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Abstract: A graph polynomial based on the detour distance, called detour polyhasnabtained for a compound grapt,(Con),
which consists of a ring of copies of an even cycl€,,,m,n > 2. The detour diameter and the minimum detour distance are also
determined in this paper.
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1 Introduction The detour polynomial of a connected grapt [1]

—_ , denoted byD(G; x), is defined by
For the definitions of graph concepts and notations, see

the books 4] and [8]. For the definitions of detour D(G;x) =
distance concepts, se8],[[5], [6] and [7]. The detour '
distanceD(u, V) between two distinct verticasandv in a

connected grap@ is the maximum of the lengths of—Vv  \yhere the summation is taken over all unordered pairs of

paths inG. A u—v path of lengthD(u,v) is calledu—v  distinct vertices andv of G. It is clear that
detour. Thedetour diameter of G, denoted byDiam(G)

(or diamp(G), is defined by d

XP, )
u,veV(G)

Diam(G) = max{D(u,v) : u,v € V(G)}. dd(G) = 4 D(GiX)lx-1. ®)
The detour index dd(G) of a connected grapl® is )
defined by: Moreover, one can easily see that
dd(G) =y D(u,v), (1) 5
u,v
’ D(G;x) = § Cp(G,k), 6
where the summation is taken over all unordered pairs of (&) kzl p(G.K) ©)

verticesu andv of G.
The detour distance of a vertexu, denoted bydp (u) where &p = Diam(G) and Cp(G,k) is the number of

(or D(u)) is defined by unordered pairs of distinct verticas and v such that
_ D(u,v) =k.
do (W) = VE\/Z(G) D(U,V). 2) The detour polynomial of a vertexv of G is defined
as
Itis clear that D(v,G;x) = z P Wu) (7
1 ue
dd(G) =5 5 do(u). 3) Ay
uev(e) It is clear that

detour index has recently received some attention in the
chemical literatureq] and [10], becausedd(G) certainly D(G;X) = 1 D(v,G;X). (8)
carries interesting information for cyclic compounds. 2\,6\%@)
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Definition 1: Let G be a connected graph of ordeB,

A - OIS WO
and letu andv be two distinct vertices o6s. Form > 2, < —
we define a compound grapty;,(G) as follows: LetG(Y, —1,0 e e
G@, , G™ be m disjoint copies ofG, and denote the ' § .
verticesu and v in the i copy G by u® and v{¥), AR 0 )
respectively. The graphl;(G) is constructed from the 1 : e
union of G, G@, | G™ with the edges/™u® and Fig. 2: The j"™ copy ofCan in HFB(Can-
vilul+d) j=12 .. m-1. (standard) eccentricity of each vertex b?g—*lJ Thus,

In this paper, we tak& as an even cycl€,,n > 2, see Figure 3g andb),
and verticesy and u as diametrical vertices i@y, that

is dc,, (u,v) = n. The graphH;(Czn) is anm-ring of 2n- x _di x _ [ m(n+1
cyclezs. Fom= 3, H3(Czn), is shown in Fig.1. rad(Hp(Czn)) = diamHpy(Con) 2 | ©)

The next proposition determines the detour diameter of

u®

n—1
Proposition 1: Form,n > 2, we have:
Diam(Hn(Con)) = m(n+1) +2n—3. (10)

Proof: Letu andv be any two distinct vertices ¢1;,(Con).
We consider two main cases: _ ,

() If uandv are in the same copy, s rz thenletu= ui“)
andv = vfj), and assume, without loss of generality, that
0 < j <k<n. From Fig. 3, we notice that

D(u-(”,u(kj)) =mn+1)— (k—i)<m(n+1).

Similarly, if u= v, andv =/, with 1<i<k<n-1,

thenD(vi(j),vf(j)) <m(n+1).

Moreover, ifu= ui“), 0<i<n, andv:vf(”, 1<k<n-1
Forn = 3, H;;,(Cs) is the graph of polyhex armchair then

nanotube with exactly one row amd hexagons; and for ) (i) _

n =2, H;(Cy) is the graph ofUC,Cs(R) nanotube with ~ D(u”,v) = (m—1)(n+1) +- k+ 1+ (n—i)

one row P]. The detour polynomial forHz(Con) is =mn+1)+k—i<mn+1)+(n—1).

obtained, in this paper, from which the detour index

dd(H;,(Can)) can be computed. The detour diameter andHence, ifu andv are in the same copy éf;,(C2,), then

the minimum detour foH;;(Cy,) are also determined in
this paper. D(u,v) <m(n+1)+2n-3. (11)

Fig. 1: The graptH;(Cpn), n> 2.

2 The Detour Diameter ofH;;,(Con)

Let W; be the vertex set of th¢" copy of Cop, for j =
1,2,...,m. The seW, is partitioned into:
Uj= {u(ll),u(zj),. ul, },Vj = {v(lj),véj),...,vml,}

cyUn_1

and{ué” ,v(j)} as shown in Fig. 2. R e T R T
It is clear that: Fig. 3: (a) The graphH;,(Con) for evenm, m= 2a.
V(Hn(C2n)) = ULiWi,  p(Hn(Czn)) = 2mn,

q(H:(Can)) = (2n+1)m.

Also, one can see that’ (Con) is a 2-connected graph (I If uandv are in different copies o€y, then we

. . o i i ()
having circumferencen(n +1), and every vertex of it is  May assume, without loss of generality, that ;™ and
contained in a cycle of lengtm(n+ 1). Therefore, the v= U1<<)- This is because the detour frcnﬂ) to any vertex
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D(u,v) > 3 [m(n+1) +n—1].
Moreover, one may easily see from FigB( that,
D(ul”,u™) = a(n+1) +n, wherea = ™2,
Therefore, for oddm, we have: Dpin(Him(Con)) =
im-1(n+1) +n=3(m+m+n-1), which
completes the proof of the propositi@h.

I\J

csEsed

Fig. 4: (b) The graphH;;(Cz,) for oddm, m= 2a + 1.
w in the I™ copy is the same as from’ to w, for i =
1,2,...,n—1. Letl < j. Then

3 Oy .

Whe'?((aui ) = max{Aq, A} 3 The Detour Polynomial ofH};,(Con)

(i o 0O

= (-1 ())(?j_l)—"_l_'_DCZn(uk ;Un’) From the definition of H}(Cz), we notice that,

+Dc,, (ug’,u’) D(Hn(Con)) = 3373 D(Wj,Hn(Czn);x), and for
Ay = (m+] 717 1)(n+ 1)+ 1+ Dy, (U, ul)) i,j =1,2,....,m DW;,Hn(Can);X) = DWW, HG(Can); ),

+Dc (Un ud ). in which D(W;, Hy(Con); X) = 2wew, (W, Hy(C2n); X).
Since, an (U, U Therefore,

[ H o

D (), ), Dy (U, u), Dy (U ),
DCZn(up, <))<n 1,

andj—lI <m-—1,m— (J—I)gm—l,then

D(Hx(Con);X) = %mD(Wl, Hm(Con); X). (12)

Moreover, one may see from Fig. 2 wifh= 1, that
D(U1,Hi(Con); X) = D(V1,Hi(Con); X),
D" u) < (m=2)(n+1)+1+2(2n—1) and (U1, Hn(Can):X) = D(Va, Hin(Con)ix)
=m(n+1)+2n-3. D(u$”  Hi(Can)iX) = D(USY Hi(Can)i X).
Thus, from the partition df\; and substituting in (12), we
Therefore, for any two distinct verticasandv, in both  get
cases, ofH;(Can), we have .
D (Hin(Can);X) = M| D(Uz, Hin(Can): X) + D(UG, Hi(Can)i) |
(13)
7o find D(Uz,Hy(Czn); X), we consider two cases of,
namely nis evenn=203; andnis odd,n=23+1, and

1) (2
Er(ctgfiun 1) = m(n+1) +2n— 3, which completes the o partitionU; according to that as shown in Fig.4.

D(u,v) <m(n+1)+2n—-3.

Moreover, one may easily see, from Fig.3(a) and (b), that

o)

(
P g

" o )
u® u“> ul u( u®, u® u® ug ugh  ul u

The next proposition determines threnimum detour of N
H;:,(Con), that is MU S

R TR )
v v Ve, <> vy v VB v Y

@ n=2p+1 ) n=28

Fig. 5: The first copy ofCyp,.

4O o)

Dmin(H:1(C2n):min{D(u,v) :U#VAUaVGV(H:W(CZn))}. Ve {

Proposition 2. Form,n > 2,

1 In addition to that, we have two cases foynamely:mis
Dinin(Hi4(Can)) = { 2 m(n+1) for evenm, even, saym = 2a, and m is odd, saym = 2a + 1.
z(M+m+n—1) foroddm. Therefore, to findD(H;(Czn); X), we consider four main

cases.
Proof: Let u and v be any two distinct vertices of

H;(Czn). If both u andv are in one copy o€, which,

from Fig.3@ and b), D(u,v) > m(n+1) —n, which 31 D(H¥(Cyp,); ) for odd n and even m

implies thatD(u,v) > im(n+1) and3(mn+m+n-—1).

Now, assume that andv are in different copies o€op. It is clear from Fig.44), that for i = 1,2,...,8,
Thenu andv are in a common cycle of Iengt‘n(mL 1). D(ui(”,H;;(CZn);x) _ D(uﬁ )” H(Can):%). Thus, from
(1) If mis even, then from Fig. 3, D(u,v) > 2m(nJrl) (13), we get

One may easily see from Fig.8)( that, ’

D(ug”,uy ™) = $m(n+ 1), in whicha = . D(H: (Con):) — m([)(ué ) HE (Con):x)

Therefore, for evem, 1we have (14)
Drmin(Hi(Can)) = Qm(n—i— 1).

(2) If mis odd, then from Fig. 39, +221D m(Czn);X)).
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The next proposition gives lB(uél), Hi(Con); X).

Proposition 3. For evenm and oddn, m> 4, n > 3, we
have:
(n+1)—n

DU, Hiy(Can)iX) = (1-+ 2A(x)X™

a .
—|—(1—|—Xn+2XnA(X)) ;X(mfj)(n+1)+1
i=

+(xtpx 2 -2 L 2A(x)) X
j=a+1
(15)
whereA(x) = -1 x.
Proof:For j = 12 .,m, we define the polynomial
Fj( ) = ZWEWX ( g )-
Then

3

DU HaCan)i¥) = S Fi(X)
j=1

. For values off, we consider three cases.

(1) For j =1, we have, from Fig.3):
D(uél),ul((l)) = D(uél>,vf<1)) = mn+ 1) — k, for
k=122..n—1 and D(ugl),uﬁl)) =mn+1) —
Therefore,
Fl(X) _ Xm(n+1)—n 42 i Xm(n+1)—k
K=1
n-1
_ Xm(n+l)—n(1_|_2 Z Xn—k) (16)
K=1
(0 1) n—1 "
=XM1 42§ x9.
2
(2) For2< j < a, we have, using Fig.3}:
D(uy”, ug) = (m+1—j)(n+1),
DU, ul) = DU W) = (m+1—j)(n+1) +k,
fork=1,2,...,.n—1, and
D, ) = (- )(n+ 1)+ 1
Therefore, forj = 2,3, ..., a, we have:
Z Fi(x (ML) (+1)+1
n-1
42 z X(m+1—j)(n+1)+k (17)
K=1

-1
_ X(m—j)(n+1)+1(1+xn + %N nz Xk).
k=1

(3)Fora+1< j <m,we have:
(s u) = (i-1)(n+1),

D(ug”,u) = 1)1
and, fork=1,2,...,n—1,
D(uy %u&”) =Dy )

— (j—1)(n+1) 4+ De,, (ul, )
=(j—1)(n+1)+2n—k
=j(n+1)+n—k-1
Therefore, forj =a+1,a+2,....m
—1
Fj(x) = xU=DOFD) gyt D=1 2nz i (N+1)+n—k-1
n-2

+22x
o

_ X(n+1)j X~ —n-1 k

1ix
(18)

Hence, summing (16), (17) and (18) froje=1to j =m
we get (15)l
Remark (1): The formula (15) holds also for ever> 2.

Remark (2): For m= 2, and any value of, n > 2, we
have:

D(u{”  H3 (Can); X) = X"2(1+ 2A(X)) + X2
XML ox@H2 3Ly 2A(X)x2n+2,
(19)

The ponnomiaIsD(ufl),Hr’,q(CZn);x), fori =1,2..0,
oddn > 3 and everm > 4, will be obtained in the next
proposition.

Proposition 4: For evenm > 4, odd n > 3, and for
i=12..8(= )wehave

. . . n
D(UY H(Con)ix) = X =X 4+ X TA(X) + X S XK
&
n (1+Xn+2XnA(X))X2n+1_i ix(n+1)(m—j)
J:
S n-1 )
+X(n+l)a+n(xn—| +xX+2 z xHli—K|

Jr(Xl—l+X|—n—1+2x|—lA(X)) %X(n+1)]’

(20)
wheret = m(n+1).
Proof: We define the polynomial, for=1,2,...,m
&)
Futix = 5 0uw,
weW
w;éui(l>

fori=212 ..
Then o

DU Ha(Can)i) = 5 Fi(uVin. (21

© 2014 NSP
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We have three cases for the valuesjphamely,j = 1, Moreover, from the symmetry @y, we have:
2<j<a,andoa+1<j<m
(1) fa+1) i
D(u! = 1 2 —k 26
Case (1):;j = 1. U7 v ) =(+ha+2n+fi-kl,  (26)
From Figs. 4 and &), we notice that, O () ) )
D(ufl),u,(f))_ =t—i—K|, D(u,v')=M+1)j+n+i—k-1, (27)
fork:%)l"(b":l"fl"”’n’ B forj=a+2a+3,..m
DU~ v ") =t+]i—K,fork=12..n-1 Also, from Fig. 3@), we see that
Therefor _
n o1 D, uf)) = max{Ss, S}
Fl(ui(l);x) _ %th\lfk\_"_ )3 =K _ 1o
K= K=1
i1 N ~Jan+1)+2n—i, forj=a+1
:;xwk*w > X Vo k+z xHi—k 1 (n+D)(j-2)+n+1—i, forj=a+2,a+3,...m
K= k= |+1 (28)
n-1 whereS = (n+1)(j—2)+n+1+i, S = (m—j)(n+
4 z Xt+k i z t+k | Z t+| k Xt 1)+3n+1—(i, )( ) ( )(
k=1+1 and
fori=1,2,...B.
(22) DU, uf) = max{Ss, S5}
Case(2)2< j<a. =max{$,s}.
From Figs. 4 and ), we notice that for=1,2,..., 3 and
k=1,2,...n—1, where
@ ) @ ) S=(j-2)(n+1)+1+(n+i)+n,
D(u™,uc) = D™, vi") Ss=(2n—i)+(Mm—j)(n+1)+1,
=(2n—i)+(m—j)(n+1)+ 1+ (n+k) S =n+1)j+i—
=(m-j)(n+1)+3n+k+1—1i, and
S=Mn+L)(m—j)+2n+1-i.

D(yY,up) = (m—

(n+1)+3n+1—i,

DU, uMy = (m=j)(n+1)+2n+1—i.

1
Therefore, forj = 2,3, ...

Fj (U x) = XM DHD+20+11 1 Ly 4 oxA (%)), (23)

Case(3)1+a<j<m
From Figs. 4 and ), we notice that for
i=12,...6,k=12..n—

,a, we have

andj=a+1a+2,...,m that:
D", u)) = max{s,, S}
=3n+1+]i —K|

+max{(j—2)(n+1),(m—j)(n+1)}.

whereS; = (i+n)+(j—2)(n+1) +1+(2n—k) andS; =
(2n—i)+(m—j)(n+1)+1+ (n+Kk).
Forj=a+1, we get

DM "y =a(n+1)+2n+i—k. (24)

Forj=a+2a+3,..,m we havem— j < 2a — (o +
2)=0a—-2<j—2,and,itis clear thgt—Kk| < n, therefore,
forj=a+2,a+3,....m

DY, ul) = (j—2)(n+1) +3n+1+i—k

—(+1)j+n+i—k—1, (@3)

Since,a + 1 < j < 2a(= m), then, one can check that:

DU, uy = (n+1)j+i—1, (29)

forj=a+1a+2,...m
Finally, from (24), (26), (28) and (29), we get:
n-1
X) =2 z

k=1
+ X(a+1)(n+1)+i—1

1 xa(MHD+2n+i—K| | ya(n1)+2n-i

Fu+1(ui(

— X a(n+1) +n ZZXnHl k|_|_xn '—i—X)
k=1
(30)

From (25), (27), (28) and (29), we get fpr=a + 2, a +
3,...,m, that:

-1
_ ZnZ X(n+1)j+n+i—k—1+X(n+1)(j—2)+n+1+i

+x((MD)j+i-1

(n+l) (ZXI lA( )_~_ | nfl_i_xifl).
(31)
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Hence, from (21) (22), (23), (30) and (31), we get, for (14), we obtain (351
i=12,.
Remark (4): Form= 2, we puth= 3 in (19) and (33) to

a obtain

D(uima Hm(Can):x) = Fl(ui(1>;x) + Fj(Ui(l);X)
3 D(H3 (Ce); x) = 2(4x™ +4x'% 4 6x7 4 6x° 4 7%

m

+Fa+1(ui(1);x)+ > Fj(ui(l);x) + 48 435 +x4.
j=a+2
n-1 o Remark (5): Taking the derivative oD (H;(Cs);X) atx =
=x" Z)XK+X' Y XK= 1, we get the detour index: "
B (32)
a ) i * . _ o
+ 22 {X(mfj)(n+l)+2n+lfl(1_’_xn+ 2XnA(X))} dd(Hm(CG)-X) =2m [27mZ_|_30_n 34] )
= L which is the result obtained by A. R. Ashrafi, et al. [2]
+x"’<“+1>+”(2ni i +x‘) using detour matrix.
u x(n+1)] 1 1, -1
n i— I n— | —
+ 3 XTHATAK) + X7 3.2 D(H,(Con); x) for odd n and odd m

j=a+2

Simplifying (32), we get (20). Hence the proof is The formula (14) holds for odsh and m. By a method

completedll similar to that used in proving Propositions 3 and 4, one
can easily established the following propositions:

Substituting (15) and (32) in (14), we gBt{(H(Can); X)

for evenm(> 3) and oddn(> 3). Proposition 6. For odd m(= 2a + 1,a > 2), and odd
n(=2B+ 1), we have:

Remark (3): Form= 2 and oddch > 3, we have: "

Do L § D(uf” . Hin(Can)i¥) = X "(1+ 2A(x))

DY, H3 (C2n);x) =X =X+ XTA(X) XD (1 g o1 9B

(33)

n n-1
S R0 2§ xR S
kZl ( kZl ) +4y X) + (14X + 2X"A(x)) (36)
in whicht = 2n+-2. < (1) (m—j) c (m+1)(j-1)
Thus (x § x(MDm=i) xHU=L),
2, 2

D(H3 (Can);x) = 2D(ugl),H2*(c2n)- X)
(34) Proposition 7: For oddm(> 5), oddn, andi =1,2,..., 3,

+4 ZlD 5(Can): ). we have:
_ DU, H (Con)iX) = X =X+ X TA®X)
As we have mentioned before that, the graph of a polyhex n
armchair nanotube with exactly one row amdchexagons 4 Z KK x(MD(a+D)H (=21 0y WA (X))
is Hy,(Cs), then it is useful to give its detour polynomial. s
a+tl _
Corollapyt$:, (CR1 Qyenmimd wekdve: 6xm-1 (14X 28+ A(x)) (@ ;x(“ﬂﬂmﬂ)
J:

AXAHM2 M3y 42T | 4y 26y gy2m+S

P AXEHA 2T 22 (114 2410 4 )0 4x Z XM -1))

a j=a+3
00428t 1) 5 (39) (37)
J:m Remark (6): The formulas (36) and (37) hold fon= 3
+ (D4 bx+4+x T+ 2x 34 xH) S x. providing that 3T, ox™ U1 and 34 xnLm=i)

j=a+2 are omitted.

Proolf: Substitutingn = 3 1"1 (15) and (20), we get Finally, substituting (36) and (37) in (14), we get
D(u(()),H,*;](CB);x) and D(u(l),Hr*;](Ce);x). Then, using D(H;;(Con);x) for oddnandm.
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Corollary 8: For oddm,m > 5, we have:

D(Him(Ce);X) = m((1+4x+ 6x° 4 2 + 2xH)x*m-3
F (14 X+ 2 4+ 4x3 4 28 44X + 4821

(143 + 2 +23) ((1+2%) g x*1-1)
j=a+2
+(x+2x°) S xHM=1)y),
2,
(38)

Proposition 9: For evenm,n > 4, we have:

n-1
D(u(ﬁl)y Hri;(CZn),X) = 2XI_E _Xt +2XI3 Z Xt_k

k=1

3 (L4 X"+ 2"A(X))
(XL ix(mj)(mrl) i x(i=Dn+1)y

I= j=a+2
n-1
+2(1+XF 42 X)X La+36)
k=B+1
(40)

Proof: Substitutingn = 3 in (3.25) and (3.26), and uUsing  praof: The detour distance is obtained frmﬁ) to every

(3.3), we get (3.271

Remark (7): The formula (3.27) holds form = 3,
providing that the summatiopi?_,x™1) is omitted.

Remark (8): From Corollary 8 and Remark (7), we get

the detour index oH;;(Cs) for oddm(> 3):
dd(H;:(Cs)) = m(54n? + 60m—67),

which is the same result given by Ashrafi, et. 3l [

3.3D(Hj(Con)) for even nand m

Let n =23, m= 2a. From Fig.4b), we notice thatVy is
partitioned into:
Uy = {u(f),ugl), ...,uglzl}, Uy = {uﬁl,uﬁz,...,uﬂl},
and {u%l),ug),uﬁl)}. Thus, from Figs. 3) and 4p), we
deduced that:
D(W, H;i(Can); X) = 2D(uS” Hia(Can); X)
+ 2D(u§31), Hm(Can); X)

+4D(U,H(Con); X).

Therefore,

One may notice thaD(uél>7H:n(CZn);x) is that given in
(15) for m > 4, and in (19) form = 2. Moreover,
D(uY H(Con);X), i = 1,2,...,B— 1, is that given in (20)
for m,n> 4 and in (33) foom = 2. Therefore, we need to

find D(ug, Hry(Can); X)-

other vertex ofH>(Cyy) depicted in Fig.3f). Then, the
polynomial D(ugl),HQ(CZH);x) is obtained as given in
(40)m

Remark (9): Form= 2 andn > 4, we have:

n-1
D(ug), H (Can):X) = 22MH2°B _y2042 4 o8 )3 2n+2-k
K=1

n-1
+2(L4xP 42 5 XXM,
k=B+1
(41)

Remark (10): Form> 4 andn = 2, we have:
DU H:(Ca)ix) = 2™ —53™ 4 x(14 3% + 3¢)
o ) m )
(X3 x3(m=i) + X3(I—1))
J; j=§+2

1+ 2(1 43D,
(42)

Thus for evenm and n, D(H;;,(Can); X) is obtained from
(39) by substitutingD(uEJl),H;;(an);x), given in (15),
D(uY H:(Can);X) given (20) fori = 1,2,....8 — 1 and
D(u;jl)q H;(Con); X) given in (40), and taking care of the
special cases where = 2 or m= 2, as given in the
Remarks. As we have mentioned befdtig(Cs) is the

graph of TUC4Cg(R) nanotube with one row, and it is
useful to find its detour polynomial.

Corollary 10: Fro evenm > 4, we have:
D(H5(Can); X) = mOCT 4 4x3M—1 4 x3M=2 | gy 3a+4 | gy30+3
+x30H2 1530 4 (2x+ 34 x L4 x 2

m .
+x7%) Y (@2 430+ 3
j=a+2

+X) S x3m=i)y,
2
(43)
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Proof: Form= 2, we get from (39):

D(Hin(Ca)ix) = m[D(U”, Hiy(Ca)ix) + DL Hin(Ca)ix

whereD(uél), Hi(Ca);X) is obtained from (15) fon = 2,

andD(ui(l), Hi(Ca); x) is given in (42)l
Remark (11): Form= 2, we have:

D(H3(C4);X) = 2(2X" + 5 + 5% + x* +x°),

Corollary 11: For oddm,m> 5, we have

D(H%(C4),X) _ m(x3m—2+4X3m—1+x3m+x3a+2+x3a+3
+4X40+4+2XSa+6+4x30+7+(1+X2

+2X3)(xix3(m‘”+ s 3
= j=0+2

20
+2x 5 ).

j=a+2

(46)

Proof: It follows from the formulas (45) and (46) by

which can be obtained form (43) by omitting both sypstitutingn = 2 and omitting the summatiogy} 2 .

summations, and puttingn = 2. Finally, from Corollary

10 and Remark (11), we get the detour indexjf(Ca)
for evenm(> 2)

dd(H(C4)) = 2m(9m? +5m—8),

which is the same formula obtained by Ashrafi, et2l [

3.4 D(H},(Cy);x) for even nand odd m

Letn=2f andm=2a + 1, then from Figs.3y) and 4{),

we notice that formula (39) holds for this case, in which,

forn>4 andm> 5,
D(USY, Hii(Can);X) = X "1+ 2AX)) + (1+x T4 2x* 1

n-1
+4 3 XOXDETD 4 (1454 2xA(x))
k=1

a . m .
(X X(n+1)(m*]) + X(FH‘:I-)“*]-)7
JZZ j:§+2

(44)

n-1
DU HiCan)ix) = 2X B X 42 5 XKy 2(1 4"
k=1
+ 2X"A(X) )xB (x(a+ 1) (n+1)
2a (1 1)]
+ X\
j:§+2

)

(45)

and D(UM Hi(Con)ix) s
i=1,2,..8-1

Remark (12 For m = 3, and evennn > 4,
D(H;(Can);x) can be obtained from (37), (44) and (45)
providing that all summations of the for[ﬁ-’za fora> b,

are omitted.

given in (37) for

Remark (13): Form= 3, andn = 2, we get from (46):
9 8 7 6 5
D(H; (C4);X) _ 3(4X10+5x +5x°4-5x"+-2x°+x )

Finally, from Corollary 11 and Remark(13), we get the
detour index oH;;,(C4) for oddm,m> 3:

dd(H3(C4);X) = m(18mP + 10m— 15),

which is the same formula given in [2] using detour matrix.
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