 ,v( j)

2 , ...,v( j)
n−1,

}

and
{

u( j)
0 ,v( j)

n

}

as shown in Fig. 2.

It is clear that:
V (H∗

m(C2n)) =
⋃m

j=1Wj, p(H∗
m(C2n)) = 2mn,

q(H∗
m(C2n)) = (2n+1)m.

Also, one can see thatH∗
m(C2n) is a 2-connected graph

having circumferencem(n+ 1), and every vertex of it is
contained in a cycle of lengthm(n + 1). Therefore, the

Fig. 2: The jth copy ofC2n in H∗
m(C2n).

(standard) eccentricity of each vertex is
⌊

m(n+1
2

⌋

. Thus,

see Figure 3 (a andb),

rad(H∗
m(C2n)) = diamH∗

m(C2n) =

⌊

m(n+1
2

⌋

. (9)

The next proposition determines the detour diameter of
H∗

m(C2n).

Proposition 1: For m,n ≥ 2, we have:

Diam(H∗
m(C2n)) = m(n+1)+2n−3. (10)

Proof: Let u andv be any two distinct vertices ofH∗
m(C2n).

We consider two main cases:
(I) If u andv are in the same copy, sayC(i)

2n , then letu= u( j)
i

andv = v( j)
k , and assume, without loss of generality, that

0≤ j < k ≤ n. From Fig. 3, we notice that

D(u( j)
i ,u( j)

k ) = m(n+1)− (k− i)< m(n+1).

Similarly, if u = vi
j andv = v( j)

k , with 1≤ i < k ≤ n− 1,

thenD(v( j)
i ,v( j)

k )< m(n+1).

Moreover, ifu = u( j)
i , 0≤ i ≤ n, andv = v( j)

k , 1≤ k ≤ n−1
then

D(u( j)
i ,v( j)

k ) = (m−1)(n+1)+ k+1+(n− i)

= m(n+1)+ k− i ≤ m(n+1)+(n−1).

Hence, ifu andv are in the same copy ofH∗
m(C2n), then

D(u,v)≤ m(n+1)+2n−3. (11)

Fig. 3: (a) The graphH∗
m(C2n) for evenm, m = 2α .

(II) If u andv are in different copies ofC2n, then we

may assume, without loss of generality, thatu = u( j)
i and

v = u(l)k . This is because the detour fromu( j)
i to any vertex
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Fig. 4: (b) The graphH∗
m(C2n) for oddm, m = 2α +1.

w in the lth copy is the same as fromv( j)
i to w, for i =

1,2, ...,n−1. Let l < j. Then

D(u( j)
i ,u(l)k ) = max{A1,A2}

where
A1 = ( j− l −1)(n+1)+1+DC2n(u

(l)
k ,u(l)n )

+DC2n(u
( j)
0 ,u( j)

i )

A2 = (m+ l − j−1)(n+1)+1+DC2n(u
(l)
k ,u(l)0 )

+DC2n(u
( j)
n ,u( j)

i ).
Since,
DC2n(u

(l)
k ,u(l)n ),DC2n(u

( j)
0 ,u( j)

i ),DC2n(u
(l)
k ,u(l)0 ),

DC2n(u
( j)
n ,u( j)

i )≤ n−1,
and j− l ≤ m−1, m− ( j− l)≤ m−1, then

D(u(l)i ,u(l)k )≤ (m−2)(n+1)+1+2(2n−1)

= m(n+1)+2n−3.

Therefore, for any two distinct verticesu and v, in both
cases, ofH∗

m(C2n), we have

D(u,v)≤ m(n+1)+2n−3.

Moreover, one may easily see, from Fig.3(a) and (b), that

D(u(1)1 ,u(2)n−1) = m(n + 1) + 2n − 3, which completes the
proof.�

The next proposition determines theminimum detour of
H∗

m(C2n), that is

Dmin(H
∗
m(C2n)=min{D(u,v) : u 6= v∧u,v ∈V (H∗

m(C2n))} .

Proposition 2: For m,n ≥ 2,

Dmin(H
∗
m(C2n)) =

{

1
2m(n+1) for evenm,

1
2(mn+m+n−1) for oddm.

Proof: Let u and v be any two distinct vertices of
H∗

m(C2n). If both u andv are in one copy ofC2n, which,
from Fig.3(a and b), D(u,v) ≥ m(n + 1) − n, which
implies that,D(u,v)≥ 1

2m(n+1) and 1
2(mn+m+n−1).

Now, assume thatu andv are in different copies ofC2n.
Thenu andv are in a common cycle of lengthm(n+1).
(1) If m is even, then from Fig. 3(a), D(u,v)≥ 1

2m(n+1).
One may easily see from Fig.3 (a), that,

D(u(1)0 ,u(α+1)
0 ) = 1

2m(n+1), in whichα = m
2 .

Therefore, for evenm, we have
Dmin(H∗

m(C2n)) =
1
2m(n+1).

(2) If m is odd, then from Fig. 3(b),

D(u,v)≥ 1
2 [m(n+1)+n−1].

Moreover, one may easily see from Fig.3(a), that,

D(u(1)0 ,u(α+1)
n ) = α(n+1)+n, whereα = m−1

2 .
Therefore, for odd m, we have: Dmin(H∗

m(C2n)) =
1
2(m − 1)(n + 1) + n = 1

2(mn + m + n − 1), which
completes the proof of the proposition.�

3 The Detour Polynomial ofH∗
m(C2n)

From the definition of H∗
m(C2n), we notice that,

D(H∗
m(C2n)) = 1

2 ∑m
j=1 D(Wj,H∗

m(C2n);x), and for
i, j = 1,2, ...,m, D(Wj,H∗

m(C2n);x) = D(Wi,H∗
m(C2n);x),

in which D(Wj,H∗
m(C2n);x) = ∑w∈W j

(w,H∗
m(C2n);x).

Therefore,

D(H∗
m(C2n);x) =

1
2

mD(W1,H
∗
m(C2n);x). (12)

Moreover, one may see from Fig. 2 withj = 1, that
D(U1,H∗

m(C2n);x) = D(V1,H∗
m(C2n);x),

and
D(u(1)0 ,H∗

m(C2n);x) = D(u(1)n ,H∗
m(C2n);x).

Thus, from the partition ofW1 and substituting in (12), we
get

D(H∗
m(C2n);x)=m

[

D(U1,H
∗
m(C2n);x)+D(u(1)0 ,H∗

m(C2n);x)
]

.

(13)
To find D(U1,H∗

m(C2n);x), we consider two cases ofn,
namely:n is even,n = 2β ; andn is odd,n = 2β +1, and
we partitionU1 according to that as shown in Fig.4.

Fig. 5: The first copy ofC2n.

In addition to that, we have two cases form, namely:m is
even, saym = 2α, and m is odd, saym = 2α + 1.
Therefore, to findD(H∗

m(C2n);x), we consider four main
cases.

3.1 D(H∗
m(C2n);x) for odd n and even m

It is clear from Fig.4(a), that for i = 1,2, ...,β ,

D(u(1)i ,H∗
m(C2n);x) = D(u(1)n−i,H

∗
m(C2n);x). Thus, from

(13), we get

D(H∗
m(C2n);x) = m(D(u(1)0 ,H∗

m(C2n);x)

+2
β

∑
i=1

D(u(1)i ,H∗
m(C2n);x)).

(14)
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The next proposition gives usD(u(1)0 ,H∗
m(C2n);x).

Proposition 3: For evenm and oddn, m ≥ 4, n ≥ 3, we
have:

D(u(1)0 ,H∗
m(C2n);x) = (1+2A(x))xm(n+1)−n

+(1+ xn +2xnA(x))
α

∑
j=2

x(m− j)(n+1)+1

+(x−1+ x−n−1+2−2xn−1+2A(x))
m

∑
j=α+1

x(n+1) j
,

(15)

whereA(x) = ∑n−1
k=1 xk.

Proof:For j = 1,2, ...,m, we define the polynomial

Fj(x) = ∑w∈W j
xD(u(1)0 ,w).

Then

D(u(1)0 ,H∗
m(C2n);x) =

m

∑
j=1

Fj(x)

. For values ofj, we consider three cases.
(1) For j = 1, we have, from Fig.3(a):

D(u(1)0 ,u(1)k ) = D(u(1)0 ,v(1)k ) = m(n + 1) − k, for

k = 1,2, ...,n − 1, and D(u(1)0 ,u(1)n ) = m(n + 1) − n.
Therefore,

F1(x) = xm(n+1)−n +2
n−1

∑
k=1

xm(n+1)−k

= xm(n+1)−n(1+2
n−1

∑
k=1

xn−k)

= xm(n+1)−n(1+2
n−1

∑
k=1

xk).

(16)

(2) For 2≤ j ≤ α, we have, using Fig.3(a):

D(u(1)0 ,u( j)
0 ) = (m+1− j)(n+1),

D(u(1)0 ,u( j)
k ) = D(u(1)0 ,v( j)

k ) = (m+ 1− j)(n+ 1) + k,
for k = 1,2, ...,n−1, and

D(u(1)0 ,u( j)
n ) = (m− j)(n+1)+1.

Therefore, forj = 2,3, ...,α, we have:

n−1

∑
k=1

Fj(x) = x(m+1− j)(n+1)+1

+2
n−1

∑
k=1

x(m+1− j)(n+1)+k

= x(m− j)(n+1)+1(1+ xn +2xn
n−1

∑
k=1

xk).

(17)

(3) For α +1≤ j ≤ m, we have:

D(u(1)0 ,u( j)
0 ) = ( j−1)(n+1),

D(u(1)0 ,u( j)
n ) = j(n+1)−1,

and, fork = 1,2, ...,n−1,

D(u(1)0 ,u( j)
k ) = D(u(1)0 ,v( j)

k )

= ( j−1)(n+1)+DC2n(u
( j)
0 ,u( j)

k )

= ( j−1)(n+1)+2n− k

= j(n+1)+n− k−1.

Therefore, forj = α +1,α +2, ...,m,

Fj(x) = x( j−1)(n+1)+ x j(n+1)−1+2
n−1

∑
k=1

x j(n+1)+n−k−1

= x(n+1) j

[

x−1+ x−n−1+2
n−2

∑
k=0

xk

(18)

Hence, summing (16), (17) and (18) fromj = 1 to j = m,
we get (15).�
Remark (1): The formula (15) holds also for evenn ≥ 2.

Remark (2): For m = 2, and any value ofn, n ≥ 2, we
have:

D(u(1)0 ,H∗
2(C2n);x) = xn+2(1+2A(x))+ x2n+1

+ xn+1+2x2n+2−2x3n+1+2A(x)x2n+2
.

(19)

The polynomialsD(u(1)i ,H∗
m(C2n);x), for i = 1,2, ...,β ,

odd n ≥ 3 and evenm ≥ 4, will be obtained in the next
proposition.

Proposition 4: For even m ≥ 4, odd n ≥ 3, and for
i = 1,2, ...β

(

= n−1
2

)

, we have:

D(u(1)i ,H∗
m(C2n);x) = xt−i − xt + xt−iA(x)+ xi

n

∑
k=1

xt−k

+(1+ xn +2xnA(x))x2n+1−i
α

∑
j=2

x(n+1)(m− j)

+ x(n+1)α+n(xn−i + xi +2
n−1

∑
k=1

xn+|i−k|

+(xi−1+ xi−n−1+2xi−1A(x))
m

∑
j=2

x(n+1) j
,

(20)
wheret = m(n+1).

Proof: We define the polynomial, forj = 1,2, ...,m,

Fj(u
(1)
i ;x) = ∑

w∈Wi

w6=u(1)i

xD(u(1)i ,w)
,

for i = 1,2, ...,β .
Then

D(u(1)i ,H∗
m(C2n);x) =

m

∑
j=1

Fj(u
(1)
i ;x). (21)
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We have three cases for the values ofj, namely, j = 1,
2≤ j ≤ α, andα +1≤ j ≤ m.

Case (1): j = 1.

From Figs. 4 and 3(a), we notice that,

D(u(1)i ,u(1)k ) = t −|i− k|,
for k = 0,1, ..., i−1, i+1, ...,n,

D(u(1)i ,v(1)k ) = t + |i− k|, for k = 1,2, ...,n−1.
Therefor

F1(u
(1)
i ;x) =

n

∑
k=0

xt−|i−k|+
n−1

∑
k=1

xt+|i−k|− xt

=
i−1

∑
k=0

xt+k−i +
n

∑
k=i+1

xt+i−k +
i

∑
k=1

xt+i−k

+
n−1

∑
k=i+1

xt+k−i =
n−1

∑
k=0

xt+k−i +
n

∑
k=1

xt+i−k − xt
,

for i = 1,2, ...,β .
(22)

Case(2): 2≤ j ≤ α.
From Figs. 4 and 3(a), we notice that fori = 1,2, ...,β and
k = 1,2, ...,n−1,

D(u(1)i ,u( j)
k ) = D(u(1)i ,v( j)

k )

= (2n− i)+(m− j)(n+1)+1+(n+ k)

= (m− j)(n+1)+3n+ k+1− i,

D(u(1)i ,u( j)
0 ) = (m− j)(n+1)+3n+1− i,

D(u(1)i ,u( j)
n ) = (m− j)(n+1)+2n+1− i.

Therefore, forj = 2,3, ...,α, we have

Fj(u
(1)
i ;x) = x(m− j)(n+1)+2n+1−i(1+ xn +2xnA(x)). (23)

Case(3): 1+α ≤ j ≤ m.
From Figs. 4 and 3(a), we notice that for

i = 1,2, ...,β , k = 1,2, ...,n−1,
and j = α +1,α +2, ...,m, that:

D(u(1)i ,u( j)
k ) = max{S1,S2}

= 3n+1+ |i− k|

+max{( j−2)(n+1),(m− j)(n+1)} .

whereS1 = (i+n)+( j−2)(n+1)+1+(2n−k) andS2 =
(2n− i)+(m− j)(n+1)+1+(n+ k).
For j = α +1, we get

D(u(1)i ,u(α+1)
k ) = α(n+1)+2n+ |i− k|. (24)

For j = α + 2,α + 3, ...,m, we havem− j ≤ 2α − (α +
2) =α−2< j−2, and, it is clear that|i−k|< n, therefore,
for j = α +2,α +3, ...,m

D(u(1)i ,u( j)
k ) = ( j−2)(n+1)+3n+1+ i− k

= (n+1) j+n+ i− k−1.
(25)

Moreover, from the symmetry ofC2n, we have:

D(u(1)i ,v(α+1)
k ) = (n+1)α +2n+ |i− k|, (26)

D(u(1)i ,v( j)
k ) = (n+1) j+n+ i− k−1, (27)

for j = α +2,α +3, ...,m.
Also, from Fig. 3(a), we see that

D(u(1)i ,u( j)
0 ) = max{S3,S4}

=

{

α(n+1)+2n− i, for j = α +1
(n+1)( j−2)+n+1− i, for j = α +2,α +3, ...,m,

(28)
whereS3 = (n+ 1)( j − 2)+ n+ 1+ i, S4 = (m− j)(n+
1)+3n+1− i,
and

D(u(1)i ,u( j)
n ) = max{S5,S6}

= max{S7,S8} .

where
S5 = ( j−2)(n+1)+1+(n+ i)+n,
S6 = (2n− i)+(m− j)(n+1)+1,
S7 = (n+1) j+ i−1,

and
S8 = (n+1)(m− j)+2n+1− i.

Since,α +1≤ j ≤ 2α(= m), then, one can check that:

D(u(1)i ,u( j)
n ) = (n+1) j+ i−1, (29)

for j = α +1,α +2, ...,m.

Finally, from (24), (26), (28) and (29), we get:

Fα+1(u
(1)
i ;x) = 2

n−1

∑
k=1

xα(n+1)+2n+|i−k|+ xα(n+1)+2n−i

+ x(α+1)(n+1)+i−1

= xα(n+1)+n(2
n−1

∑
k=1

xn+|i−k|+ xn−i + xi).

(30)

From (25), (27), (28) and (29), we get forj = α +2,α +
3, ...,m, that:

Fj(u
(1)
i ;x) = 2

n−1

∑
k=1

x(n+1) j+n+i−k−1+ x(n+1)( j−2)+n+1+i

+ x((n+1) j+i−1

= x(n+1) j(2xi−1A(x)+ xi−n−1+ xi−1).
(31)

c© 2014 NSP
Natural Sciences Publishing Cor.

www.naturalspublishing.com/Journals.asp


102 A. A. Ali, G. A. Mohammed-Saleh: The Detour Polynomials and Detour Index of anm-Ring...

Hence, from (21), (22), (23), (30) and (31), we get, for
i = 1,2, ...,β :

D(u(1)i ,H∗
m(C2n);x) = F1(u

(1)
i ;x)+

α

∑
j=2

Fj(u
(1)
i ;x)

+Fα+1(u
(1)
i ;x)+

m

∑
j=α+2

Fj(u
(1)
i ;x)

= xt−i
n−1

∑
k=0

xk + xi
n

∑
k=1

xt−k − xt

+
α

∑
j=2

[

x(m− j)(n+1)+2n+1−i(1+ xn +2xnA(x))
]

+xα(n+1)+n(2
n−1

∑
k=1

xn+|i−k|+ xn−i + xi)

+
m

∑
j=α+2

x(n+1) j(2xi−1A(x)+ xi−n−1+ xi−1).

(32)

Simplifying (32), we get (20). Hence the proof is
completed.�

Substituting (15) and (32) in (14), we getD(H∗
m(C2n);x)

for evenm(≥ 3) and oddn(≥ 3).

Remark (3): For m = 2 and oddn ≥ 3, we have:

D(u(1)i ,H∗
2(C2n);x) = xt−i − xt + xt−iA(x)

+xi
n

∑
k=1

xt−k + x2k+1(xn−i + xi +2
n−1

∑
k=1

xn+|i−k|),
(33)

in which t = 2n+2.
Thus

D(H∗
2(C2n);x) = 2D(u(1)0 ,H∗

2(C2n);x)

+4
β

∑
i=1

D(u(1)i ,H∗
2(C2n);x).

(34)

As we have mentioned before that, the graph of a polyhex
armchair nanotube with exactly one row andm hexagons
is H∗

m(C6), then it is useful to give its detour polynomial.

Corollary 5 : For evenm,m ≥ 4, we have:D(H∗
m(C6);x) = m(2x4m+1+2x4m +6x4m−1

+4x4m−2+ x4m−3+4x2m+7+4x2m+6+4x2m+5

+4x2m+4+ x2m+3+ x2m2+(4x11+4x10+2x9

+4x6+2x5+ x4+ x)
α

∑
j=2

x4(m− j)

+(4x2+6x+4+ x−1+2x−3+ x−4)
m

∑
j=α+2

x4 j).

(35)

Proof: Substituting n = 3 in (15) and (20), we get

D(u(1)0 ,H∗
m(C6);x) and D(u(1)1 ,H∗

m(C6);x). Then, using

(14), we obtain (35).�

Remark (4): For m = 2, we putn = 3 in (19) and (33) to
obtain

D(H∗
2(C6);x) = 2(4x11+4x10+6x9+6x8+7x7

+4x6+ x5+ x4).

Remark (5): Taking the derivative ofD(H∗
m(C6);x) at x =

1, we get the detour index:

dd(H∗
m(C6);x) = 2m

[

27m2+30m−34
]

,

which is the result obtained by A. R. Ashrafi, et al. [2]
using detour matrix.

3.2 D(H∗
m(C2n);x) for odd n and odd m

The formula (14) holds for oddn and m. By a method
similar to that used in proving Propositions 3 and 4, one
can easily established the following propositions:

Proposition 6: For odd m(= 2α + 1,α ≥ 2), and odd
n(= 2β +1), we have:

D(u(1)0 ,H∗
m(C2n);x) = xt−n(1+2A(x))

+x(n+1)(α+1)(x−1+1+2xn−1−2xβ

+4
n−2

∑
k=β

xk)+(1+ xn +2xnA(x))

(x
α

∑
j=2

x(n+1)(m− j)+
m

∑
j=α+2

x(n+1)( j−1)).

(36)

Proposition 7: For oddm(≥ 5), oddn, andi = 1,2, ...,β ,
we have:

D(u(1)i ,H∗
m(C2n);x) = xt−i − xt + xt−iA(x)

+xt
n

∑
k=1

xi−k + x(n+1)(α+1)+i(xn−2i−1+ xn +2xnA(x))

+(1+ xn +2xn +A(x))(x2n+1−i
α+1

∑
j=2

x(n+1)(m− j)

+xi
m

∑
j=α+3

x(n+1)( j−1)).

(37)

Remark (6): The formulas (36) and (37) hold form = 3
providing that ∑m

j=α+3 x(n+1)( j−1) and ∑α+1
j=2 x(n+1)(m− j)

are omitted.

Finally, substituting (36) and (37) in (14), we get
D(H∗

m(C2n);x) for oddn andm.
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Corollary 8 : For oddm,m ≥ 5, we have:

D(H∗
m(C6);x) = m((1+4x+6x2+2x3+2x4)x4m−3

+(1+ x+2x2+4x3+2x6+4x7+4x8)x2m+1

+(1+ x3+2x4+2x5)((1+2x)
m

∑
j=α+2

x4( j−1))

+(x+2x6)
α

∑
j=2

x4(m− j))).

(38)

Proof: Substitutingn = 3 in (3.25) and (3.26), and using
(3.3), we get (3.27).�

Remark (7): The formula (3.27) holds form = 3,
providing that the summation∑α

j=2 x(m− j) is omitted.

Remark (8): From Corollary 8 and Remark (7), we get
the detour index ofH∗

m(C6) for oddm(≥ 3):

dd(H∗
m(C6)) = m(54m2+60m−67),

which is the same result given by Ashrafi, et. al [2].

3.3 D(H∗
m(C2n)) for even n and m

Let n = 2β ,m = 2α. From Fig.4(b), we notice thatW1 is
partitioned into:

U1 =
{

u(1)1 ,u(1)2 , ...,u(1)β−1

}

, U ′
1 =

{

u(1)β+1,u
(1)
β+2, ...,u

(1)
n−1

}

,

and
{

u(1)β ,u(1)0 ,u(1)n

}

. Thus, from Figs. 3(a) and 4(b), we

deduced that:

D(W1,H
∗
m(C2n);x) = 2D(u(1)0 ,H∗

m(C2n);x)

+2D(u(1)β ,H∗
m(C2n);x)

+4D(U,H∗
m(C2n);x).

Therefore,

D(H∗
m(C2n);x) = m(D(u(1)0 ,H∗

m(C2n);x)

+D(u(1)β ,H∗
m(C2n);x)

+2
β−1

∑
i=1

D(u(1)i ,H∗
m(C2n);x)).

(39)

One may notice thatD(u(1)0 ,H∗
m(C2n);x) is that given in

(15) for m ≥ 4, and in (19) for m = 2. Moreover,
D(u(1)i ,H∗

m(C2n);x), i = 1,2, ...,β −1, is that given in (20)
for m,n ≥ 4 and in (33) form = 2. Therefore, we need to
find D(u(1)β ,H∗

m(C2n);x).

Proposition 9: For evenm,n ≥ 4, we have:

D(u(1)β ,H∗
m(C2n);x) = 2xt−β − xt +2xβ

n−1

∑
k=1

xt−k

+ xβ (1+ xn +2xnA(x))

(xn+1
α

∑
j=2

x(m− j)(n+1)+
m

∑
j=α+2

x( j−1)(n+1))

+2(1+ xβ +2
n−1

∑
k=β+1

xk)x(n+1)α+3β ).

(40)

Proof: The detour distance is obtained fromu(1)β to every
other vertex ofH∗

m(C2n) depicted in Fig.3(a). Then, the

polynomial D(u(1)β ,H∗
m(C2n);x) is obtained as given in

(40).�

Remark (9): For m = 2 andn ≥ 4, we have:

D(u(1)β ,H∗
m(C2n);x) = 2x2n+2−β − x2n+2+2xβ

n−1

∑
k=1

x2n+2−k

+2(1+ xβ +2
n−1

∑
k=β+1

xk)xn+1+3β
.

(41)

Remark (10): For m ≥ 4 andn = 2, we have:

D(u(1)1 ,H∗
m(C4);x) = 2x3m−1− x3m + x(1+ x2+3x3)

(x3
α

∑
j=2

x3(m− j)+
m

∑
j=α+2

x3( j−1))

+2(1+ x)x3(α+1)
.

(42)

Thus for evenm and n, D(H∗
m(C2n);x) is obtained from

(39) by substitutingD(u(1)0 ,H∗
m(C2n);x), given in (15),

D(u(1)i ,H∗
m(C2n);x) given (20) for i = 1,2, ...,β − 1 and

D(u(1)β 0,H∗
m(C2n);x) given in (40), and taking care of the

special cases wheren = 2 or m = 2, as given in the
Remarks. As we have mentioned beforeH∗

m(C4) is the
graph of TUC4C8(R) nanotube with one row, and it is
useful to find its detour polynomial.

Corollary 10: Fro evenm ≥ 4, we have:

D(H∗
m(C2n);x) = m(x3m +4x3m−1+ x3m−2+2x3α+4+4x3α+3

+ x3α+2+ x3α +(2x+3+ x−1+ x−2

+ x−3)
m

∑
j=α+2

x3 j +(2x7+ x6+3x4+ x3

+ x)
α

∑
j=2

x3(m− j)).

(43)
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Proof: For m = 2, we get from (39):

D(H∗
m(C4);x) = m

[

D(u(1)0 ,H∗
m(C4);x)+D(u(1)1 ,H∗

m(C4);x)
]

,

whereD(u(1)0 ,H∗
m(C4);x) is obtained from (15) forn = 2,

andD(u(1)i ,H∗
m(C4);x) is given in (42).�

Remark (11): For m = 2, we have:

D(H∗
2(C4);x) = 2(2x7+5x6+5x5+ x4+ x3),

which can be obtained form (43) by omitting both
summations, and puttingm = 2. Finally, from Corollary
10 and Remark (11), we get the detour index ofH∗

m(C4)
for evenm(≥ 2)

dd(H∗
m(C4)) = 2m(9m2+5m−8),

which is the same formula obtained by Ashrafi, et. al [2].

3.4 D(H∗
m(C4);x) for even n and odd m

Let n = 2β andm = 2α +1, then from Figs.3(b) and 4(b),
we notice that formula (39) holds for this case, in which,
for n ≥ 4 andm ≥ 5,

D(u(1)0 ,H∗
m(C2n);x) = xt−n(1+2A(x))+(1+ x−1+2xn−1

+4
n−1

∑
k=1

xk)x(n+1)(α+1)+(1+ xn +2xnA(x))

(x
α

∑
j=2

x(n+1)(m− j)+
m

∑
j=α+2

x(n+1)( j−1)
,

(44)

D(u(1)β ,H∗
m(C2n);x) = 2xt−β − xt +2

n−1

∑
k=1

xt+β−k +2(1+ xn

+2xnA(x))xβ (x(α+1)(n+1)

+
2α

∑
j=α+2

x(n+1) j),

(45)

and D(u(1)i ,H∗
m(C2n);x) is given in (37) for

i = 1,2, ...,β −1.

Remark (12): For m = 3, and even n,n ≥ 4,
D(H∗

3(C2n);x) can be obtained from (37), (44) and (45)
providing that all summations of the form∑b

j=a for a > b,
are omitted.

Corollary 11: For oddm,m ≥ 5, we have

D(H∗
m(C4);x) = m(x3m−2+4x3m−1+ x3m + x3α+2+ x3α+3

+4x4α+4+2x3α+6+4x3α+7+(1+ x2

+2x3)(x
α

∑
j=2

x3(m− j)+
m

∑
j=α+2

x3( j−1)

+2x
2α

∑
j=α+2

x3 j)).

(46)

Proof: It follows from the formulas (45) and (46) by
substitutingn = 2 and omitting the summation∑n−2

k=β xk.�

Remark (13): For m = 3, andn = 2, we get from (46):

D(H∗
3(C4);x) = 3(4x10+5x9+5x8+5x7+2x6+x5

).

Finally, from Corollary 11 and Remark(13), we get the
detour index ofH∗

m(C4) for oddm,m ≥ 3:

dd(H∗
3(C4);x) = m(18m2+10m−15),

which is the same formula given in [2] using detour matrix.
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